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Abstract. The article presents the information-theoretic based feature informa-
tion interaction, a measure that can describe complex feature dependencies in
multivariate settings. According to the theoretical development, feature interac-
tions are more accurate than current, bivariate dependence measures due to their
stable and unambiguous definition. In experiments with artificial and real data
we compare the empirical estimates of correlation, mutual information and 3-
way feature interaction. We can conclude that feature interactions give a more
detailed and accurate description of data structures that should be exploited for
information fusion in multimedia problems.

1 Introduction

With the rise of the Web 2.0 and its tendency to populate the WWW more and more with
images and videos multimedia related topics became lively discussed fields of research.
In its core there is an essential need for information fusion due to the multi modal na-
ture of multimedia data. Hence the fusion of multi modal data (e.g. text and images)
has a large impact on algorithms like multimedia indexing, retrieval and classification,
object recognition as well as for data preprocessing like feature selection or data model
development. Information fusion has established itself as an independent research area
over the last decades, but a general theoretic framework to describe general information
fusion systems is still missing [6]. Up to today the understanding of how fusion works
and by what it is influenced is limited. Probably that is one reason why in multimedia
document retrieval for web applications the visual component is up to today lacking
behind expectations as can be seen for example in the INEX 2006 [24] and 2007 Multi-
media Track , where text-only based runs outperformed all others. As another example
can be named the text-based image searches from Google, Yahoo! and others.

All work done so far on information fusion in multimedia settings can be divided
into two main directions: (1) fusion of independent or complementary information by
assuming or creating independence and (2) fusion of dependent information by exploit-
ing their statistical dependencies. Both approaches have been applied in multimedia
processing problems equally successfully - for some tasks the fusion on independent
sources outperforms the algorithms based on dependent sources, on other tasks it is the
other way around. Neither of these approaches is in general superior.

Aligned to the second approach we like to investigate another way of analyzing
input data for multimedia problems based on feature information interactions with the
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long term goal of information fusion performance improvement. This multivariate, in-
formation theoretic based dependence measure is more accurate in finding the data’s
structure e.g. situations, where the independence assumption is sufficient and where the
dependency between the input data is not negligible.

Information interaction is superior to traditional dependence measures due to its
consistent definition, its global application to the whole feature set and its capture of
linear and higher order statistical dependencies. Considering this new definition of fea-
ture interactions current machine learning algorithms do not treat the feature’s statisti-
cal dependencies properly. Hence the investigation of feature interactions in multimedia
data could help to improve the information fusion and hence the whole performance of
the entailed retrieval and classification algorithm.

In Section 2 we discuss in more detail state-of-the-art fusion approaches with in-
dependent and dependent input data and their shortcomings.Thereafter we present in
Section 3 the idea of feature interaction information and how it can help to improve
information fusion algorithms. In Section 4 we give the results of data analysis exper-
iments with artificial and real data, which is followed by theconclusions in Section
5.

2 Related Work

Our article discuss the problem of information fusion, but most of the related work can
be found in multimedia processing where information fusionis only implicitly treated
as one part of the problem. We review some example approachesand explain when and
why they can fail.

In early years of information fusion research scientists fused different sources by
assuming independence between them as in one of the first works on classifier and
decision fusion on fusing neural network outputs [4]. The independence assumption is
still widely used in machine learning as e.g. in the naive Bayes classifier. Its success is
based on its simplicity in calculation and the learned models, as well as its robustness
in estimating the evidence [18]. Approaches that fuse independent or complementary
sources mostly belong to classifier and decision fusion, where first each modality of
the input is treated separately and then a final decision is based on the single results.
Applications that can be found in literature are for examplemultimedia retrieval [14,
12], multi modal object recognition [5], multi-biometrics[7] and video retrieval [15].

Despite its successful application for some problems it seems to fail completely for
others. In [7] it is shown that the violation of the independence assumption hurts the in-
formation fusion performance. So a trade off between simpleand fast calculated results
and their accuracy is necessary. That loss in performance was empirically undermined
in [9], where they showed that the maximum performance improvement in a multi-
biometrics application can be only achieved, if the statistical dependencies between the
modalities are taken into account. Independence assumption based algorithms are also
called myopic, because they treat all attributes as conditionally independent given the
class label [25].

