
FUNCTIONALITY-BASED APPLICATION CONFINEMENT
Parameterised Hierarchical Application Restrictions

Z. Cliffe Schreuders and Christian Payne
School of IT, Murdoch University, South St, Murdoch, Western Australia

Keywords: Application-Oriented Access Control, Application Confinement, Sandbox, Functionality-Based Application
Confinement (FBAC), Role-Based Access Control (RBAC), Usable Security.

Abstract: Traditional user-oriented access control models such as Mandatory Access Control (MAC) and
Discretionary Access Control (DAC) cannot differentiate between processes acting on behalf of users and
those behaving maliciously. Consequently, these models are limited in their ability to protect users from the
threats posed by vulnerabilities and malicious software as all code executes with full access to all of a user's
permissions. Application-oriented schemes can further restrict applications thereby limiting the damage
from malicious code. However, existing application-oriented access controls construct policy using complex
and inflexible rules which are difficult to administer and do not scale well to confine the large number of
feature-rich applications found on modern systems. Here a new model, Functionality-Based Application
Confinement (FBAC), is presented which confines applications based on policy abstractions that can
flexibly represent the functional requirements of applications. FBAC policies are parameterised allowing
them to be easily adapted to the needs of individual applications. Policies are also hierarchical, improving
scalability and reusability while conveniently abstracting policy detail where appropriate. Furthermore the
layered nature of policies provides defence in depth allowing policies from both the user and administrator
to provide both discretionary and mandatory security. An implementation FBAC-LSM and its architecture
are also introduced.

1 INTRODUCTION

Traditional access control models such as
Mandatory Access Control (MAC), Discretionary
Access Control (DAC) and Role-Based Access
Control (RBAC) are based on the paradigm of
protecting users from one another (Department of
Defense, 1985, Ferraiolo et al., 1995). Consequently
programs typically run with all of the user's
privileges. These models cannot differentiate
between a program acting on the behalf of a user and
a program using its privileges nefariously (Miller
and Shapiro, 2003). As a result vulnerabilities and
malware represent a serious threat as malicious code
has unrestricted access to the user's privileges.

Existing application confinement schemes
attempt to address this by limiting the privileges
associated with processes, thereby mitigating the
impact from vulnerabilities and malicious code.
Several techniques have been developed to provide
application-oriented access controls; however, these
techniques do not provide abstractions which are

easy for users to apply, and do not scale well to
confine the numerous feature rich applications found
on modern systems.

A new application-oriented access control model
Functionality-Based Application Confinement
(FBAC) is presented which provides separation of
duties, defence in depth through layers of mandatory
and discretionary application-oriented access
controls and policy abstractions which are flexible,
manageable and easy to conceptualize.

2 APPLICATION-ORIENTED
ACCESS CONTROL MODELS

Existing application-oriented access control models
assign privileges using monolithic self-contained
non-hierarchical policy abstractions. This limits the
scalability of these approaches as these abstractions
can not adapt to the different security needs of
applications.

72
Cliffe Schreuders Z. and Payne C. (2008).
FUNCTIONALITY-BASED APPLICATION CONFINEMENT - Parameterised Hierarchical Application Restrictions.
In Proceedings of the International Conference on Security and Cryptography, pages 72-77
DOI: 10.5220/0001928900720077
Copyright c© SciTePress

Isolation sandboxes such as chroot, BSD Jails
(Kamp and Watson, 2000), Solaris Zones (Tucker
and Comay), and Danali (Whitaker et al., 2002)
provide a single policy abstraction, the isolated
container, which simply restricts contained
applications to a limited namespace (Kamp and
Watson, 2004) or virtual machine (Madnick and
Donovan, 1973). Isolation requires significant
redundancy as shared resources need to be
duplicated (Krohn et al., 2005). It also inhibits the
ability of applications to easily and securely
exchange data as is commonly required.

Some application-oriented schemes mediate
access to specified resources by simply assigning
raw privileges to processes. These are either
coarsely grained (such as with POSIX capabilities
(Bacarella, 2002), and Bitfrost (Krsti and Garfinkel,
2007)) or finely grained (as with CapDesk (Miller et
al., 2004), Polaris (Stiegler et al., 2006), TRON
(Berman et al., 1995), Systrace (Provos, 2002) and
Janus (Wagner, 1999)). Methods of mediating this
type of access control include using capabilities
(Wagner, 2006) or system call interposition
(Goldberg et al., 1996). These privilege associations
provide very little policy abstraction other than the
granularity of the privileges assigned making the
policy either inexpressive or extremely large and
complex (Garfinkel, 2003). Translating high level
security goals into finely grained policies is difficult,
making these policies difficult to both construct and
verify for correctness (Marceau and Joyce, 2005).

