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Abstract: This paper addresses the problem of estimating the voice source directly from speech waveforms. A novel
principle based on Anticausality Dominated Regions (ACDR) is used to estimate the glottal open phase. This
technique is compared to two other state-of-the-art well-known methods, namely the Zeros of the Z-Transform
(ZZT) and the Iterative Adaptive Inverse Filtering (IAIF) algorithms. Decomposition quality is assessed on
synthetic signals through two objective measures: the spectral distortion and a glottal formant determination
rate. Technique robustness is tested by analyzing the influence of noise and Glottal Closure Instant (GCI)
location errors. Besides impacts of the fundamental frequency and the first formant on the performance are
evaluated. Our proposed approach shows significant improvement in robustness, which could be of a great
interest when decomposing real speech.

1 INTRODUCTION

Source-filter modeling is one of the most widely used
in speech processing. Its success is certainly due to
the physiological interpretation it relies on. In this ap-
proach, speech is considered as the result of a glottal
flow filtered by the vocal tract cavities and radiated
by the lips. Our paper focuses on the glottal source
estimation directly from the speech signal. Typical
applications where this issue is of interest are voice
quality assessment, statistical parametric speech syn-
thesis, voice pathologies detection, expressive speech
production,...

The goal of this paper is twofold. First a simple
principle based on anticausality domination is pre-
sented. Secondly, different source estimation tech-
niques are compared according to their robustness.
Their decomposition quality is assessed in different
conditions via two objective criteria : a spectral dis-
tortion measure and a glottal formant determination
rate. Robust source estimation is of a paramount im-
portance since final applications have to face adverse
decomposition conditions on real continuous speech.

The paper is structured as follows. In section 2
a theoretical background on source estimation meth-
ods is given. The experimental protocol we used for
the comparison is defined in Section 3. In Section 4
results are exposed and the impact of different fac-
tors on the estimation quality is discussed. Section 5

concludes the paper and proposes some guidelines for
future work.

2 SOURCE ESTIMATION
TECHNIQUES

We here present two popular voice source estimation
methods, namely the Zeros of the Z-Transform de-
composition (ZZT) and the Iterative Adaptive Inverse
Filtering technique (IAIF). ZZT basis relies on the ob-
servation that speech is a mixed-phase signal (Doval
et al., 2003) where the anticausal component corre-
sponds to the vocal folds open phase, and where the
causal component comprises both the glottis closure
and the vocal tract contributions (see Figure 1). As for
the IAIF method, it isolates the source signal by iter-
atively estimating vocal tract and source parts. After
this brief state of the art, our approach based on Anti-
causality Dominated Regions (ACDR) is explained.

2.1 ZZT-based Decomposition of
Speech

For a series of N samples (x(0),x(1), ...x(N − 1))
taken from a discrete signal x(n), the ZZT rep-
resentation is defined as the set of roots (zeros)
(Z1,Z2, ...ZN−1) of the corresponding Z-Transform
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Figure 1: Illustration of the source-filter modeling for one
voiced period. The Glottal Closure Instant (GCI) has the
particularity to allow the separation of glottal open and
closed phases, corresponding respectively to anticausal and
causal signals.

X(z):

X(z) =
N−1

∑
n=0

x(n)z−n = x(0)z−N+1
N−1

∏
m=1

(z−Zm) (1)

In order to decompose speech into its causal and
anticausal contributions (Bozkurt et al., 2007), ZZT
are computed on frames centered on each Glottal Clo-
sure Instant (GCI) and whose length is twice the fun-
damental period at the considered GCI. These latter
instants can be obtained either by electroglottographic
(EGG) recordings or by extraction methods applied
on the speech signal (see (Kawahara et al., 2000)
for instance). The spectrum of the glottal source
open phase is then computed from zeros outside the
unit circle (anticausal component) while zeros with
modulus lower than 1 give the vocal tract transmit-
tance modulated by the source return phase spectrum
(causal component).

