
Dynamic Service Composition: Why, Where and How

Eduardo Silva, Luı́s Ferreira Pires and Marten van Sinderen

Centre for Telematics and Information Technology, University of Twente
The Netherlands, P.O. Box 217, 7500 AE Enschede

{e.m.g.silva, l.ferreirapires, m.j.vansinderen}@cs.utwente.nl

Abstract. We live in a society that is in its nature service-oriented: organizations
and individuals get services from others, and provide services to others. This
paradigm has been now applied to computer systems with the Service-Oriented
Architecture, and it is gaining momentum, mainly motivatedby the natural envi-
ronment provided by the Internet to connect people and businesses. The Service-
Oriented Architecture provides an architectural style forthe creation, share, com-
position and execution of networked services. Given the actual dynamic, hetero-
geneous and distributed nature of computer systems, the composition of services
requires mechanisms to support service description, advertisement, discovery,
composition, and execution. In this paper we motivate the dynamic composi-
tion of networked services, presenting an overview onwhy this area is gaining
importance; discussingwhereit has its most promising applications; and finally
exposing our initial ideas onhow dynamic service composition can be realized.
To tackle these problems we present a life-cycle for the service composition task,
and present our initial framework to support dynamic service composition.

1 Introduction

Nowadays we are observing a constant emergence of mobile computing devices, with
powerful communication capabilities and increasing processing power. These devices
are getting smaller and ubiquitous, and this tendency will continue. Recent studies [1]
have concluded that in the upcoming years an increase usage of small devices, referred
asInternet-centric pocketabledevices, will overcome the usage of laptops, mainly for
users with high mobility. Such a trend is triggering a changeon the way software ap-
plications are provided, going from the traditional on-device software applications to
Internet-based software applications. This class of Internet-based software applications
will take advantage of the high processing power of back-endserver systems, providing
users with advanced functionality on their pocket computers, offered as services. There-
fore, these trends are expected to cause an increase in the usage of Service-Oriented Ar-
chitecture (SOA) [2]. The acceptance of SOA principles in the design of such distributed
software systems will allow companies to sell and buy services based on subscription
instead of product licenses. This idea of offering functionality as services (according
to the SOA principles) is referred to asSoftware as a Service (SaaS)[3], and allows a
client organization or user to use on demand services provided by other organizations
or users. Such a change in the way software is provided (as a service) will mainly be
possible due the high bandwidth available today, and the waysoftware companies are

da Silva E., Ferreira Pires L. and van Sinderen M.
Dynamic Service Composition: Why, Where and How.
DOI: 10.5220/0004465000730085
In Proceedings of the 2nd International Workshop on Enterprise Systems and Technology (I-WEST 2008), pages 73-85
ISBN: 978-989-8111-50-0
Copyright c© 2008 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

developing their services, by following open standards, which allows higher interoper-
ability amongst different companies products.

In the context of end-users service provisioning new applications areas are appear-
ing. A clear example is the creation of services on demand, taking into consideration
the context (situation) and preferences of the user to adaptthe service accordingly [4].
Users’ preferences, behaviour, context, etc., vary with the user and his situation, so ap-
plications created targeting a large set of users, will not be optimally tailored for all
their possible users. Having this idea in mind we claim in this paper that mechanisms
for the dynamic composition of services are necessary in order to provide tailored ser-
vices on demand to service users. We argue that SOA provides the basic principles to
support dynamic service composition, but more mechanisms are necessary to improve
the collaboration of the different parts of a service-oriented system.

The rest of the paper is organized as follows: Section 2 motivates the dynamic com-
position of services, why is it required and why is it possible; Section 3 shows some of
the possible scenarios for dynamic service composition; Section 4 presents a possible
life-cycle for dynamic composition of services; Section 5 presents our initial framework
for dynamic service composition; Section 6 presents some related work on dynamic and
automatic service composition; and finally Section 7 present some conclusions and dis-
cuss challenges to be addressed in the future.

