
HONEYD DETECTION VIA ABNORMAL BEHAVIORS
GENERATED BY THE ARPD DAEMON

A. Boulaiche
ReSyd Doctoral School, University of Bejaia, Algeria

K. Adi
Computer Security Research Laboratory, University of Qubec in Outaouais, Canada

Keywords: Security, Honeypot detection, Abnormal behaviours, ARP protocol.

Abstract: In this paper we describe some serious flaws in the software Honeyd that is one of the most popular software of
honeypots, these flaws allow an attacker to easily identify the presence and the scope of a deployed honeypot.
Hence, we describe in details both the flaws and how they can be used to attack the honeypot. Furthermore, we
elaborate a set of possible solutions to fix each of these flaws. Our technique is mainly based on the detection
of abnormal behaviors of the honeypot.

1 INTRODUCTION AND
RELATED WORK

Honeypots (Spitzner, 2002) have recently received a
lot of attention in the research community. They can
be used for several purposes; they can provide early
warning about new attacks, exploitation trends, at-
tack tools, and evolving attack techniques. Honey-
pots are more and more deployed within computer
networks. However,malicious attackers start to devise
techniques for detecting and circumscribing these se-
curity tools (Holz and Raynal, 2005), while the hon-
eypot deployments must remain hidden in order to be
useful. An attacker who is aware of the location of
a monitor can avoid it, mislead it by feeding it er-
roneous information, or even target the monitor it-
self. Honeyd (Provos, 2002; Provos, 2003; Provos,
2005) is one of the most popular solutions proposed
so far for honeypot technology. It is able to emulate
the behavior of most common IP-stack implementa-
tions. During its normal operation Honeyd listens on
the network interface card (NIC) for incoming ARP
requests. If an ARP request is detected, it initiates an
ARP request itself. If no response to the own ARP
request is given and a rule for the requested IP exists
in the configuration file, Honeyd overtakes the IP and
starts pre-configured services on the specified ports.

Like any honeypot solution, the stealhtiness of a

deployed Honeyd is very important in order for the
later to work properly and to avoid exposing itself to
specific attacks. Indeed, honeyd can carry risks to a
network, and must be handled with care to avoid an
attacker to use them to break into a system. Unfortu-
nately, this stealthiness is not guaranteed as we will
show in this work. Hence, one of the most effective
methods to detect the honeypot is to analyze the con-
tent of various generated IP-packets and to compare
them afterwards with the content of the same types of
packets generated by a normal machine. This compar-
ison allows us to discover some abnormal behaviors
of the honeyd technology which leads to its detection.

Honeypots technologies have been extensively
studied during the last decade and many Honey-
pot solutions have been proposed. For instance,
the Honeynet Project (Provos, 2005) offers a height-
interaction honeypot system. It is composed by a
network of honeypots that are controlled by a set of
tools collected in the Honeywall gateway that acts as
a bridge between the Internet and the network of hon-
eypots. The Honeynet Project is used to gather in-
formation about tools, tactics, and intents involved in
computer and network attacks. Jiang and Xu (Jiang
and Xu, 2004) presented a virtual honeynet system
that has a distributed presence and a centralized op-
eration. Anagnostakis et al. (Anagnostakis et al.,
2005) proposed ”Shadow Honeypot”, a hybrid archi-
tecture that combines the best features of honeypots

65
Boulaiche A. and Adi K. (2008).
HONEYD DETECTION VIA ABNORMAL BEHAVIORS GENERATED BY THE ARPD DAEMON.
In Proceedings of the International Conference on Security and Cryptography, pages 65-71
DOI: 10.5220/0001927200650071
Copyright c© SciTePress

and anomaly detection. Honeypots attacks and de-
tection techniques have also been studied. For in-
stance, Dornseif et al. (Dornseif et al., 2004) have
proposed an approach for attacking a honeynet lo-
cally. Krawetz (Krawetz, 2004) proposed a commer-
cial anti-honeypot spamming tool: ”Send-Safe’s Hon-
eypot Hunter”. The later attempts to detect ”safe”
proxies for use with bulk-mailing tools. Xinwen (Fu
et al., 2006) proposed a new technique that allows an
attacker to remotely fingerprint Honeyd by measuring
the latency of the network links emulated by Honeyd.

The reminder of this paper is structured as fol-
lows: section 2 gives an overview about Honeyd tech-
nology, section 3 describes our experimentations and
the discovered flows in the honeyd technology, sec-
tion 4 proposes some solutions for fixing the discov-
ered flaws. Finally, we provide in section 5 our con-
clusion.

