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Abstract. The goal of this paper is to study a new approach to text dependent
speaker identification using spectrograms. This, mainly, revolves around trapping
the complex patterns of variation in frequency and amplitude with time while an
individual utters a given word through spectrogram segmentation. These opti-
mally segmented spectrograms are used as a database to successfully identify
the unknown individual from his/her voice. The methodology used for identi-
fying, rely on classification of spectrograms (of speech signals), based on tem-
plate matching of the conditionally quantized frequency-time domain features of
the database spectrogram samples and the unknown speech sample. Performance
of this novel approach on a sample collected from 40 speakers show that this
methodology can be effectively used to produce a desirable success rate.

1 Introduction

The process of automatically recognizing who is speaking by distinguishing qualities
in a speaker’s voice is called speaker recognition. For this purpose, it is important to
preserve the speaker specific information in the speech signal. Human voice has lots of
variations termed as intra-speaker variability. Variations in voice ‘in between’ speakers
is called inter-speaker variation. According to the relevance to the content of speech, the
speaker recognition task could be divided into ‘text independent’ and ‘text dependent’.

Moreover, the text-dependent speaker identification can be subdivided into two
further categories, closed-set and open-set problems. The closed set text-dependent
speaker identification problem may be stated as follows. Out of a total population of
N ‘known’ speakers, find the speaker whose reference pattern has closest resemblance
to the sample pattern of the ‘unknown’ speaker who is assumed to be one of the given
set of speakers. In the open set problem, a reference model for an unknown speaker may
not exist. In this situation, an additional decision alternative, that the unknown does not
match any of the models, is required. This speaker verification (in an open set) task is a
hypothesis testing problem where the system has to accept or reject a claimed identity
associated with an utterance. Since most of todays systems are based on probability cal-
culations, two types of erroneous decisions may occur in speaker verification. A false
acceptance is said to occur when an impostor is accepted, while a false rejection occurs
when the system rejects a true client. There is a trade-off between these two error types.
If safety is emphasized, the false rejection rate will have to increase in order to keep the
false acceptance rate low. But if the system produces too many false rejections, users
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may find the system annoying. One common choice is to put the false acceptance and
false rejection rates equal, aiming for the equal-error-rate (EER) [1].

In this paper, text-dependent speaker identification for both the closed set and open
set problems have been studied with. In the proposed method, speaker identification
is carried out by means of speech spectrograms. Templates of stored spectrograms
are matched against the pattern to be recognized using similarity measures [2]. The
essence of this technique lies in formulating the speaker-identification problem into
pattern recognition of images and resolving it using machine learning tools. This is a
notable drift from the usual the Vector Quantization (VQ) [3] and Gaussian Mixture
Models (GMM) [4] techniques for text-dependent speaker identification.

Speaker Identification task includes the basic components: (I) feature extraction (II)
speaker modeling (III) speaker matching and (IV) decision logic. The feature extraction
module converts the raw speech waveform in the given sample to a spectrogram. Dis-
tributional features of the spectrograms are then used to make representative codebooks
of speaker’s voice patterns and use them to create a database. Later, when unknown
samples arrive, they are used to match spectrograms from the given database. The deci-
sion logic finally makes a one-out-of-N decision, e.g. selects the speaker with maximum
degree of similarity.

A database designed for speaker identification with limited enrollment data, is used
in the study. The database is collected in realistic conditions (normal room environ-
ment, which allowed room acoustics to interfere with the recordings) with the use of an
external microphone. The database contains 40 enrolled speakers, each reciting a list
of words. There are three words: ‘cat’, ‘gadget’ and ‘loss’; with each enrolled speaker
reciting each of the assigned words 6 times, of which 1 sample, for each word, are to be
randomly chosen for training purpose and the other 5 samples for testing. The speech
signals are sampled with 8− 16kHz. Samples from every speaker are collected in dif-
ferent sessions varying over time, to make our database as efficient as possible. Also,
before computation of the spectrogram, any DC offset present in the signals were re-
moved and the signals centered around 0 vertically, thus, denoising the speech signal
to an extent. The recorded samples were manually aligned by removing the initial and
trailing silence as much as possible. The maximum amplitude of the utterances was nor-
malized to −3dB, to ensure a fair comparison of the spectrograms. Frequencies with
intensity less than −70dB are screened.