Models such as Domain and Type Enforcement
(DTE) (Badger, 1996) which extends the type
enforcement model (Boebert and Kain, 1985) , Role-
Compatibility (RC) (Ott, 2002), and AppArmour
(previously known as SubDomain) (Cowan et al.,
2000) provide large inflexible policy abstractions
which, although capable of grouping related
privileges, cannot adapt to the various policy needs
of feature rich applications. For example, although a
DTE domain represents a policy abstraction,
domains typically apply to a single application only
(Marceau and Joyce, 2005). Additionally, there is
significant overlap of privileges granted to compiled
domain policies and yet domains are specified
separately (Jaeger et al., 2003).

Although some implementations of these models
allow a policy abstraction to be comprised of smaller
parts, these parts are reduced to a monolithic policy
abstraction either at system start-up or in advance,
which limits their flexibility. One example of this is
SELinux’s DTE Domains which can be specified
using macros in the m4 language which are
compiled in advance into many lines of rules,

thereby creating a single policy abstraction (a
Domain) directly containing all the relevant
privileges. Similarly, any abstractions in AppArmor
profiles are compiled away at system start-up and
applied as a raw list of privileges associated with the
application. This approach means that any finer
grained abstractions which may have been in place
when constructing policy is not available when
managing the privileges of a process.

DTE and RC policy abstractions define multiple
restricted environments and allow propagating
processes to transition between them. Specifying
these transitions is often a complex and error-prone
task. Programs need specific authorisation to label
files as being accessible in different domains or
roles, and users and programs both need permission
in order to execute programs belonging in another
domain or role (Hinrichs and Naldurg, 2006).

3 THE FBAC MODEL

Inspired by the Role-Based Access Control (RBAC)
model (Ferraiolo and Kuhn, 1992), behaviour based
process confinement research (Raje, 1999),
programming language features such as subroutine
parameterisation, and by applying a unique approach
to defence in depth, Functionality-Based Application
Confinement (FBAC) provides an expressive, finely
grained, yet easy to apply and manage application
confinement. In contrast to existing application-
oriented models FBAC allows reusable and flexible
policy abstractions to be defined which can be
adapted to suit the needs of different applications
with related security goals.

3.1 Functionality-based

The design of the FBAC model originated from
observing the advantages that the RBAC model
brings to the management of user privileges and
FBAC employs an analogous paradigm for the
confinement of individual programs. While in
RBAC different users share common sets of
privileges relating to their role within an
organisation (Ferraiolo et al., 1995), in application
confinement each category of application requires
related sets of privileges corresponding to their
intended behaviour (Raje, 1999). Recognizing this
correspondence provides a convenient mechanism to
both model the privileges that a program requires
and for end users to assign a program the privileges
it needs based upon the functionality the application
performs. Therefore, while RBAC assigns privileges

FUNCTIONALITY-BASED APPLICATION CONFINEMENT - Parameterised Hierarchical Application Restrictions

73

to users according to their role, FBAC employs
reusable and flexible policy abstractions known as
functionalities describing the actions that an
application may legitimately perform. For example,
the shared functionality of different web browsers is
reflected in their requiring a common set of
privileges to carry out their tasks and forms the basis
on which end users assign an application
confinement policy.

Furthermore, applying an RBAC-like approach
to application confinement also provides the benefit
of separation of duties. Static separation of duty
prevents conflicting functionalities or privileges
from being assigned to the same application while
dynamic constraints ensure that specified sets of
privileges cannot be activated concurrently at
runtime.

3.2 Hierarchical Policy

Unlike existing application confinement models,
FBAC policies are constructed in a hierarchical
fashion by employing a ANSI/NIST RBAC-like
structure (Ferraiolo et al., 2001). This allows layers
of abstraction and encapsulation with high-level
functionalities describing the overall purpose of the
application (for example, web_browser and
email_client) and mid-level functionalities
specifying the functional components which make
these up such as http_client and pop3_client. These
in turn are built from low-level abstractions
describing the finely-grade privileges available on
the system, for example file_r for reading from a
file. This hierarchical structure improves the
manageability of policy by encapsulating details
while providing flexible abstractions for association
with specific applications. This allows FBAC
policies to be applied to multiple applications where
these have shared functionality and provides
improved scalability compared with existing finely
grained application confinement models.

