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Abstract. The article presents the information-theoretic based feature informa-
tion interaction, a measure that can describe complex feature dependencies in
multivariate settings. According to the theoretical development, feature interac-
tions are more accurate than current, bivariate dependence measures due to their
stable and unambiguous definition. In experiments with artificial and real data
we compare the empirical estimates of correlation, mutual information and 3-
way feature interaction. We can conclude that feature interactions give a more
detailed and accurate description of data structures that should be exploited for
information fusion in multimedia problems.

1 Introduction

With the rise of the Web 2.0 and its tendency to populate the WWW more and more with
images and videos multimedia related topics became lively discussed fields of research.
In its core there is an essential need for information fusion due to the multi modal na-
ture of multimedia data. Hence the fusion of multi modal data (e.g. text and images)
has a large impact on algorithms like multimedia indexing, retrieval and classification,
object recognition as well as for data preprocessing like feature selection or data model
development. Information fusion has established itself as an independent research area
over the last decades, but a general theoretic framework to describe general information
fusion systems is still missing [6]. Up to today the understanding of how fusion works
and by what it is influenced is limited. Probably that is one reason why in multimedia
document retrieval for web applications the visual component is up to today lacking
behind expectations as can be seen for example in the INEX 2006 [24] and 2007 Multi-
media Track , where text-only based runs outperformed all others. As another example
can be named the text-based image searches from Google, Yahoo! and others.

All work done so far on information fusion in multimedia settings can be divided
into two main directions: (1) fusion of independent or complementary information by
assuming or creating independence and (2) fusion of dependent information by exploit-
ing their statistical dependencies. Both approaches have been applied in multimedia
processing problems equally successfully - for some tasks the fusion on independent
sources outperforms the algorithms based on dependent sources, on other tasks it is the
other way around. Neither of these approaches is in general superior.

Aligned to the second approach we like to investigate another way of analyzing
input data for multimedia problems based on feature information interactions with the
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long term goal of information fusion performance improvemé his multivariate, in-
formation theoretic based dependence measure is moreagéednrfinding the data’s
structure e.g. situations, where the independence asemipsufficient and where the
dependency between the input data is not negligible.

Information interaction is superior to traditional depende measures due to its
consistent definition, its global application to the whaatiire set and its capture of
linear and higher order statistical dependencies. Coriaglthis new definition of fea-
ture interactions current machine learning algorithms olotreat the feature’s statisti-
cal dependencies properly. Hence the investigation ofifeatteractions in multimedia
data could help to improve the information fusion and heheetthole performance of
the entailed retrieval and classification algorithm.

In Section 2 we discuss in more detail state-of-the-arolusipproaches with in-
dependent and dependent input data and their shortconTihgseafter we present in
Section 3 the idea of feature interaction information and fitocan help to improve
information fusion algorithms. In Section 4 we give the tesaof data analysis exper-
iments with artificial and real data, which is followed by tbenclusions in Section
5.

2 Reated Work

Our article discuss the problem of information fusion, butstrof the related work can
be found in multimedia processing where information fusganly implicitly treated
as one part of the problem. We review some example approacdidesxplain when and
why they can fail.

In early years of information fusion research scientissetudifferent sources by
assuming independence between them as in one of the firssworlclassifier and
decision fusion on fusing neural network outputs [4]. Theéependence assumption is
still widely used in machine learning as e.g. in the naived3aglassifier. Its success is
based on its simplicity in calculation and the learned medet well as its robustness
in estimating the evidence [18]. Approaches that fuse ieddpnt or complementary
sources mostly belong to classifier and decision fusion revfiest each modality of
the input is treated separately and then a final decisiondedan the single results.
Applications that can be found in literature are for exampldtimedia retrieval [14,
12], multi modal object recognition [5], multi-biometrifg] and video retrieval [15].

Despite its successful application for some problems insete fail completely for
others. In [7] it is shown that the violation of the independeassumption hurts the in-
formation fusion performance. So a trade off between siraptkfast calculated results
and their accuracy is necessary. That loss in performansemgirically undermined
in [9], where they showed that the maximum performance imgmeent in a multi-
biometrics application can be only achieved, if the staéstdependencies between the
modalities are taken into account. Independence assumiptiged algorithms are also
called myopic, because they treat all attributes as canditly independent given the
class label [25].