2 Motivation

New service applications appear everyday, such as online map services, messaging ser-
vices, location services, online shopping, etc. This is mainly triggered by the intensive
use of the Internet, not only by companies but also by regularend-users, who can create
applications and make them available. One of the most popular and successful exam-
ples is provided by the open source communities, which are most of the time a group of
developers scattered all over the world working remotely (through the Internet) on com-
mon projects [5]. The result is a constant increase of available applications, which can
be used by different users in different devices. Considering that such applications are
made available, for example, on the Internet, new opportunities arise. One of the most
interesting opportunities is the creation of new applications out of existing ones,reuse
instead of re-do. The aim is to allow one to create a new application, in a givenpro-
gramming language, in a given system, and expose it to potential users without requiring
them to use exactly the same set of technologies used to develop the application, but in-
stead using the technologies that are more convenient to that application user. However
to have such an open architecture all the different parties have to agree on common prin-
ciples to allow interoperability between the applications. Service-Oriented Architecture
(SOA) [2] provides such a set of principles to create distributed computing systems,
which supports the creation of loosely coupled applications services in heterogeneous
distributed systems.

2.1 Service-Oriented Architecture

The Organization for the Advancement of Structured Information Standards (OASIS)
defines SOA as [6]:

74

A paradigm for organizing and utilizing distributed capabilities that may be
under the control of different ownership domains. It provides a uniform means
to offer, discover, interact with and use capabilities to produce desired effects
consistent with measurable preconditions and expectations.

Provided with such principles, developers can create functionality, and make it avail-
able to potential users. This functionality is provided as aservice to possible users, by
defining the service capabilities and how it can be invoked ina service description doc-
ument. Figure 1 shows the basic concepts behind SOA, such as the different players and
interactions required in this architecture.

Service Registry

Service
Provider /Developer

Service
User

Service

Service
Descript ion

Service
Descript ion

Sx

Sx

Sx

i) publish service
descr ipt ioni i) request service

i i i) retr ieve service
descript ions

iv) invoke service

Sx

Fig. 1. Service-Oriented Architecture concepts and interactions.

SOA is not an implementation technology but a set of principles, that can be imple-
mented in different concrete technologies. One of the most prominent and widely used
technologies for implementing the SOA principles is Web services, which is a technol-
ogy with high industrial acceptance, for which many standards and tools are available.
This allows developers or service providers to create and publish services, and allow
potential users (Service users) to discover services and possibly invoke them. Some
of these standards are Web Services Definition Language (WSDL) [7], Simple Object
Access Protocol (SOAP) [8], Universal Description, Discovery and Integration (UDDI)
[9], and Business Process Execution Language (WS-BPEL) [10]. They allow one to de-
scribe services, exchange messages, publish/discover service descriptions and compose
services, respectively. More standards have been developed, which aim at addressing
all the additional issues concerning Web services systems.

75

2.2 Why Dynamic Composition

Traditionally service developers make application services from scratch, triggered by a
specific request from the service users or by the identification of some potential (busi-
ness) opportunity. This approach is time consuming, and leads, many times, to the du-
plication of already existing functionality. Following the SOA principles, service de-
velopers can instead create compositions of existing services to fulfill some given user
needs. Nowadays there are plenty of tools to support developers in the task of service
composition, and these tools tend to facilitate (ease and optimize) this task, enabling
the re-use of existing services. However, the current approach consists of the creation
of static service compositions, with fixed service end-points, targeting a specific group
of service users. We argue that more dynamic composition mechanisms have to be de-
veloped to allow the creation of more personalized, adaptable and context sensitive
services.

Assuming that different services are available that can be discovered and composed,
we claim that more dynamic mechanisms can be used to achieveon demandservice
composition, given a specific user service request. This is the essence of dynamic ser-
vice composition:perform the composition of existing services on demand to match
specific user requirements and preferences. In this paper we motivate dynamic service
composition based on a specific user service request, so taking the user request, con-
text and preferences into account in the service composition process. Dynamic service
composition may also address, such as, for example, the adaptation of a service compo-
sition in case a service component is unavailable, implyingthat an alternative service is
discovered to replace the unavailable one, however this is not the focus of this paper. In
[11] other research challenges have been identified in the area of service composition,
however is clear that much focus is given to the creation of more dynamic mechanisms
for service composition.