The hierarchical design of FBAC's policy
abstractions allows small or large policy components
to be easily activated or deactivated at runtime. This
action may be initiated by the user, the administrator
or even the software itself. For example, in the case
of multi-functionality applications such as the Opera
web browser which also incorporates e-mail, IRC,
news reader and bittorrent client functionality, the
user can actively control the privileges currently
available to the program according to those
functionalities being used at the time. This is
analogous to a user under RBAC only activating the
rolls relating to the part of their job description they

are currently performing and allows the principle of
least privilege to be enforced. This level of run-time
policy control is not available with existing
application-oriented access control models such as
DTE or AppArmor where privileges are contained in
a monolithic abstraction associated with the security
context. For example, in DTE or AppArmor
dropping the ability to send emails would involve
transitioning to an entirely separate domain or
profile.

3.3 Functionality Parameterisation

Based on the results of previous research which
explored the use of parameterisation for application
sandboxes (Raje, 1999), functionalities are
parameterised to allow them to be applied to
different applications with similar functionality; for
example, two different web browsers. This allows
application confinement policies to be customised to
the specifics of each program (such as where it
stores configuration files etc.) while maintaining the
abstraction of the original policy specification.

FBAC functionalities are passed arguments in a
fashion similar to subroutines in programming
languages. Subsequently, the hierarchical
relationship between functionalities allows
arguments to propagate to any contained
functionality. By specifying resource names as
arguments functionalities can be reused within the
hierarchy to grant access to various resources.

Functionality definitions may contain default
argument values. This maintains abstraction and
simplifies the process of assigning functionalities to
applications in common cases while not restricting
flexibility where customisation is required.

Although the MAPbox mechanism (Acharya and
Raje, 2000) has previously employed
parameterisation to support application confinement,
FBAC overcomes limitations of this approach by
allowing confinement of multipurpose applications
and providing a more manageable policy structure
than that of MapBox, where users assign a complex
finely-grained list of privileges to each class.

3.4 Mandatory and Discretionary
Controls

Another feature of the FBAC model is its ability to
confine applications based upon the combination of
policies specified by both users and administrators.
While existing application oriented access controls
are generally designed to be applied as either a
discretionary control (such as Janus or TRON) or a

SECRYPT 2008 - International Conference on Security and Cryptography

74

mandatory control (such as AppArmor or DTE),
FBAC allows both mandatory and discretionary
policies to be applied simultaneously. This allows
users to ensure their applications execute with least
privilege and protect themselves from malicious
code while also allowing administrators to restrict
applications to enforce system-wide security goals,
confine users to specific programs or to manage user
protection. Each of these policies is known as an
FBAC confinement and may reuse functionalities
from other confinements. The privileges of an
application therefore depend upon the intersection of
the privileges specified by the confinements which
apply to it. This layered approach to application
confinement is unique and provides defence in-depth
while requiring the maintenance of only a single
mechanism.

4 USING FBAC

The initial task of establishing functionalities
involves the construction of functionalities which
represent functional requirements of applications.
Functionalities can contain other functionalities and
can also contain direct privileges. The hierarchical
and modular nature of FBAC policy eases
management and maintenance. This initial
functionality creation task involves the analysis of
existing applications and requires some expertise
and would normally therefore be done by a trusted
third party.

However, subsequently users and administrators
can restrict applications with FBAC by simply
assigning the appropriate functionalities and
providing any arguments necessary to satisfy
parameters. This process is well suited to a GUI and
mostly involves pointing and clicking. Familiarity
with the FBAC-LSM policy language is unnecessary
for ordinary users who can simply use graphical
tools to confine applications.

Administrators can easily limit users to specific
applications and specify what those applications can
do. Users may then supply more restrictive
parameters protecting their own resources from the
application.

5 REPRESENTING POLICY

Figure 1 is an example policy representation of a
simple functionality which provides an abstraction
to read the contents and attributes of a file. The first

line simply specifies the name of the functionality
(functionality [name]). The directives
which detail the functionality are enclosed in curly
braces. Each directive ends in a semicolon. The first
two directives are for a graphical tool to describe the
purpose and level of detail of the functionality. Then
a parameter named files is specified; its default
value is to grant access to nothing (parameter
[parameter name] "[default value]").
After the purpose of this parameter is described, two
privileges are included, which permit access to the
files described by the parameter. (privilege
[operation name] ["literal
filename" or parameter name]).

A functionality can also contain another
functionality with the following syntax
(functionality [functionality name]
([optional parameter name=]
[["literal filename" or parameter
name], ...))