The rest of this letter has been organized as follows: in Section 2, the spectrogram
feature extraction and modeling are explained. The identification methods in closed and
in open set of speakers are described in Section 3. Experimental results are discussed in
Section 4. Applications and conclusion have been outlined in Section 5.

2 Spectrogram Processing

It can be seen from the spectrograms illustrated in Figures 1 and 2, the spectrograms
appear to be dissimilar for different speakers, for the utterance ‘gadget’. Hence, an es-
sential task of image comparison is to justify the claim. Spectrogram comparison to
recognize a speaker is already an established procedure in our text-dependent speaker
identification problem [5, 7]. The spectrogram comparison approach for speaker iden-
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Fig. 1. Similarity in spectrograms for the utterance ‘gadget’ of the ‘Speaker 1’.

Fig. 2. Similarity in spectrograms for the utterance ‘gadget’ of the ‘Speaker 17’.

tification proposed by Dutta and Basak [5], uses a non-parametric technique namely,
the Kolmogorov-Smironov test for image comparison comprising of Hollander-Wolfe
statistic [6]. In that, spectrograms are segmented along one axis and compared using the
cumulative distribution function of the gray-scale intensities taking into consideration
weights of different (frequency or time) bands. Segmenting along the frequency axis
resulted in lesser error rates than splitting the spectrogram along time axis. Optimality
in spectrogram segmentation was not treated [5].

In [7], the notion of a greedy search optimal spectrogram segmentation has been
introduced in which spectrograms were segmented into overlapping bands along the
frequency axis only, as in [5]. Then, spectrograms were compared by computing the
mean of each frequency band and taking into account the Euclidean distances between
corresponding bands of the spectrograms. This procedure adopted by Dutta [7], using
Euclidean distances (between the spectrograms of known and unknown speech sam-
ples) of the features of the frequency domain, does not capture information/features
from the overall time-frequency domains.

Under assumption that images are subject to random noise, we want to test if im-
ages are the same (the speech samples are of the same speaker). We say that two images
are the same if the corresponding bands of the segmented images have the same distri-

135135



butional properties. The choice of variable of interest to be extracted from the spectro-
grams is of utmost importance i.e. the variable which loses the least information about
the speakers. One may choose the statistical mean (first moment), information entropy
(or Shannon entropy), the second central moment, the third and so on. It has been shown
in [7], that the the results are best when considering the mean of pixel values of bands
as the variable of interest.

The spectrograms are partitioned into several overlapping bands having near-ly
equal bandwidths and overlaps, for separate processing. Given a segmentation pattern,
all the spectrograms in question (each of which have the same pixel matrix size), are
split in a similar fashion. The number of bands a spectrogram is segmented into along
any axis, depends on the band-width and overlap. It is important to note here that, as the
number of bands differ, it is not always possible to segment a spectrogram into bands
having an ‘equal’ band-width and overlap. As a remedy, the spectrograms are split into
bands having a nearly equal bandwidths and overlaps. Though, the choice of the best
band-width and band-overlap selection remains to be an open problem, a good success
rate and speedy completion of the test may be assumed to satisfy an optimality crite-
rion. Results on effect of segmenting the spectrograms into bands along axes have been
provided in a later section. The motivation behind decomposition of the spectrograms
lie in a higher dimension comparison of the spectral features of two different images.

Fig. 3. Spectrogram segmentation into overlapping matrix cells.