To achieve dynamic service composition, frameworks to coordinate all the phases of
the service composition life-cycle are required. If such frameworks are available, users
will be able to develop more personalized services, according to their needs.

3 Scenarios for Dynamic Service Composition

The most natural scenarios for service composition areInternet-based. This is mainly
justified by the big number of applications that are available, which can be exposed as
services (e.g., web services). Considering that the providers of these services publish
their descriptions in a service registry, other users or service developers can discover
and make use of these services. For example, if there are services that provide lists
of hotels and lists of taxi companies given a location, a client user may on-demand
create a new service that allows to book a hotel and given the location of the hotel
book a taxi to take him from the airport to the hotel. Another clear example concerns
inter-organisational (business) computing. If differentorganisations provide specialized
services to each other, each organisation can focus on theirown expertise and simply
outsource some services by reusing other organisation’s services to achieve the func-
tionality they require. This inter-organisational cooperation allow partners to reduce the
cost and possibly optimize their products, since they can focus on the problem to be

76

solved, avoiding to tackle all the less important issues that are required to solve it. The
main issue in this situation, most of the time, is not the service composition process at
the technical level, but the contractual issues. This is in our opinion one of the great-
est barriers to the actual usage of service-oriented architectures in inter-organizational
systems.

Another interesting scenario is concerned withmobile computing, in which mobile
devices are provided with some functionality, but rely on back-end systems to perform
the most complex computations and provide the necessary services. In [12] these ser-
vices are described asField Web services. The idea of this scenario is to provide thefield
mobile user device with the necessary functionality to interact with the back-end sys-
tems, and perform all the more complex computing tasks on theback-end systems. This
is an emerging idea, and is gaining a lot of attention from different parties, especially
from telecom service providers. If service users are provided with basic frameworks that
allow them to discover and compose available servicesanywhere and anytimeaccord-
ing to their context and preferences, companies may create agreat source of revenue by
providing such personalised services. This hybrid system (mobile clients and back-end
server system) has a lot of potential applications, and fits the current trend of moving
user client to mobile platforms. Another advantage that canbe foreseen in applying
SOA principles in mobile computing environments is that SOAprovides a natural en-
vironment for task distribution, which allows one to save battery life of mobile devices.
This issue is a very well known problem in mobile computing areas, since it is often
a bottleneck for the usage of mobile devices. In [13] severalideas and challenges to
the application SOA principles in mobile environments are discussed, as well as how
more mature SOA principles applied to wired environments can be adapted to mobile
environments.

These examples differ in their nature and application areas. TheInternet-basedsce-
nario seems to be the most natural and also the most suitable scenario for service com-
position at the moment. However, theMobile computingscenario, due to the intrin-
sic mobility of the users, provide interesting applicationopportunities to be explored.
We expect that both scenarios will increase the usage of service-oriented architecture
techniques, mainly triggered by the flexibility provided bysuch architectural approach.
Dynamic service composition techniques will allow one to address the personalization,
context and preferences of the users in any of these scenarios. This implies that efforts
have to be made to allow the dynamic composition of services.

4 Service Composition Life-cycle

To present our framework for dynamic service composition wefirst introduce the notion
of service composition life-cyclefor dynamic service composition. Figure 2 shows the
different phases and the different perspectives of the service composition life-cycle.

In the context of service-oriented systems different perspectives (or parties) have to
be considered in the service composition creation and execution life-cycle. We admit
that there are two main perspectives in this life-cycle: theService userand theService
developer/providerperspectives. Other authors distinguish the service developer from
the service provider. However, to simplify the discussion,we assume that the service

77

Service creat ion

End-user

Service
deve loper /prov ider

Service registry

Serv ice request Service discovery

Service publ icat ion

Service composit ion

Service composit ion
select ion

Service developer

Service user

Fig. 2. Service composition life-cycle.

developer and the service provider are the same entity in ourlife-cycle. The service
user can be an end-user, a person without much technical knowledge, or can also be a
service developer, who makes use of services that are possibly provided by other service
developers/providers to create new value-added services.