2.2 Iterative Adaptive Inverse Filtering

The inverse filtering technique aims at removing the
vocal tract contribution from speech by filtering this
signal by the inverse of an estimation of the vocal tract
transmittance (this estimation being usually obtained
by LPC analysis). Many methods implement the in-
verse filtering in an iterative way in order to obtain a
reliable glottal source estimation.

One of the most popular iterative method is the
IAIF (Iterative Adaptive Inverse Filtering) algorithm
proposed in (Alku et al., 1992). In its first version,
this method implements LPC analysis so as to esti-
mate the vocal tract response and use this estimation
in the inverse filtering procedure. Authors proposed
an improvement in (Alku et al., 2000), in which the
LPC analysis is replaced by the Discrete All Pole
(DAP) modeling technique (El-Jaroudi and Makhoul,
1991), more accurate than LPC analysis for high-
pitched voices.

The block diagram of the IAIF method is shown in
Figure 2 where s(n) stands for the speech signal and
g(n) for the glottal source estimation.

Figure 2: Block diagram of the IAIF method (from the doc-
umentation of TKK Aparat (Aparat, 2008)).

The 1st block performs a high-pass filtering in or-
der to reduce the low frequency fluctuations inherent
to the recording step. The 2nd and 3rd blocks compute
a first estimation of the vocal tract, which is used in
the 4th and 5th blocks to compute a first estimation of
the glottal source. This estimation is the basis of the
second part of the diagram (7th to 12th blocks) where
the same treatment is applied in order to obtain the
final glottal source estimation.

Based on this method the TKK Aparat (Airas,
2008) has been developed as a sofware package pro-
viding an estimation of the glottal source and its
model-based parameters. We used the toolbox avail-
able on the TKK Aparat website (Aparat, 2008) for
our experiments.

2.3 Causality/Anticausality Dominated
Regions

As previously mentioned, analysis is generally per-
formed on two-period long GCI-centered speech
frames. Since GCI can be interpreted as the starting
point for both causal and anticausal phases, it dermar-
cates the boundary between causality/anticausality
dominated regions. As the domination zone of in-
fluence is limited around the GCI, a sharp window
(typically a Hanning-Poisson or Blackman window)
is applied to the analysis frame (see Figure 3). Since
the causal contribution (comprising the source re-
turn phase and the vocal tract components) from the
previous period is generally negligible just before
the current GCI, the Anticausality Dominated Region
(ACDR) makes a good approximation of the source
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Figure 3: Effect of a sharp GCI-centered windowing on a
two-period long speech frame. The Anticausality Domi-
nated Region (ACDR) approximates the glottal source open
phase.

Figure 4: Table of parameter variation range.

open phase. As long as the window is centered on
a GCI and is sufficiently sharp, this simple principle
is applicable directly to the speech signal and even
more on a first source estimation (obtained by IAIF
for example). The dependency on the GCI detection
for both ZZT and ACDR techniques will be discussed
in Section 4.2.

3 EXPERIMENTAL PROTOCOL

The experimental protocol we opted for is close to
the one presented in (Sturmel et al., 2007). De-
composition is achieved on synthetic speech signals
for different test conditions. The idea is to cover
the diversity of configurations one could find in con-
tinuous speech by varying all parameters over their
whole range. Synthetic speech is produced accord-
ing to the source-filter model by passing a known
train of Liljencrants-Fant glottal waves (Fant et al.,
1985) through an auto-regressive filter extracted by
LPC analysis on real sustained vowel uttered by a
male speaker. As the mean pitch during these utter-
ances was about 100 Hz, it reasonable to consider that
the fundamental frequency should not exceed 60 and
240 Hz in continuous speech. Perturbations are mod-
eled in two ways: by adding a white Gaussian noise
on the speech signal and by making an error on the
GCI location (see Sections 4.1 and 4.2). Figure 4
summarizes all test conditions (which makes a total
of 59280 experiments).