To circumvent the problem of attribute dependencies in dtar approaches try
to create independence with the help of linear transfoonatiethods like principal
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and independent component analysis (PCA/ICA), factoryasislnd projection pur-
suit as reviewed in [19]. Unfortunately these methods attesnfficient to eliminate
all dependencies in the data, since they target only paratsl linear feature depen-
dencies [20]. In addition the authors showed empiricallt their multi modal object
recognition problem is affected by higher order dependgratterns. A similar result
was found in [16]. In the multimedia classification task thepfort Vector Machine
(SVM) approach using an ICA-based feature selection wageofdrmed by a SVM
on the original data set. Multimedia processing approattetsexploit explicitly at-
tribute dependencies fuse the information preferably td dafeature level. Example
applications are multimedia summarization [1], text andgm categorization [3], multi
modal image retrieval [13] and web document retrieval [8Jo3e approaches exploit
all some form of attribute dependency at data level like cosorence (LSI [28]), corre-
lation (kCCA [16]) or mutual information. As examples fotddusion, where classifier
dependencies are exploited, can be named copula func2dih®f nonlinear fusion
algorithms based on SVM’s [2].

The most important shortcoming of those algorithms is they only take bivariate
dependencies into account, even though they work in a naultite setting [21]. High
level feature relationships such as conditional deperidemt a feature pair to a third
variable e.g. the class label are neglected. For now théstsero prove that this higher
order dependencies have an impact on the performance afmedif. processing sys-
tems, but in [22] their exploitation led to a performance imgment.

3 Featurelnformation I nteraction

Before the introduction of feature interaction by [17, Ii8tte was no unifying defini-
tion of feature dependence in multivariate settings, builar formulae have emerged
independently in other fields from physics to psychologwtiee information interac-
tion or co-information as it was named in [23] is based on MiS3nultivariate gen-
eralization of Shannon’s mutual information. It describiesinformation that is shared
by all of £ random variables, without overcounting redundant infdromain attribute
subsets. So it finds irreducible and unexpected patternati tthat are necessary to
learn from data [26].

This general view of attribute interactions could help maelearning algorithms to
improve their performance. For example attribute intéoastcan be helpful in domains
where the lack of expert knowledge hinders the selectioreof informative attributes
sets by finding interacting attributes needed for learnfkgpther example is the case
when the attribute representation is primitive and attelnelationships are more im-
portant than the attributes themselves. Then similariseddearning algorithms will
fail, because the proximity in the instance space is notedlto classification in this
domain.

Two levels of interactions can be differentiated: (1) ralenon-linearities between
the input attributes, which are useful in unsupervisediiearand (2) interactions be-
tween the input attributes and the indicators or class salvdhich is needed in super-
vised learning. The k-way interaction information as foim§lL 7] for a subses5; C X
of all attributes¥ = { X3, X5, ..., X,, } is defined as:
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1(8) == > (-0 TH(T) = [(S\ X|X) - I(S\ X), X € § 1)

TCS

with the entropy defined as:

H(S) =—> P(v)log2P(0), @
vES
where the cartesian product of the sets of attribute vallles X} x Xy x ... x X,
is used. The feature interaction for= 1 reduces to the single entropy, for= 2 to the

well known mutual information and fak = 3 attributes to McGill’s multiple mutual
information:

I(A; B) = H(A) + H(B) — H(A, B) 3)
I(A;B; C) = I(A; B|C) — I(4; B) 4)
H(A,B) + H(A,C) + H(B,C) (5)

— H(A) - H(B) - H(C) — H(A, B,C). (6)

According to this definition 3-way information interactiavill be only zero iff A
and B are conditionally independent in the context@f because theli(4; B|C) =
I(A; B). So it gives only the information exclusively shared by tinvoived attributes.
Information interactions are stable and unambiguousesaalciing new attributes is not
changing already existing interactions, but only adding nges. Furthermore they are
symmetric and undirected between attribute sets.

Itis not to be confused with multi-information as presernitgf@1]. This dependence
measure is based on the Kullback-Leibler divergence betwee joint probability of
X;,i=1...M attributes and their marginals:

L (X) = Y H(X:) - HX) =Y P(x)zogQH%”&) )

Multi information results fori = 2 as well in mutual information, but for = 3
attributes it differs from the information interaction:

Imuiti(A,B,C)=H(A)+ H(B)+ H(C)— H(A,B,C). (8)

Hence it can capture higher order statistical dependermi¢ss not taking the pair-
wise interactions into account. This way multi-informatioverfits the k-way mutual
information by counting redundant feature dependenciesraktimes.