From the perspective of the service developer/provider, two main phases can be
identified:service creationandservice publication. The service creation phase basically
focuses on the creation of the application service. An application service may be a
new application created from scratch, or may consist of wrapped legacy or existing
applications exposed as a service with a well-defined interface. The service creation
can alternatively consist on the construction of a new service composition, meaning
that a service developer/provider simply re-uses existingservices to compose a new
value-added service. After the creation of a new service, a service descriptions for this
service should be published in a service registry. The publication phase consists on the
publication of the service description document, so the service can be later discovered
by possible service users.

From the perspective of the service user, several phases canbe identified:service
requestspecification;service discovery; service composition; service composition se-
lection. The service request specification consists of the definition of the desired service
properties and goals. This information is used to perform service discovery, and to drive
the service composition and selection processes. Two main approaches to service dis-
covery can be considered: discover all the relevant services for the composition, based
on the service request; or iteratively discover the required services during the service
composition process. A combination of these two approachescan also be considered, in
which all the relevant services are considered first and thenextra services are discovered
on-demand at composition time, in case the set of discoveredservices is not sufficient to
complete the service composition process. Independently of how the service discovery
phase is implemented, it is always made based on informationspecified in the service

78

request. The next phase is the actual service composition, where an algorithm for the
creation of a service composition plan is used to match the user service request for a
composition. Given the set of discovered services, different alternative service compo-
sition plans may be generated. In this case, the next phase consists on the selection of a
service composition, again based on properties of the user service request such as, for
example, cost, reliability and response time, and his context and preferences. Addition-
ally, and not stated in the figure, for the end-user case a service deployment phase must
also exist, so the service can be deployed to be ready for execution. In Figure 2 there is
another possible phase in the perspective of the service user, mainly the service devel-
oper - theService publication. This phase consists on the publication of a service that is
created dynamically for a given service user. This motivates the use of dynamic service
composition mechanisms to support not only end-users, but also service developers,
who can then publish the generated service compositions.

In this service composition life-cycle we ignored several issues, such as for example
service binding, service deployment. We intentionally ignore these details, leaving them
open to be addressed in the concrete frameworks for dynamic composition of services,
since these operations can be specified in different phases of the life-cycle.

5 Framework for Dynamic Service Composition

Figure 3 presents our initial framework for dynamic servicecomposition, following the
life-cycle presented in the Section 4.

Figure 3, shows that our framework makes uses of ontologies for service creation
and description, service request description and also for service discovery and the con-
struction of service compositions. In computer science, anontology consists of a for-
mal specification of a conceptualization of a given domain. This formalization allows

Spate l
service creat ion

End-user

Service
deve loper /prov ider

Service registry

Serv ice request
Service discovery

and
Matr ix construct ion

Service
descr ipt ion publ icat ion

Graph-based
 composit ion

Select ion based on
Non-funct ional props.

and semant ics

Service developer

Service user

UDDI

Domain Ontologies

Fig. 3. Framework for dynamic service composition.

79

the description of a domain at a semantic level. This semantic level description enables
automatic reasoning, i.e., without human intervention. Inour framework we make use
of this possibility to perform the service composition based on a service request and
the service description of the existing services, both concepts described in common
ontologies.

Our framework is being implemented in the context of the SPICE (Service Plat-
form for Innovative Communication Environments) project [14]. In the SPICE project
a language called Spatel [15] has been defined to support the creation, composition and
execution of services and service compositions. Another property of this language is
that it allows semantic annotations to be associated to service operations and proper-
ties. Provided with the Spatel language, a service developer can create new services,
and semantically annotate them according to ontologies of the service domain. In our
framework this is done by theSpatel service creationmodule. Another language could
be used that support semantically annotated services, suchas for example SAWSDL
[16]. After the service is created, such annotations can be used in theService descrip-
tion publicationmodule, to publish the necessary information to enable service discov-
ery. These modules reflect the life-cycle service developer/provider perspective in the
framework.