Four source estimation techniques are here com-
pared : ZZT, IAIF, ACDR principle applied to both
speech and IAIF source frames. In order to assess
the decomposition quality we used two objective mea-
sures:

• Spectral Distortion. Many frequency-domain
measures for quantifying the distance between

Figure 5: Histogram of relative error on the glottal formant
determination (SNR=50dB).

two speech frames x and y arise from the speech
coding litterature. Ideally the subjective ear sensi-
tivity should be formalised by incorporating psy-
choacoustic effects such as masking or isophone
curves. A simple relevant measure is the spectral
distortion (SD) defined as:

SD(x,y) =

√∫
π

−π

(20log10 |
X(ω)
Y (ω)

|)2 dω

2π
(2)

where X(ω) and Y (ω) denote both signals spec-
tra in normalized angular frequency. In (Paliwal
and Atal, 1993), authors argue that a difference of
about 1dB (with a sampling rate of 8kHz) is rather
imperceptible. In order to have this point of refer-
ence between estimated and targeted sources we
used the following measure:

SD(x,y)≈

√
2

8000

4000

∑
20

(20log10 |
Sestimated( f )
Sre f erence( f )

|)2

(3)

• Glottal Formant Determination Rate. The am-
plitude spectrum for a voiced source (as shown
in Figure 1) generally presents a resonance called
glottal formant. As this latter parameter is an es-
sential feature, an error on its determination after
decomposition should be penalized. An example
of relative error on the glottal formant determi-
nation is displayed in Figure 5 for SNR = 50dB.
Many attributes characterizing a histogram can
be proposed to evaluate a technique performance.
The one we used for our results is the underly-
ing surface between±10% of relative error, which
is an image of the determination rate given these
bounds.

In the next Section results are averaged for all consid-
ered frames.
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Figure 6: Impact of noise on the spectral distortion.

4 RESULTS

A quantitative comparison between described meth-
ods is here presented. More precisely results are ori-
ented so as to answer the two following questions:
”How techniques are sensitive to perturbations such
as noise or GCI location error?” and ”What is the im-
pact of factors such as the fundamental frequency or
the first formant on the decompostion quality?”.

4.1 Noise Sensitivity

As a reminder a white Gaussian noise has been added
to the speech signal at different SNR levels. This
noise models not only recording or production noise
but also every little deviation to the theoretical frame-
work which distinguishes real and synthetic speech.
Results according to both spectral distortion and glot-
tal formant determination rate are displayed in Fig-
ures 6 and 7. Among all techniques, ZZT turns out
to be the most sensitive. This can be explained by
the fact that a weak presence of noise may dramat-
ically perturb the roots position in the Z-plane, and
consequently the decomposition quality. Interestingly
the utility of applying our proposed ACDR concept
is clearly highlighted (see notably the improvement
when applied to the IAIF estimation). Even when di-
rectly performed on the speech signal, ACDR princi-
ple clearly yields robust and efficient results.

4.2 GCI Location Sensitivity

Another perturbation that could affect a method accu-
racy is a possible error made on the GCI location. De-
tecting these particular events directly on speech with
a reliable precision is still an open problem although
some interesting ideas have been proposed (Kawa-
hara et al., 2000). Consequently it is rare that de-

Figure 7: Impact of noise on the glottal formant determina-
tion rate.

Figure 8: Impact of a GCI location error on the glottal for-
mant determination rate (clean conditions).

tected GCIs exactly match their ideal position when
analyzing real speech. To take this effect into ac-
count we have tested the influence of a deviation to
the real GCI location (GCIs are known for synthetic
signals). Results for the glottal formant determination
rate are shown in Figure 8 for clean conditions (no
noise added). As mentioned in (Bozkurt et al., 2007),
the ZZT technique is strongly sensitive to GCI detec-
tion, since this latter pertubation may affect the whole
zeros computation. A similar performance degrada-
tion is also observed for ACDR-based methods due
to their inherent way of operating. Nevertheless this
effect occurs to a lesser extent.