The task of spectrogram segmentation has been formulated as follows: Split a spectro-
gram into an optimal number of overlapping bands along the frequency axis. Given this
segmented spectrogram, the entire image is again split into overlapping bands along the
time domain. The motivation behind this segmentation lies in the fact that it captures
information both along the time and frequency domain. A pictorial representation of
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the segmentation has been provided in Figure 3. The pixel values in these overlapping
ordered matrix cells A(f, t) (f = 1, 2, . . . , F ), (t = 1, 2, . . . , T ) may be interpreted
as the energy content in the cells (which uniquely characterizes an individual) as the
speech signal is swept through time. The matrix, A(f, t), is the intersection of pixel
cells of the f th frequency band and the tth time band.

As is depicted in the figure, the spectrogram has been segmented into several over-
lapping matrices. Let the mean of the pixel values of the (f, t)th matrix, A(f, t), be
given by µft, where ‘f’ denotes the frequency band and ‘t’ denotes the time band.

Given a spectrogram of the speech signal of a speaker, the F -dimensional vector
(µ1t, µ2t, . . . , µFt) (t = 1, 2, . . . , T ), represents the vocal properties of the speaker in
the tth time band.

In the database samples, let µijrft denote the mean pixel values for replicate r cor-
responding to the (f, t)th matrix, A(f, t), of the spectrogram of the ith speaker’s utter-
ance of the jth word. Here, i = 1, . . . , N ; j = 1, . . . , M ; r = 1, . . . , R; t = 1, . . . , T
and l = i, . . . , P . N denotes the number of speakers in the closed set; M , the number
of different words uttered; R, the number of replications per word used for training,
corresponding to each known speaker. F denotes the number of frequency bands the
spectrograms are segmented into in the frequency domain and T denotes the number of
time bands the spectrograms are split into along the time axis. We use these observa-
tions to prepare our codebook corresponding to each spectrogram. A typical codebook,
corresponding to the rth replicate of the jth word, of the ith speaker would consist of T
code vectors. The elements of each code vector would be representing the means of the
ordered overlapping matrices of the segmented (along frequency axis) time band and
the vector is given by Ψijrt = (µijr1t, µijr2t, . . . , µijrFt)

′ where t = 1, . . . , T . This
technique of data compression draws a close resemblance with quantization, in which
each time band is represented by a F -dimensional vector conditioning on the F fre-
quency bands. Quantization by conditioning on frequency bands enhances recognition
rate as it performs a superior template matching of images in question, than, uncon-
ditional vector quantization (of pixels in a particular time band) as in the later case,
the ordering/distribution of the centroids is not taken into consideration. Also, in vector
quantization, formation of empty clusters is likely, specially in time bands representing
silence or uniform energy content, thus, leading to erroneous results. This fact lays the
basis of our methodology to verify and, more importantly, identify a speaker.

3 Speaker Recognition

3.1 Identification in a Closed Set

Having collected our training database of spectrograms for 40 speakers, 1 training sam-
ple for every word for every speaker is chosen randomly to be tested with. We consider
a test sample comprising of the 3 words of an unknown speaker (in the closed set).
An important assumption is that, the unknown speaker is in the closed set and utters
the three prescribed words in a predefined order to enable identifying which sample
corresponds to which word.

Let θ represent the actual identity of the unknown speaker based on the mean pixel
values of the matrices of the segmented spectrogram. For simplicity, let the ith speaker
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in our database be denoted by ‘Speaker i’ (i = 1, . . . , 40). Given codebook Cijr rep-
resenting the ith speaker’s, rth replicate of the jth word, the minimizing value i of an
appropriately defined ‘distance score’ [8–10] from the ‘unknown’ speaker’s codebook
Sj , of the jth word, is a plausible solution to the speaker identification problem, using
only the jth word. Mean pixel value of a particular matrix, A(f, t), of the segmented
spectrograms of a specific word by a speaker does not remain the same with replica-
tions due to variation in voice and also phase shifts. In the database samples, let the
vector defined by Ψijrt = (µijr1t, µijr2t, . . . , µijrFt)