From the perspective of the service user, the first step we consider in the framework
is the definition of theService request. The service request has to express the goal(s)
of the service user for his service, so that the necessary discovery and composition of
existing services can take place. We define a service request, in an XML-based format,
as follows:

<ServiceRequest>
<Inputs>..</Inputs>
<Outputs>..</Outputs>
<Preconditions>..</Preconditions>
<Effects>..<Effects/>
<Goals>..</Goals>
<Non-functional>..</Non-functional>
<Ontologies>..</Ontologies>

</ServiceRequest>

At the moment we are experimenting with simple stateless services, not taking into ac-
count complex service behaviors. The service request abovehas seven different types
of annotations. The serviceInputs, Outputs, PreconditionsandEffects(IOPEs) refer to
specific input, output, precondition and effect parametersthat the service composition
has to contain and satisfy. TheGoalsannotations describe specific goals that the service
composition has to fulfill, such as, for example: translate,bookTicket, findDoctor. The
Non-functionalproperties specify some additional requirements that the service com-
position has to fulfill, such as, for example: maximum cost ofthe service composition
and minimum level of security. TheOntologieslists the ontologies used to specify the
service request properties. This means that each property has to be specified following
a defined concept in a valid domain ontology. An example of a service request is the
following:

80

<ServiceRequest>
<Inputs>

<"LanguageOnt#Language" name="srcLang">
<"LanguageOnt#English" name="trgtLang">
<"LanguageOnt#Text" name="txtToTrans">
<"TelecomOnt#PhoneNum" name="destNumber">

</Inputs>
<Outputs>

<"TelecomOnt#AckSMS" name="AcknowledgmentSMS">
</Outputs>
<Preconditions/><Effects/>
<Goals>

<"GoalOnt#translate">
<"GoalOnt#sendSMS">

</Goals>
<Non-functional>

<"NFPOnt#Cost" value=0,50 EUR>
</Non-functional>
<Ontologies>

<"GoalOnt" "TelecomOnt" "NFPOnt" "LanguageOnt">
</Ontologies>

</ServiceRequest>

This service request denotes a service that performs the translation of a text from a given
language to English, and sends the result by SMS to a specific telephone number. Fur-
thermore the service should not cost more that 0,50 EUR. Thisservice request specifies
the necessary inputs for the service, i.e., the text to be translated, the source and target
languages for the translation, and the telephone number to which the message has to be
sent. The output of the service request is a simple acknowledgment that the SMS mes-
sage has been received. The goals are to translate and send anSMS message. Finally,
the ontologies used to specify the annotations are also listed in the service request.

Once the service request is available theService discovery and matrix construc-
tion module can be used to perform the discovery of the necessary services and orga-
nize them into a matrix that facilitates the construction ofthe actual service compo-
sitions by theGraph-based compositionmodule. We perform service discovery based
on service goals. For example, in the service request above two goals are specified:
GoalOnt#translate andGoalOnt#sendSMS. Based on these goals the service dis-
covery module queries the service registry (an UDDI-based registry, extended with se-
mantic support) for services with goal annotations semantically related with the service
request goals. After retrieving all the matching services,they are organized in aCausal
Link Matrix (CLM+) [17], which is a formalism that allows the representation ofall the
possible semantic links between the discovered services. By semantic links we mean
the connection between services inputs and outputs, which are described with semantic
annotations using common ontologies, to allow their composition and interoperability.

Once the CLM+ is created, theGraph-based compositionmodule can perform the
necessary service composition. The service composition algorithm consists of a graph-
based algorithm that uses the service request specificationto drive the composition
process. It starts from the specified service request outputs and composes services back-

81

wards until all the requested service inputs are matched andall the requested goals are
resolved. At each iteration, the composition algorithm checks whether the requested
non-functional properties are met by the service composition; if these are not met the
composition is discarded.

At the end of the process several service compositions may begenerated. To help
select a particular composition we rank the generated compositions according the spec-
ified non-functional properties and the services semantic links. This is an important
issue, since if the service user is an end-user without any technological knowledge, he
expects to obtain a running service. This implies that a particular composition has to be
selected if alternative service compositions are possible. In the future we also intend to
take the user’s context into account in the selection of the most appropriate service.