To circumvent the problem of attribute dependencies in dataother approaches try
to create independence with the help of linear transformation methods like principal
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and independent component analysis (PCA/ICA), factor analysis and projection pur-
suit as reviewed in [19]. Unfortunately these methods are not sufficient to eliminate
all dependencies in the data, since they target only pairwise and linear feature depen-
dencies [20]. In addition the authors showed empirically that their multi modal object
recognition problem is affected by higher order dependencypatterns. A similar result
was found in [16]. In the multimedia classification task the Support Vector Machine
(SVM) approach using an ICA-based feature selection was outperformed by a SVM
on the original data set. Multimedia processing approachesthat exploit explicitly at-
tribute dependencies fuse the information preferably at data or feature level. Example
applications are multimedia summarization [1], text and image categorization [3], multi
modal image retrieval [13] and web document retrieval [8]. Those approaches exploit
all some form of attribute dependency at data level like co-occurrence (LSI [28]), corre-
lation (kCCA [16]) or mutual information. As examples for late fusion, where classifier
dependencies are exploited, can be named copula functions [27] or nonlinear fusion
algorithms based on SVM’s [2].

The most important shortcoming of those algorithms is that they only take bivariate
dependencies into account, even though they work in a multivariate setting [21]. High
level feature relationships such as conditional dependencies of a feature pair to a third
variable e.g. the class label are neglected. For now there exists no prove that this higher
order dependencies have an impact on the performance of multimedia processing sys-
tems, but in [22] their exploitation led to a performance improvement.

3 Feature Information Interaction

Before the introduction of feature interaction by [17, 18] there was no unifying defini-
tion of feature dependence in multivariate settings, but similar formulae have emerged
independently in other fields from physics to psychology. Feature information interac-
tion or co-information as it was named in [23] is based on McGill’s multivariate gen-
eralization of Shannon’s mutual information. It describesthe information that is shared
by all of k random variables, without overcounting redundant information in attribute
subsets. So it finds irreducible and unexpected patterns in data that are necessary to
learn from data [26].

This general view of attribute interactions could help machine learning algorithms to
improve their performance. For example attribute interactions can be helpful in domains
where the lack of expert knowledge hinders the selection of very informative attributes
sets by finding interacting attributes needed for learning.Another example is the case
when the attribute representation is primitive and attribute relationships are more im-
portant than the attributes themselves. Then similarity based learning algorithms will
fail, because the proximity in the instance space is not related to classification in this
domain.

Two levels of interactions can be differentiated: (1) relevant non-linearities between
the input attributes, which are useful in unsupervised learning and (2) interactions be-
tween the input attributes and the indicators or class labels, which is needed in super-
vised learning. The k-way interaction information as foundin [17] for a subsetSi ⊆ X
of all attributesX = {X1, X2, ..., Xn} is defined as:
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I(S) = −
∑

T ⊆S

(−1)|S|−|T |
H(T ) = I(S\ X|X) − I(S \ X), X ∈ S (1)

with the entropy defined as:

H(S) = −
∑

ῡ∈S̄

P (ῡ)log2P (ῡ), (2)

where the cartesian product of the sets of attribute valuesX̄ = X1 ×X2 × ... ×Xn

is used. The feature interaction fork = 1 reduces to the single entropy, fork = 2 to the
well known mutual information and fork = 3 attributes to McGill’s multiple mutual
information:

I(A;B) = H(A) + H(B) − H(A,B) (3)

I(A; B; C) = I(A; B|C) − I(A; B) (4)

= H(A, B) + H(A, C) + H(B, C) (5)

− H(A) − H(B) − H(C) − H(A, B, C). (6)

According to this definition 3-way information interactionwill be only zero iff A
andB are conditionally independent in the context ofC, because thenI(A; B|C) =
I(A; B). So it gives only the information exclusively shared by the involved attributes.
Information interactions are stable and unambiguous, since adding new attributes is not
changing already existing interactions, but only adding new ones. Furthermore they are
symmetric and undirected between attribute sets.