2 HONEYD OVERVIEW

Honeyd is a popular open source low interaction hon-
eypot that runs on BSD, Linux and Solaris, although
recently ported to Windows. It offers a simple way to
emulate services offered by several machines on a sin-
gle one. The primary purpose of Honeyd is detection,
specifically to detect unauthorized activities within
your organization. It does this by monitoring all the
unused IP addresses in the network. Any attempt
connection to an unused IP address is assumed to be
unauthorized or malicious activity, so it generates an
alert. Recently, honeyd has been used for many pur-
poses. For exemple, it is used to detect,to analyze, and
to respond to attacks against organization networked
assets, regardless of where those threats come from.
Honeyd is generally used in conjunction with another
freely available utility called arpd (Song and Provos,
2003) that allows a single host to monitor multiple ad-
dresses on a network by responding to ARP requests
for unclaimed IP addresses.

Honeyd’s architecture consists of several compo-
nents: a configuration database, a central packet dis-
patcher, a protocol handlers, a personality engine, and
an optional routing component. The configuration
database is a sequence of templates, where each one
of them represents a system to be emulated. Inside
every template, we find the personality of a system,
its uptime, its UserID, its GroupID, the state of its
ports, and the IP address associated to it. The central
packet dispatcher is used to put the outgoing packets
in TCP/IP packets, and analyze the received TCP/IP
packets according to the associated fingerprint. The
personality engine is used by Honeyd for referring to

the network stack behavior of a virtual honeypot. The
daemon uses the Nmap fingerprint list as a reference.
The configured services are script sets. Each script
emulates a service of a real system. When the Honeyd
daemon receives a packet for one of the virtual hon-
eypots, it is processed by a central packet dispatcher.
The dispatcher checks the length of the IP packet and
verifies its checksum and then, it queries the configu-
ration database of a honeypot configuration that corre-
sponds to the destination IP address. If no such con-
figuration exists, the default template is used. Then
the dispatcher calls the protocol specific handler with
the received packet and the corresponding honeypot
configuration. For ICMP, it answers with an ICMP
ECHO reply packet. For TCP and UDP, the daemon
can establish connections to arbitrary services that re-
ceive data on standard input system and send their
output to standard output system. For more details,
see (Provos, 2003).

3 HONEYD ANALYSIS

To make the distinction between the physical ma-
chines and the various virtual ones which are cre-
ated by honeyd, we classified them in three different
classes:

• Class 1: class of real physical machines,

• Class 2: class of virtual machines created by hon-
eyd corresponding to templates which are differ-
ent from the default one defined in the configu-
ration file. In this class, the number of virtual
machines and their IP addresses are fixed in the
configuration file.

• Class 3: class of virtual machines created by hon-
eyd corresponding to the default template defined
in the configuration file. In this class, the number
of virtual machines is dynamic and their addresses
are based upon on the free addresses in the physi-
cal network.

Throughout this paper we will try to compare the ma-
chine behaviors of the last two classes with those of
the first class, by trying to highlight some abnormal
behaviors. These can lead to the detection of the hon-
eyd technology.

In order to show the flaws of the honeyd tech-
nology that allows an attacker to easily identify the
presence and scope of a deployed honeypot, we con-
ducted the following experiment. We used Honeyd
to setup three other virtual machines (honeypots) on
the local area network of our university. The first
honeypot is a Linux Suse 8.0, the second honey-
pot is a Windows XP Professional SP1 Microsoft,

SECRYPT 2008 - International Conference on Security and Cryptography

66

and the last honeypot is a Windows 2000. Each
of these honeypots runs the services: HTTP, FTP,
SMTP, TELNET, Netbios-ns, Netbios-dgm,netbios-
ssn, Microsoft - ds. The IP addresses associated to
these three machines are successively: 172.16.12.13,
172.16.12.14, and 172.16.12.15. The rest of the range
addresses 172.16.12.0/24 ,which is free, is automati-
cally allocated to the third class machines defined in
the default template.

3.1 First Experimentation

In the first test, we captured the incoming and outgo-
ing ARP traffic of our test machine by using the Ethe-
real (Lamping, 2004) packet sniffer, then we launched
three pings commands: the first was intended towards
a real machine at 172.16.41.41, the second was in-
tended towards the machine 172.16.12.13 of the sec-
ond class and the third was intended towards the ma-
chine 172.16.12.1 of the third class. During the exe-
cution of these three pings, the ARP traffic captured
by Ethereal is illustrated in Figures 1, 2 and 3.

Figure 1: ARP traffic for the first ping.

Figure 2: ARP traffic for the second ping.