We refer to [18] for a discussion in the CLM+ creation, the graph-based composi-
tion algorithm and the proposed ranking algorithm for service composition selection.

6 Related Work

The area service composition is a very active area of research nowadays. Different as-
pects of service composition are being studied. However theintegration of the differ-
ent parts of the process of service composition, from the service request to the actual
runnable service composition, using dynamic and automaticmechanisms is still not
addressed by many.

[19] address the problem of interleaving web service discovery and composition,
considering only simple workflows where web services have one input and one output
parameter. In this case the web service composition plan is restricted to a sequence
of limited web services corresponding to a linear workflow ofweb services. In our
framework we propose a formalism to support the compositionof services with multiple
inputs and outputs, and also address the other phases of the life-cycle of the service
composition process.

In [20] an algorithm for automatic composition of services is presented. The service
composition is considered as a directed graph, where nodes are linked by the seman-
tic matching compatibility (Exact, Subsume, PlugIn, Disjoint) between input and
output parameters. Based on this graph, the shortest sequence of web services from
the initial requirements to the goal can be determined. Thisapproach compute the best
composition according to the semantic similarity of outputand input pa rameters of
web services, but it does not consider any non-functional properties of the composi-
tion services. We consider this to be a very pertinent point to take into account, since
the selection of the most suitable service compositions aremany times based on such
properties (e.g.: cost, security, etc.).

In [21] a semi-automatic composition process is proposed toperform the composi-
tion of web services. This approach supports the system useron the selection of web
services for each activity in the composition, and to createflow specifications to link
them. The discovery process consists on finding matching services, meaning web ser-
vices that provide outputs that can be fed as input on the services that exist in the service
composition. After selecting all the services, the system generates a composite process
in DAML-S [22]. The composition is executed by calling each service separately, and

82

passing the results between services according to the flow specifications. This process
grant a higher control over the composition process, which is sometimes desirable for
service developers. However, and since the composition process is semi-automatic, end-
users without technical knowledge can’t usually make use ofthis approach. Our frame-
work deals with the composition process in a more abstract and automated way, which
allow its usage by both service developers and end-users.

7 Conclusions and Future Work

In this paper we motivate dynamic service composition. We claim that given the cur-
rent trends on computer and communication systems an increase usage of distributed
application services is expected. This implies that new mechanisms and architectures
are required to support such systems, and also to provide users with tools to use these
new application services. The main architectural principles to support these ideas can
be found in the Service-Oriented Architecture (SOA).

To motivate the creation of mechanisms for dynamic service composition we pro-
vide two potential scenarios suitable for service composition: the Internet-basedsce-
nario, where several services can be published or advertised, and one can make use of
them to compose new application services, reusing the existing services; and theMo-
bile computingscenario, which has a lot of potential with the emergence of mobile
devices and communications. In the later scenario mechanisms are required to support
mobile users, providing them with minimal functionality atthe mobile terminal, and
performing the complex tasks at the back-end server systems.

We conclude by providing some initial ideas on how to tackle the problem of dy-
namic composition of services. We discuss a dynamic servicecomposition life-cycle,
showing the phases, and perspectives that are necessary to support the process of dy-
namic composition of services. Based on this we present our initial framework for
dynamic composition of services, from the service user request to the actual service
composition.

In the future we plan to explore further our ideas and improvethe proposed frame-
work towards a generic framework to support dynamic servicecomposition using dif-
ferent technologies in different application scenarios. The following research challenges
have been identified:

1. The service request module has to accept user service requests in an abstract form,
to support not so technical skilled users. It has also to collect context information
and other user preferences, to be used in the composition process.

2. At the moment we perform service discovery based on the specified goals on the
service request, but it is clear that other services may be needed at composition
time to complete a service composition. Given this, mechanisms to make service
discovery at composition time have also to be considered in the framework.

3. The use of ontologies is clearly required to allow such a dynamic mechanism for
service composition. Nevertheless how and where these ontologies are defined is
still fuzzy. This is an issue that may have very interesting research challenges.