It is not to be confused with multi-information as presentedin [21]. This dependence
measure is based on the Kullback-Leibler divergence between the joint probability of
Xi, i = 1...M attributes and their marginals:

Imulti(X) =
∑

i

H(Xi) − H(X) =
∑

xi

P (x)log2

P (x)∏
i
P (xi)

(7)

Multi information results fori = 2 as well in mutual information, but fori = 3
attributes it differs from the information interaction:

Imulti(A, B, C) = H(A) + H(B) + H(C) − H(A, B, C). (8)

Hence it can capture higher order statistical dependencies, but is not taking the pair-
wise interactions into account. This way multi-information overfits the k-way mutual
information by counting redundant feature dependencies several times.

Another interesting point about feature information interaction is that it results in pos-
itive and negative values, which represent two different types of feature interactions.
An explanation using synergy and redundancy between attributes that was given in [17,
18], is presented in the following.
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3.1 Positive Interaction: Synergy

In case of positive interactions the process benefits from anunexpected synergy in the
data. In statistics this phenomena is called moderating effect and is known a long time.
Synergy occurs whenA andB are statistical independent, but get dependent in the
context ofC as can be seen in Figure 1(a). In [17] this type of interactionis described
as observational, because the relationships between the features can only be found by
looking at all of them at once. Myopic feature selections areunable to exploit the syn-
ergy in the data. It can be exploited e.g. for feature selection in supervised learning or
for feature construction in the unsupervised case.

(a) synergy (b) redundancy

Fig. 1. Interaction diagrams of different types of information interactions betweenA, B andC.

3.2 Negative Interaction: Redundancy

Negative interactions occur when attributes partly contribute redundant information in
the context of another attribute, which leads to a reductionof the overall dependence.
It is shown in Figure 1(b) on behalf of the redundant attributesA, B towards a third
attributeC. This type of interaction is also called representational,because it includes
some conditions on all involved attributes. In supervised learning the negative influ-
ence of redundancy can be resolved by eliminating unneeded redundant attributes, but
it could be advantageous in unsupervised learning in the case of noisy data.

In any case myopic voting function that are based on the independence assumption
as well as fusion algorithms that use only local dependencies are confused by positive
and negative feature interactions, which results in decreased information fusion perfor-
mance. In general it is harder to resolve the influence of negative interactions.

In the following section we compare empirical estimates of correlation, mutual in-
formation and 3-way feature information interaction for artificial and real multi modal
data to draw conclusions about their usefulness as dependence measure in information
fusion.

4 Experiments

For the objective evaluation of the different dependence measures we first conducted
tests on simple artificial data sets, where the relations between the input variables as
well as their relations towards the class labels are known.
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(f) 3-way interaction (cl = 1) zero:60%

Fig. 2. Unsupervised (a,c,e) / supervised (b,d,f) case for AND combined artificial data.

The first artificial data set is based on an AND combination of 3binary variables
defining one of the 3 classes. Additional input variables arefilled with random values.
Hence the intra-class variables are dependent on each otherand their class label, but
independent to the other six input variables.

Figure 2 shows the empirical estimates and histograms of thecorrelation matrix,
the mutual information and the 3-way information interaction respectively for the unsu-
pervised (features towards features) and the supervised (features towards class labels)
case. In the both all dependence measures succeed in finding the 3 dependent intra-class
variables, but with differences in accuracy.

Correlation, for example, is constantly overestimating the dependencies, because
it shows no independence for the inter-class variables. Furthermore the knowledge of
positive or negative correlation seem of no use for information fusion, but only the ab-
solute magnitudes. Mutual information performs similarlyin accuracy as information
interaction. So it finds the inter-class independence of theinput variables as well as
the dependence of the intra-class variables. Finally, information interaction is giving
the most detailed information about the data’s structure. For the intra-class variables
it results in negative interaction, which indicates redundancy. The inter-class informa-
tion interactions are mostly zero and surprisingly it showspositive interactions, hence
synergy, between the blocks of intra-class variables, where we are not sure yet how to
explain this.

The second and more interesting artificial data set is based on the AND data set, but
now each input variable is replaced by its XOR combination of2 variables. Overall it
has again 3 classes, where each depends now on 6 input variables. This new data set
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(f) 3-way interaction (cl = 1) zero:94%

Fig. 3. Unsupervised (a,c,e) / supervised (b,d,f) case for OR combined artificial data.

is a parity problem, which contains synergy between the XOR combined variables and
their class labels.