Figure 3: ARP traffic for the third ping

In the three figures, the test machine broadcast
an ARP packet carrying the question ”who has
$IP ADDRESS (”who has 172.16.41.41” for the first
ping, ”who has 172.16.12.13” for the second ping and
”who has 172.16.12.1” for the third ping) to obtain the
MAC address of the destination machine. Then the
machine that has this particular IP address answers by
an ARP packet containing its MAC address. For the
first class machine and the one of the second class,
the answer is sent to the test machine which asked
this address (see the destination field in the circle of
the two first figures). On the other hand, for the third
class machine (default virtual machine), the answer is
broadcasted to every machine on the network (see the
destination field in the circle of the last figure). This
broadcast is considered as an abnormal behavior of

the honeyd ARP protocol. By exploiting this flaw, an
attacker who controls (locally or remotely) a machine
on the same LAN as the honeyd can easily detect the
presence of the honeyd and its controlled virtual ma-
chines.

To resolve this problem it is necessary to modify
the source code of the arpd daemon by canceling the
ARP answers broadcasting.

3.2 Second Experimentation

During the second test, we launched several ping
commands towards five machines of the third class
from the test machine 172.16.12.12. The ARP Traf-
fic captured by Ethereal during the execution of these
ping commands are illustrated in Figure 4.

Figure 4: ARP traffic for the pings commands series.

In this figure, we can notice the flaws that can lead
to the detection of the presence and the scope of a
honeyd deployment:
• the first discovered anomaly concerns the big

framed traffic in the figure. In this traffic, we can
see that every time the arpd daemon receives an
ARP request for a third class machine, it broad-
casts an identical request in order to determine if
there is a first class machine with this IP address.
If it is not the case, it answers the ARP request
with the MAC address of the honeyd host. But
unfortunately, this behavior can be considered as
suspect by an attacker. The later can launch an
ARP scan towards all network machines and can
deduce addresses representing the honeyd accom-
modating machine.

• the second discovered anomaly concerns MAC
addresses of ARP answers. As shown in Figure
4 (see the small frames), all answered addresses
are identical. This comes from the default tem-
plate of the configuration file concerning the Eth-
ernet card type of the third class machines. This

HONEYD DETECTION VIA ABNORMAL BEHAVIORS GENERATED BY THE ARPD DAEMON

67

means that all these various IP addresses have the
same MAC address which is an impossible situ-
ation in a real system. Such situation is suspect,
and offers the possibility for the attackers to iden-
tify the presence and scope of a deployed honey-
pot. The attacker can launch an ARP scan from a
machine on the same LAN as the honeyd which he
controls (locally or remotely) and extracts IP ad-
dresses having the same MAC address. These ad-
dresses represent the third class virtual machines
(virtual machines of the default template) man-
aged by honeyd.

3.3 Third Experimentation

In the third experimentation, we assigned the
172.16.41.41 address of a first class machine (real
machine) to a machine of the second class created
by honeyd. Then we restarted honeyd, and finally
we launched a ping command toward the machine
(172.16.41.41). The ARP traffic captured by Ethereal
during the execution of this ping command is illus-
trated in Figure 5.

Figure 5: ARP traffic for the address conflict flaw.

As shown in this figure, there is two different an-
swers for the ARP request corresponding to the
172.16.41.41 machine (see the frame in the figure).
The arpd daemon answered directly without confirm-
ing if this address is already associated to another ma-
chine, since it considers that the addresses allocated
to the second class machines are manually verified by
the administrator. This situation will lead to a MAC
address conflict as shown in the figure. This conflict
can be easily discovered by attackers sniffing the net-
work.

4 PROPOSED SOLUTIONS

To remedy these discovered flaws, we suggest en-
hancing the honeyd technology by four new modules
and modifying the arpd daemon to make it compatible
with these new modules. Each module will be used to
patch of one of these flaws.

• Module for Allocated IP Addresses,

• MAC Address Translation Module,

• Virtual MAC addresses generator,

• IP Addresses Check Module.

The new general structure of the honeyd technology
after the integration of these four modules is shown in
Figure 6.

Figure 6: New general structure of the honeyd technology.

Hereafter, we describe in details the proposed mod-
ules.

4.1 Module for Allocated IP Addresses

This module is used to resolve the problem of collect-
ing information about free IP addresses belonging to
the address-interval controlled by the arpd daemon.
The current arpd implementation uses the technique
of broadcasting the received ARP requests, but as we
saw in our experimentation, this technique leads eas-
ily to the detection of the honeyd technology. Hence,
to solve this problem we have to introduce a new tech-
nique allowing us to obtain the free IP addresses list
without awakening attackers suspicions, either by us-
ing a passive technique, or by using active techniques
without broadcasts.

Indeed, when the LAN uses a DHCP server to al-
locate dynamically IP addresses to the various ma-
chines of the network, the best way to obtain the list
of allocated IP addresses is to get it from the DHCP
server, either passively by sniffing incoming and out-
going packets toward and from this server, or actively
by asking it periodically. And to ensure this operation
effectively, the honeyd host machine must be installed
on the same network segment as the DHCP server.