Another interesting point about feature information iatgion is that it results in pos-
itive and negative values, which represent two differepetyof feature interactions.
An explanation using synergy and redundancy between atisiihat was givenin [17,
18], is presented in the following.
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3.1 PositiveInteraction: Synergy

In case of positive interactions the process benefits fronmaxpected synergy in the
data. In statistics this phenomena is called moderatiregefind is known a long time.
Synergy occurs wherl and B are statistical independent, but get dependent in the
context ofC' as can be seen in Figure 1(a). In [17] this type of interads8atescribed

as observational, because the relationships betweenaheds can only be found by
looking at all of them at once. Myopic feature selectionsiarable to exploit the syn-
ergy in the data. It can be exploited e.g. for feature saladti supervised learning or
for feature construction in the unsupervised case.

(a) synergy (b) redundancy

Fig. 1. Interaction diagrams of different types of informationdrsctions betweed, B andC.

3.2 Negativelnteraction: Redundancy

Negative interactions occur when attributes partly coote redundant information in
the context of another attribute, which leads to a reduatiothhe overall dependence.
It is shown in Figure 1(b) on behalf of the redundant attiéisud, B towards a third
attributeC. This type of interaction is also called representatiobetause it includes
some conditions on all involved attributes. In superviseating the negative influ-
ence of redundancy can be resolved by eliminating unneestiothdant attributes, but
it could be advantageous in unsupervised learning in the @fisoisy data.

In any case myopic voting function that are based on the iedépnce assumption
as well as fusion algorithms that use only local dependsratie confused by positive
and negative feature interactions, which results in desg@aformation fusion perfor-
mance. In general it is harder to resolve the influence oftivegiateractions.

In the following section we compare empirical estimatesafelation, mutual in-
formation and 3-way feature information interaction fatifanial and real multi modal
data to draw conclusions about their usefulness as depeadegasure in information
fusion.

4 Experiments

For the objective evaluation of the different dependencasuees we first conducted
tests on simple artificial data sets, where the relationwdxst the input variables as
well as their relations towards the class labels are known.
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(a) absolute correlation, zero-bafs (b) absolute correlation, zero-b&%

i ‘l

(d) mutual information, zero-bat8%

(e) 3-way interactionfvs = 1) zero:69% () 3-way interaction ¢/ = 1) zero:60%

Fig. 2. Unsupervised (a,c,e) / supervised (b,d,f) case for AND doetbartificial data.

The first artificial data set is based on an AND combination bfréary variables
defining one of the 3 classes. Additional input variablesfillesl with random values.
Hence the intra-class variables are dependent on eachastteheir class label, but
independent to the other six input variables.

Figure 2 shows the empirical estimates and histograms ofdhelation matrix,
the mutual information and the 3-way information interantrespectively for the unsu-
pervised (features towards features) and the supervisatl(es towards class labels)
case. Inthe both all dependence measures succeed in fihdiBgiependent intra-class
variables, but with differences in accuracy.

Correlation, for example, is constantly overestimating tiependencies, because
it shows no independence for the inter-class variablegshErmore the knowledge of
positive or negative correlation seem of no use for inforamefusion, but only the ab-
solute magnitudes. Mutual information performs simild@ryaccuracy as information
interaction. So it finds the inter-class independence ofitpat variables as well as
the dependence of the intra-class variables. Finallyrimétion interaction is giving
the most detailed information about the data’s structuee.tke intra-class variables
it results in negative interaction, which indicates redamd. The inter-class informa-
tion interactions are mostly zero and surprisingly it sh@wsitive interactions, hence
synergy, between the blocks of intra-class variables, &/her are not sure yet how to
explain this.

The second and more interesting artificial data set is bas#itecoAND data set, but
now each input variable is replaced by its XOR combinatiog wariables. Overall it
has again 3 classes, where each depends now on 6 input earidblis new data set
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(a) absolute correlation, zero- baﬂ% (b) absolute correlation, zero- baﬂO%
e I L lu“.,nl .‘
(c) mutual information, zero-bag9% (d) mutual information, zero- balDO%

(e) 3-way interactionfvs = 1) zero:99% (f) 3- Way interaction &l = 1) zero:94%
Fig. 3. Unsupervised (a,c,e) / supervised (b,d,f) case for OR coecbartificial data.

is a parity problem, which contains synergy between the X0Rlined variables and
their class labels.