Application profiles share a similar syntax, with
a difference in the initial definition (application
[name]) and contain a list of binaries which make
up the application (binarypaths
[path]:[path…]).

functionality files_r

{

functionality_description "read

access to these files";

lowlevel;

parameter files "";

parameter_description "allows these

files to be accessed as described";

privilege file_read files;

privilege file_getattr files;

}

Figure 1: Low-level FBAC-LSM functionality and
privileges.

6 THE IMPLEMENTATION -
FBAC-LSM

A prototype implementation of FBAC is near
completion. FBAC-LSM is a Linux Security Module
(LSM) (Wright et al., 2002) with accompanying
policy tools. As Figure 2 illustrates, FBAC-LSM is
comprised of a graphical Policy Manager tool which
is used to maintain policy, the LSM which resides in
kernel space and enforces security decisions, a
Policy Server which feeds the policy into the LSM

FUNCTIONALITY-BASED APPLICATION CONFINEMENT - Parameterised Hierarchical Application Restrictions

75

via a virtual file system at system boot or on request,
and a graphical Process Manager tool which can be
used to activate or deactivate the functionalities
associated with a running process. When an
application attempts to access any mediated
resource, after standard DAC rules apply, the LSM
is consulted and the request is either allowed or
rejected based on the FBAC policy as represented in
the LSM. Figure 3 illustrates the simple task of
selecting functionalities using the graphical Policy
Manager.

LSM

Policy Server

Kernel space

User space

Policy

Process Manager

Application

Policy Manager

Figure 2: FBAC-LSM architecture.

Figure 3: The graphical FBAC-LSM Policy Manager tool.

7 RESEARCH STATUS

FBAC-LSM has shown promising results and a
hierarchy of functionalities that represent the
functionalities required for some common
applications, such as web browsers, has been
developed. When the prototype system is complete a

detailed study comparing the security and usability
of the new system with existing systems such as
SELinux and AppArmor will be presented and
FBAC-LSM will be made available open source
using the General Public Licence.

8 CONCLUSIONS

FBAC consolidates concepts from user-oriented
access control, and application sandboxing research
to provide an application-oriented access control
model which confines applications in terms of the
functions they perform. Policy is hierarchical,
parameterised and multi-layered. This approach
provides security and policy management benefits
such as conceptual simplicity through abstraction
and encapsulation, policy reusability and flexibility,
improvements in scalability, separation of duties,
dynamic process controls, and defence in depth.
Preliminary results of the new model are promising
and further study of the efficacy of the model in
action is warranted.

ACKNOWLEDGEMENTS

The authors would like to thank Dr Tanya McGill
for her guidance in the preparation of this paper. We
also acknowledge the valuable feedback and
comments of the reviewers.

REFERENCES

ANSI INCITS 359-2004. American National Standards
Institute / International Committee for Information
Technology Standards (ANSI/INCITS).

Acharya, A. & Raje, M. (2000) MAPbox: Using
Parameterized Behavior Classes to Confine
Applications. Proceedings of the 2000 USENIX
Security Symposium. Denver, CO, USA.

Bacarella, M. (2002) Taking advantage of Linux
capabilities. Linux Journal, 2002.

Badger, L. (1996) A Domain and Type Enforcement
UNIX Prototype. Computing Systems, 9, 47-83.

Berman, A., Bourassa, V. & Selberg, E. (1995) TRON:
Process-Specific File Protection for the UNIX
Operating System. Proceedings of the 1995 Winter
USENIX Conference.

Boebert, W. E. & Kain, R. Y. (1985) A Practical
Alternative to Hierarchical Integrity Policies.
Proceedings of the 8th National Computer Security
Conference, 18–27.

SECRYPT 2008 - International Conference on Security and Cryptography

76

Cowan, C., Beattie, S., Kroah-Hartman, G., Pu, C., Wagle,
P. & Gligor, V. (2000) SubDomain: Parsimonious
Server Security. USENIX 14th Systems Administration
Conference (LISA).

Department of Defense (1985) Trusted Computer Security
Evaluation Criteria. DOD 5200.28-STD.

Ferraiolo, D., Cugini, J. A. & Kuhn, R. (1995) Role-Based
Access Control (RBAC): Features and Motivations.
Annual Computer Security Applications Conference.
Gaithersburg, MD, USA, IEEE Computer Society
Press.

Ferraiolo, D. & Kuhn, R. (1992) Role-Based Access
Control. 15th National Computer Security Conference.
Baltimore, MD, USA.