4.3 The Influence of Pitch

Female voices are known to be especially difficult to
analyze and synthesize. The main reason is their high
fundamental frequency which implies to treat shorter
periods. As a matter of fact the vocal tract response
has not the time to freely return to its initial state be-
tween two glottal sollication periods. Consequently
the performance of ACDR method applied to high-
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Figure 9: Impact of the fundamental frequency on the spec-
tral distortion (clean conditions).

pitched speech will intrinsically degrade, as it relies
on the assumption that the vocal tract response is neg-
ligible in the ACDR. This hypothesis turns out to be
acceptable in a certain extent and might be reconsid-
ered for high pitch values. Figure 9 presents the evo-
lution of spectral distortion with respect to the fun-
damental frequency. Unsurprinsingly all methods de-
grade as the pitch increases, and this in a comparable
way.

4.4 The Influence of the First Formant

In (Bozkurt et al., 2004), authors already reported er-
roneous glottal formant detection due to incomplete
separation of F1. As argued in previous subsection,
particular configurations may lead to reconsider the
assumption of ACDR applied on speech. More pre-
cisely, decomposition quality mainly depends on the
3 following parameters relative values: the pitch (F0),
the first formant (F1) and the glottal formant (Fg). The
greater is F0 with regard to F1 and Fg and the more se-
vere will be the decomposition conditions. Intuitively
this latter case can be interpreted as an ever increasing
interference between causal and anticausal parts.
In our experiments filter coefficients were extracted
by LPC analysis on four sustained vowels. Even
though the whole spectrum may affect the decomposi-
tion, it is reasonable to consider that the effect of the
first formant is preponderant. To give an idea, here
are the corresponding first formant values: /a/:728Hz
, /e/:520Hz , /i/:304Hz , /u/:218Hz. The impact of
the vowel on the decomposition accuracy is plotted in
Figure 10. As expected a clear tendency of perfor-
mance reduction as F1 diminishes is observed.

Figure 10: Impact of the first formant on the glottal formant
determination rate (clean conditions).

5 CONCLUSIONS AND FUTURE
WORK

This paper addressed the problem of source estima-
tion robustness. A comparison between four different
techniques was carried out on a complete set of syn-
thetic signals. These latter methods were the Zeros
of the Z-Transform (ZZT), the Iterative Adaptive In-
verse Filtering (IAIF), and our proposed concept of
Anticausality Dominated Region (ACDR) applied ei-
ther directly on speech, or on a first source estima-
tion (thanks to IAIF in our case). Two formal criteria
were used to assess their quality of decomposition:
the spectral distortion and the glottal formant determi-
nation rate. Robustness was first evaluated by adding
noise to speech. In a general way this noise modeled
every little deviation to the ideal production scheme.
Interestingly both ACDR-derived methods were the
most robust and efficient. Another perturbation we
considered was a possible error made on the GCI lo-
cation. In a second step the influence of the pitch (F0)
and the first formant (F1) was analyzed. Decompo-
sition quality was interpreted as a trade-off between
three amounts: F0, F1 and the glottal formant (Fg). In
all our experiments ACDR-based techniques gave the
more promising results.
As future work we plan to investigate the incorpora-
tion of these methods in the following fields:

• Statistical Parametric Speech Synthesis. Hid-
den Markov models (HMM) have recently shown
their ability to produce natural sounding speech
(Tokuda et al., 2002). We already adapted this
framework for the French language. A major
drawback of such an approach is the ”buzziness”
of the generated voice. This inconvenience is
typically due to the parametric representation of
speech. Including a more subtle modeling of the
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voice source could lead to enhanced naturalness
and intelligibility.

• Expressive Voice. User-friendliness is one of the
most important demand from the industry. Since
expressivity is mainly managed by the source,
an emotional voice synthesis engine should take
into account realistic glottal source model param-
eters. Techniques presented in this paper could
be used to estimate these parameters on speech
samples extracted from an expressivity-oriented
speech database.

• Pathological Speech Analysis. Speech patholo-
gies are most of the time due to the irregular be-
haviour of the vocal folds during phonation. This
irregular vibration can be induced by nodules or
polyps on the folds and should result in irregular
values of model parameters. Methods here pre-
sented could hence be used to estimate the glottal
source and its features on pathological speech in
order to quantify the pathology level.
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