4. The proposed framework is being prototyped, following the proposed modular ar-
chitecture. The aim is to provide a very modular architecture so one can easily

83

extend it and support other service description languages,and service composition
languages. We plan to evaluate the prototype in a specific scenario in the e-health
domain, specifying for this a library of services and also the necessary ontologies
to describe the domain.

Acknowledgements

This work is supported by the European IST SPICE project (IST-027617) and the Dutch
Freeband A-MUSE project (BSIK 03025).

References

1. Gartner: Gartner highlights key predictions for it organisations and users in 2008 and beyond.
http://gartner.com/it/page.jsp?id=593207 (January 2008)

2. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
(2005)

3. O’Reilly, T.: The open source paradigm shift. In: Perspectives on Free and Open Source
Software, The MIT Press (July 2005) 461 – 481

4. Jorstad, I., van Thanh, D.: Service personalisation in mobile heterogeneous environments. In:
Advanced International Conference on Telecommunicationsand International Conference on
Internet and Web Applications and Services, IEEE Computer Society (February 2006) 70 –
75

5. Raymond, E.S.: The Cathedral and the Bazaar. O’Reilly & Associates, Inc., Sebastopol, CA,
USA (1999)

6. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R.: Reference model for
service oriented architecture 1.0. Technical report, OASIS (October 2006)

7. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web services description language
(wsdl) version 2.0. http://www.w3.org/TR/wsdl20/ (June 2007)

8. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F., Karmarkar, A., Lafon,
Y.: Simple object access protocol (soap) version 1.2. http://www.w3.org/TR/soap12-part1/
(April 2007)

9. Clement, L., von Riegen, A.H., Rogers, T.: Universal description discovery and integration
(uddi) version 3.0. http://uddi.org/pubs/uddiv3.htm (October 2004)

10. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language
for web services, version 1.1 (May 2003)

11. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: State
of the art and research challenges. IEEE Computer40(11) (2007) 38 – 45

12. Papazoglou, M.P.: Web Services: Principles and Technology. Prentice Hall (2007)
13. Sen, R., Handorean, R., Roman, G.C., Gill, C.: Service Oriented Computing Imperatives in

Ad Hoc Wireless Settings. In: Service-Oriented Software System Engineering: Challenges
And Practices. Idea Group Publishing (2005) 247 – 269

14. Cordier, C., Carrez, F., van Kranenburg, H., Licciardi,C., van der Meer, J., Spedalieri, A.,
Rouzic, J.P.L.: Addressing the challenges of beyond 3G service delivery: the SPICE plat-
form. In: 6th International Workshop on Applications and Services in Wireless Networks.
(May 2006)

15. Almeida, J.P., Baravaglio, A., Belaunde, M., Falcarin,P., Kovacs, E.: Service creation in
the spice service platform. In: Wireless World Research Forum meeting on ”Serving and
Managing users in a heterogeneous environment”. (November2006)

84

16. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding semantics to web services
standards. In: 1st International Conference on Web Services. (2003) 395–401

17. Lécué, F., Léger, A.: A formal model for semantic web service composition. In: International
Semantic Web Conference. LNCS, vol. 4273 (2006) 385–398

18. Lécué, F., Silva, E., Pires, L.F.: A framework for dynamic web services composition. In: 2nd
ECOWS Workshop on Emerging Web Services Technology, CEUR Workshop Proceedings
(November 2007)

19. Lassila, O., Dixit, S.: Interleaving discovery and composition for simple workfows. In: First
International Semantic Web Services Symposium. (2004)

20. Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic composition of semantic web ser-
vices. In: 1st International Conference on Web Services. (2003) 38–41

21. Sirin, E., Hendler, J.A., Parsia, B.: Semi-automatic composition of web services using se-
mantic descriptions. In: 1st Workshop on Web Services: Modeling, Architecture and Infras-
tructure. (2003) 17–24

22. Burstein, M.H., Hobbs, J.R., Lassila, O., Martin, D.L.,McDermott, D.V., McIlraith, S.A.,
Narayanan, S., Paolucci, M., Payne, T.R., Sycara, K.P.: Daml-s: Web service description for
the semantic web. In: International Semantic Web Conference. (2002) 348–363

85