′, be the centroid generated by
the tth time band of the rth replicate of the ith speaker’s utterance of the jth word.
Hence, Cijr = (Ψijr1, . . . , ΨijrT ). Again, let xθjft′ denote the mean of the unknown
speaker’s (f, t′)th matrix of the spectrogram corresponding to the jth word. Define the
codebook for the jth word of the unknown speaker as: Sj = (sj1, sj2, . . . , sjT ), where
sjt′ = (xθj1t′ , xθj2t′ , . . . , xθjFt′)

′, t′ = 1, . . . , T .
Given an unknown speaker with identity θ, for the ith speaker and jth word, define

a ‘distance score’ Dθ|(i,j) as:

minr∈{1,...,R}
∑

sjt′∈Sj

minΨijrt∈Cijr
d(sjt′ , Cijr) (1)

where d(., .) is the distance metric defined over the feature space [10, 11]. Typically,
Euclidean metric is used as the distance measure. The ‘distance score’ Dθ|(i,j) proposed
in Eqn.(1) searches for the nearest neighbor (closest match) amongst all the replicates
of the ith speaker’s utterances of the jth word. This matching function:

∑

sjt′∈Sj

minΨijrt∈Cijrd(sjt′ , Cijr)

is the quantization between two vector sets to be compared.
Utterances of different words serve as statistical blocking factors which enhances

recognition rate, experimental results of which has been presented in the ‘Results’ sec-
tion. Hence, incorporating the results from three words, classify, the unknown person θ
as the mth person if:

1
3

3∑

j=1

Dθ|(i,j) (2)

achieves minimum for i = m, i.e. the ‘aggregate distance score’ [Eqn. (2)] between
the unknown speaker’s samples from the database samples of ‘Speaker m’ averaged
over 3 words is minimum.

Given this algorithm, results on choice of F , the ‘optimum’ number of frequency
bands; T , the ‘optimum’ number of time bands and R, the number of replicates required
for successful identification has been depicted in a later section.

3.2 Identification in an Open Set

In this case, the objective is slightly different and more difficult. The problem is to
successfully identify a speaker who is in the set of 40 speakers and reject those who

138138



are not. Given a word, let two samples belong to the same cluster (i.e. the same speaker
as in our case), if the ‘distance score’ is less than some threshold distance d0 [8]. It
is immediately obvious that the choice of d0 is very important. Large values of d0

will result in false acceptance. If d0 is small, it’ll lead to false rejection. Hence, the
choice of the threshold ‘d0’ has to be such that it is greater than ‘average within speaker
distances’, but, less than the ‘between speaker distances’. Here, the modified codebook
for each replicate of the database speakers would contain the contents as in the closed
set case, as well as, the threshold distance value for the corresponding word of the
database speaker. A general framework to speaker recognition in an open set has been
presented in Figure 4.

Therefore, an ‘unknown’ speaker is said to be the mth speaker in the database if
and only if for each word his ‘distance score’ [Eqn. (1)] is less than the threshold value
d0 for each word corresponding to the mth speaker. Experimental results have been
provided in the following section by randomly eliminating from the database, a set
of 5 speakers, and then choosing a speaker from the original 40 speakers to test for
identification.

Fig. 4. Speaker recognition system in an ‘open set’.

4 Results

Successful identification (in the text-constrained problem) in a closed set of speakers by
choosing the vector-valued statistical mean of the pixel values of each time band as the
variable of interest and an appropriate choice of R (the number of replicates for each
word required for training) has been depicted in Table 1. The pixel matrix size of each
spectrogram is 253 × 271. Optimal values of F and T were computed to be 10 and 9,
respectively, for this algorithm, with average optimal bandwidth 46 and band-overlap
23 along the frequency axis. The average optimal bandwidth along the time axis is 38
and band-overlap 10. Corresponding results, for successful identification, when using
imaging procedures proposed in [5] and [7], has also been summarized in Table 1.

A comparative study of ‘success rates’ when identifying speaker by Hollander-
Wolfe Statistic [5] and Euclidean distances [7], which are, based on frequency domain
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Table 1. Results based on 100% successful identification in closed set identification. (R: Training
replicates used for each word, for each speaker.).