Ferraiolo, D. F., Sandhu, R., Gavrila, S., Kuhn, D. R. &
Chandramouli, R. (2001) Proposed NIST Standard for
Role-Based Access Control. ACM Transactions on
Information and System Security, 4, 224–274.

Garfinkel, T. (2003) Traps and Pitfalls: Practical Problems
in System Call Interposition Based Security Tools.
Proceedings of the 10th Network and Distributed
System Security Symposium. February ed. San Diego,
CA, USA, Stanford University.

Goldberg, I., Wagner, D., Thomas, R. & Brewer, E. A.
(1996) A Secure Environment for Untrusted Helper
Applications: Confining the Wily Hacker.
Proceedings of the 6th USENIX Security Symposium.
San Jose, CA, USA, University of California.

Hinrichs, S. & Naldurg, P. (2006) Attack-based Domain
Transition Analysis. 2nd Annual Security Enhanced
Linux Symposium. Baltimore, Md., USA.

Jaeger, T., Sailer, R. & Zhang, X. (2003) Analyzing
Integrity Protection in the SELinux Example Policy.
Proceedings of the 12th USENIX Security Symposium,
59–74.

Kamp, P.-H. & Watson, R. (2000) Jails: Confining the
Omnipotent Root. Sane 2000 - 2nd International
SANE Conference.

Kamp, P.-H. & Watson, R. (2004) Building Systems to be
Shared Securely. ACM Queue, 2, 42-51.

Krohn, M., Efstathopoulos, P., Frey, C., Kaashoek, F.,
Kohler, E., Mazieres, D., Morris, R., Osborne, M.,
Vandebogart, S. & Ziegler, D. (2005) Make least
privilege a right (not a privilege). Procedings of 10th
Hot Topics in Operating Systems Symposium (HotOS-
X). Santa Fe, NM, USA.

Krsti, I. & Garfinkel, S. L. (2007) Bitfrost: the one laptop
per child security model. ACM International
Conference Proceeding Series, 229, 132-142.

Madnick, S. E. & Donovan, J. J. (1973) Application and
Analysis of the Virtual Machine Approach to
Information Security. Proceedings of the ACM
Workshop on Virtual Computer Systems. Cambridge,
MA, USA.

Marceau, C. & Joyce, R. (2005) Empirical Privilege
Profiling. Proceedings of the 2005 Workshop on New
Security Paradigms, 111-118.

Miller, M. S. & Shapiro, J. (2003) Paradigm Regained:
Abstraction Mechanisms for Access Control. 8th

Asian Computing Science Conference (ASIAN03),
224–242.

Miller, M. S., Tulloh, B. & Shapiro, J. S. (2004) The
structure of authority: Why security is not a separable
concern. Multiparadigm Programming in Mozart/Oz:
Proceedings of MOZ, 3389.

Ott, A. (2002) The Role Compatibility Security Model.
7th Nordic Workshop on Secure IT Systems.

Provos, N. (2002) Improving Host Security with System
Call Policies. 12th USENIX Security Symposium.
Washington, DC, USA, USENIX.

Raje, M. (1999) Behavior-based Confinement of
Untrusted Applications. TRCS 99-12. Department of
Computer Science. Santa Barbara, University of
Calfornia.

Stiegler, M., Karp, A. H., Yee, K. P., Close, T. & Miller,
M. S. (2006) Polaris: virus-safe computing for
Windows XP. Communications of the ACM, 49, 83-
88.

Tucker, A. & Comay, D. Solaris Zones: Operating System
Support for Server Consolidation. 3rd Virtual Machine
Research and Technology Symposium Works-in-
Progress.

Wagner, D. (2006) Object capabilities for security.
Conference on Programming Language Design and
Implementation: Proceedings of the 2006 workshop on
Programming languages and analysis for security, 10,
1-2.

Wagner, D. A. (1999) Janus: An Approach for
Confinement of Untrusted Applications. Technical
Report: CSD-99-1056. Electrical Engineering and
Computer Sciences. Berkeley, USA, University of
California.

Whitaker, A., Shaw, M. & Gribble, S. D. (2002) Denali:
Lightweight virtual machines for distributed and
networked applications. Proceedings of the 5th
USENIX Symposium on Operating Systems Design
and Implementation, 195–209.

Wright, C., Cowan, C., Smalley, S., Morris, J. & Kroah-
Hartman, G. (2002) Linux Security Module
Framework. Ottawa Linux Symposium. Ottawa
Canada.

FUNCTIONALITY-BASED APPLICATION CONFINEMENT - Parameterised Hierarchical Application Restrictions

77