Figures 3(a),3(c) and 3(e) show the empirical estimates andthe histograms for the
unsupervised case. Correlation finds independence betweenall variables except be-
tween the parity variables, where it results randomly in positive or negative correlations.
Mutual information as well as the 3-way information interaction results show also only
the dependence between the parity variables. So none of the investigated dependence
measures finds all features that one class depends on in the unsupervised setting. We
hope to find this hidden dependencies by investigating higher order information inter-
actions in future work.

The results of the supervised case, that are presented in theFigures 3(b),3(d) and
3(f), show a clear advantage of information interaction over the other two dependence
measures. Correlation and mutual information do not succeed in finding even the parity
variables, because they are based only on bivariate relationships. Whereas information
interaction finds synergy between the parity variables and detects all dependent vari-
ables of a class. As in the unsupervised case we hope to find theintuitively expected
redundancies between the pairs of parity variables by regarding higher order informa-
tion interactions.

To summarize, it can be said that feature information interactions more accurately
describe complex dependence structures in data sets by giving their irreducible patterns.
This is especially true for parity problems. Furthermore itallows to differentiate feature
relationships into synergies and redundancies, which we feel is useful knowledge to
exploit in information fusion systems.
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Fig. 4. Unsupervised (a,c,e) / supervised (b,d,f) case for the Washington collection.

For the real data experiments we used the Washington collection, which consists
of 886 images annotated with 1 to 10 keywords and grouped into20 classes. The ex-
tracted feature set consists of the global color and texturehistogram which have 165
and 164 features respectively. Additionally we constructed of the term frequencies of
the keywords a textual feature vector of size 297.

This simple setting is in fact too simple to succeed with a classification or retrieval
task. Intuitively global visual features and a handful of keywords are insufficient to
discriminate any class. So we expect low relationships between the features in both: the
unsupervised case and the supervised.

Ignoring the class labels we first investigated the feature dependencies for the unsu-
pervised setting. We calculated a sampled version of the 3-way information interaction,
where each sample consists ofk = 3 random features out of the whole set. Figures
4(a),4(c) and 4(e) give the empirical estimates of the dependence measures and their
histograms. As expected the feature information interactions show only little depen-
dence in the feature set. Be aware that the interaction diagrams are scaled between
[−0.1, 0.1] compared to[−1, 1] for correlation and mutual information. So it is clearly
visible that the latter two, both 2-way dependence measures, indicate much higher re-
lationships (in number and magnitude) between the features. Hence one can state that
they also overestimate the feature’s dependencies for realdata sets.

The results for the supervised setting are shown in Figures 4(b),4(d) and 4(f). Again
the scale of the information interaction diagrams is set to[−0.1, 0.1] for visibility rea-
sons. Here the correlation between the features and their class labels results in high de-
pendencies that are neither supported by the mutual information nor the 3-way feature
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information interaction. Mutual information overestimates as well a little the dependen-
cies.

Experiments that compare end-to-end classification or retrieval results based on dif-
ferent feature selection or construction algorithms in multimedia problems have still to
be done in future work. Until then the usefulness of feature information interactions
in information fusion stays empirically unproven, but reasonable given that complex
feature relationships can be estimated reliably.

5 Conclusions and Future Work

The article reviews the formal theory and characteristics of feature information interac-
tion, an information-theoretic dependence measure. Through its stable and unambigu-
ous definition of feature relationships it can more accurately determine dependencies,
because e.g. redundant contributions to the overall relationships are not overcounted.

Interestingly, information interaction can have positiveand negative values, whereas
until now it is not completely clear how to consistently resolve the negative ones. Pos-
itive interactions are synergies, that should be exploited, for example, by complicating
the data model and using the feature’s joint evidence.

Experiments on artificial data, where the feature dependencies are known, under-
mine the theoretically claimed superior performance of information interactions over
bivariate dependence measures like correlation and mutualinformation especially for
parity problems. These findings in the controlled setting fitalso the tests on the real
data of the Washington collection. The final prove of usefulness of feature information
interactions for information fusion in classification or retrieval has to be done in future
work.

Other directions of research will be the utilization of morecomplex multimedia data
as e.g. the Wikipedia collection and tests with more sophisticated features like moment-
based visual features.
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