Methodology Value of CPU run-time
used R to identify a speaker

Proposed ‘aggregate 1 0.57 sec.
distance score’

Euclidean 4 0.98 sec.
distance [7]

Hollander-Wolfe 3 1.4 sec.
Statistic [5]

only has been presented in Table 2. As is evident from the Tables 1 and 2, the efficiency
registered (taking one replicate for each of the three words), to successfully identify a
speaker is higher in the proposed algorithm than the benchmark techniques suggested
in [5] and [7].

Table 2. Success Rates when using other techniques for R. = 1, in closed set identification.

Technique Success
used Rate

Euclidean 85%
Distance [7]

Hollander-Wolfe 67%
Statistic [5]

Though, successful identification of a speaker from just a word, by calculating the min-
imum ‘distance score’ (based on 1 training sample), may be as low as 65− 80%; com-
bining results from the 3 words, computing the ‘aggregate distance score’ (as stated in
Speaker Identification) and choosing an appropiate database size for every speaker (1
speech sample for each of the three words for each speaker as in the case study), one
can obtain as good as 100% success rate in identification in a closed set text-constrained
problem. Results are as stated in Table 1. While, identification rate when the spectro-
gram is not segmented is as low as 27.5% (when using mean of the pixel values of
the entire spectrogram), segmenting the spectrogram along both axes and working with
the mean values of the ordered overlapping matrices yielded better results which is
as shown in Figure 5. In [7], when segmenting only along the frequency axis, it was
shown that for the given dataset, the best results were achieved when segmenting the
spectrograms into 10 overlapping bands. Figure 5 plots the results, for segmenting the
spectrogram into a varying number of overlapping time bands, given that the spectro-
gram has been already been segmented into 10 bands along the frequency axis.

Conducting 200 tests (each test comprising of 3 test spectrograms corresponding
to the three words uttered by a speaker amongst the closed set of speakers) for each
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mentioned procedure, Success Rates, when it is known that the unknown speaker is
from the closed set, have been computed which is as shown in Table 1. Figure 6 gives
a plot of the comparative (proposed) aggregate distance score an ‘unknown speaker’
(Speaker ID:24) has with the database samples of the speakers 1, . . . , 40.
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Fig. 5. Success Rates on segmenting the spectrogram along time axis (given that the spectro-
gram has already been split into 10 overlapping bands in the frequency domain) when comparing
‘unknown speakers’ (closed set) with the known database.
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Fig. 6. Aggregate Distance Score Vs. Speaker when comparing an ‘unknown speaker’ (Speaker
ID:24) with the known database samples.

In the open set classification, given a word, using the average ‘within speaker distance’
d0, as the threshold value, for each word (corresponding to every speaker), the false
rejection or false acceptance rates in identification when a ‘unknown’ speaker may or
may not be in the closed set of speakers, was determined. This method of computa-
tion of d0 satisfied the equal-error-rate criterion (EER) [1] (stated in the ‘Introduction’
section), which was computed to be 0.136. On increasing the value of d0, as expected,
the rate of false acceptance increases, while the value of false rejection falls, which is
certainly not desirable.
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5 Applications and Conclusions

This paper presents a method for successful text-dependent speaker identification based
on extracting unique speaker effects on the pronunciation of a word. In view of the
results presented here, the proposed technique outperforms the spectrogram comparison
methodologies adopted before.

This methodology can be used to identify speakers in password protected zones
where a database of voices of speakers can be used as passwords. This model, if re-
quired, can be made more dynamic by adding the ‘most recent successful voice accep-
tance’ of a particular speaker into his/her database of samples, discarding his/her spec-
trogram corresponding to earliest voice sample in the database. This dynamic model,
takes into consideration the change in voice of a particular speaker over time.

Future work will focus on more robust nearest neighbor classifiers, better selection
of words, optimality of bandwidth selection, implementation of this technique on a
large-scale and in text-independent case. Also, it would be important subsequently, to
reduce its computational complexity and computation time even further.
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