Figures 3(a),3(c) and 3(e) show the empirical estimatesfamtiistograms for the
unsupervised case. Correlation finds independence betalegariables except be-
tween the parity variables, where it results randomly iritp@sor negative correlations.
Mutual information as well as the 3-way information intdran results show also only
the dependence between the parity variables. So none ofitestigated dependence
measures finds all features that one class depends on in shpemised setting. We
hope to find this hidden dependencies by investigating lmigtaer information inter-
actions in future work.

The results of the supervised case, that are presented Fighees 3(b),3(d) and
3(f), show a clear advantage of information interactionrdatie other two dependence
measures. Correlation and mutual information do not suttegnding even the parity
variables, because they are based only on bivariate nedips. Whereas information
interaction finds synergy between the parity variables agtdals all dependent vari-
ables of a class. As in the unsupervised case we hope to firidtthvely expected
redundancies between the pairs of parity variables by dégghigher order informa-
tion interactions.

To summarize, it can be said that feature information imlivas more accurately
describe complex dependence structures in data sets Imgdgin@ir irreducible patterns.
This is especially true for parity problems. Furthermowdlitws to differentiate feature
relationships into synergies and redundancies, which weigeuseful knowledge to
exploit in information fusion systems.
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(a) correlation matrix, zero- ba37% (b) correlatlon matrix, zero- baBI)%

(c) mutual information, zero-bav:1% (d) mutual information, zero- baﬁs%

(e) 3- way interaction J(vg = 1) zero:95% (0] 3-Way interaction &l = 1) Zero: 93%

Fig. 4. Unsupervised (a,c,e) / supervised (b,d,f) case for the ivgtin collection.

For the real data experiments we used the Washington doleathich consists
of 886 images annotated with 1 to 10 keywords and grouped?dtoasses. The ex-
tracted feature set consists of the global color and textistegram which have 165
and 164 features respectively. Additionally we constrdagthe term frequencies of
the keywords a textual feature vector of size 297.

This simple setting is in fact too simple to succeed with asification or retrieval
task. Intuitively global visual features and a handful ofkerds are insufficient to
discriminate any class. So we expect low relationships éetvthe features in both: the
unsupervised case and the supervised.

Ignoring the class labels we first investigated the featepeddencies for the unsu-
pervised setting. We calculated a sampled version of thamformation interaction,
where each sample consists/of= 3 random features out of the whole set. Figures
4(a),4(c) and 4(e) give the empirical estimates of the dépece measures and their
histograms. As expected the feature information intesastishow only little depen-
dence in the feature set. Be aware that the interaction a@hagjiare scaled between
[—0.1,0.1] compared td—1, 1] for correlation and mutual information. So it is clearly
visible that the latter two, both 2-way dependence measimgigate much higher re-
lationships (in number and magnitude) between the featttteisce one can state that
they also overestimate the feature’s dependencies fodatalsets.

The results for the supervised setting are shown in Figuit®s#d) and 4(f). Again
the scale of the information interaction diagrams is sétt®.1, 0.1] for visibility rea-
sons. Here the correlation between the features and tlaais tbels results in high de-
pendencies that are neither supported by the mutual intosmaor the 3-way feature
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information interaction. Mutual information overestiraatas well a little the dependen-
cies.

Experiments that compare end-to-end classification dekeifrresults based on dif-
ferent feature selection or construction algorithms intimedia problems have still to
be done in future work. Until then the usefulness of featafermation interactions
in information fusion stays empirically unproven, but reaable given that complex
feature relationships can be estimated reliably.

5 Conclusions and Future Work

The article reviews the formal theory and characteristide@ture information interac-
tion, an information-theoretic dependence measure. Tirds stable and unambigu-
ous definition of feature relationships it can more acclyatetermine dependencies,
because e.g. redundant contributions to the overall oglshiips are not overcounted.

Interestingly, information interaction can have positwvel negative values, whereas
until now it is not completely clear how to consistently riesathe negative ones. Pos-
itive interactions are synergies, that should be explofi@dexample, by complicating
the data model and using the feature’s joint evidence.

Experiments on artificial data, where the feature deperiderace known, under-
mine the theoretically claimed superior performance obiinfation interactions over
bivariate dependence measures like correlation and mimnicemation especially for
parity problems. These findings in the controlled settin@lfib the tests on the real
data of the Washington collection. The final prove of usefainof feature information
interactions for information fusion in classification otrieval has to be done in future
work.

Other directions of research will be the utilization of mooenplex multimedia data
as e.g. the Wikipedia collection and tests with more sojuaited features like moment-
based visual features.
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