To show how it is possible to obtain the list of free
IP addresses by using the DHCP packets sniffing tech-
nique, we didthe following test:

We installed a DHCP server into a Linux
(RHEL4) machine, and from another Windows XP
machine we launched the Ethereal sniffer, then from
the Windows configuration panel we indicated that
the network card must receive dynamically an IP ad-
dress.

The DHCP traffic captured by Ethereal is shown
in the following figure (7):

SECRYPT 2008 - International Conference on Security and Cryptography

68

Figure 7: DHCP traffic captured by Ethereal.

1. To obtain dynamically an IP address, the
Windows machine broadcast (general broadcast
”255.255.255.255”) a ”DHCP discover” packet to
research a DHCP server which will provide an IP
address to it. It uses the source address 0.0.0.0
because it has had no IP address yet.

2. The DHCP sever of the Linux machine, which has
the intention of offering the 172.16.0.9 IP address
to this client, broadcast an ARP request on this
address in order to see if it is available in the net-
work.

3. If the DHCP server does not receive an answer to
its ARP request, it offers this address to the client
by sending a ”DHCP Offer” to it.

4. The Windows machine answered to the DHCP
servers offer in order to confirm the taking of the
IP address sent (because it can be taken by several
DHCP servers which answer, so there must be a
confirmation to the server selected by the client).

5. The DHCP server answers by ”DHCP ACK” to
accept or acknowledge the new IP allocation.

6. 7. 8. The client (the Windows machine) do three
ARP broadcasts to verify from its side that the
172.16.0.9 IP address is not duplicated on the net-
work.

9. If he does not receive any answer for his ARP
broadcasts, he registers his new address.

Indeed, the validity duration of the IP address affected
by the DHCP server is limited by the duration defined
in the configuration file ”/etc/dhcp.conf (in our case
it is of 20 seconds). So, if the client stays connected
more than this definite duration, he must renew it pe-
riodically, by sending a ”DHCP request”, in order to
receive a ”DHCP ACK” from the DHCP server bear-
ing a new duration equals to the previous.

The information list carried in the ”DHCP Offer”
packets and the DHCP ACK packets are shown in the
following figure (8):

What interests us in all this information captured
is the agreement packets (DHCP ACK) sent by the
DHCP server, and privately: the given address (the
four bytes of the numbers: 16, 17, 18, and 19 of the
”DHCP ACK” packet) and the validity duration (the
six bytes of the numbers: 249, 250, 251, 252, 253,
254).

Figure 8: The information lease sent by the DHCP server.

So, our sniffer will be programmed to capture only
the DHCP ACK packets, in order to save into a text
file all allocated addresses with the validity duration
of each of them.

Besides saving this information, our sniffer test
periodically the content of a file to extract the list of
expired addresses. In order to send them test packets
to confirm if they are still active or not. So the general
algorithm of our sniffer is:

MainProgram AllocIPAddMod
Var dhcp_server_ip : string;

allocated_addrs_file : TextFileObject;
Begin
BeginPARALLEL
Sniffer(eth0, dhcp_server_ip,
allocated_addrs_file);

PARALLEL
Expiry_test(allocated_addrs_file);

EndPARALLEL
End.

Procedure Sniffer(ethi, dhcp_server_ip,
allocated_addrs_file)

Var traf : StringObject ;
dhcp_pack : DHCPPacketObject ;

Begin
While true Do
Capture_traffic(ethi, traf);
If traf.Src_IP_addr()==dhcp_server_ip Then
dhcp_pack := traf.Extract_DHCP_packet();
If dhcp_pack.Type() == "DHCP ACK" Then

allocated_addrs_file.Insert(
dhcp_pack.Allocated_addr(),
dhcp_pack.Validity_duration());

EndIf
EndIf

EndWhile
EndProcedure

Procedure Expiry_test(allocated_addrs_file)

Var expired_ip_list: StringListObject;
free_expired_ip_list : StringList ;

Begin
While true Do
Sleep(T);
expired_ip_list :=
allocated_addrs_file.Expired_ip();
free_expired_ip_list :=
expired_ip_list.Test_free_expired_ip();
allocated_addrs_file.Delete(
free_expired_ip_list);

EndWhile
EndProcedure

4.2 MAC Address Translation Module

This module fixes the third flaw. Its mechanism
is similar to the NAT technology (Network Address
Translation). This module contains a virtual MAC
address list generated by the MAC address genera-
tor module. Addresses are similar to MAC address

HONEYD DETECTION VIA ABNORMAL BEHAVIORS GENERATED BY THE ARPD DAEMON

69

supplied by VMWare (Website1, 2008). From this
list and the free address list supplied by the previous
module AllocIPAddCMod as well as addresses of the
configuration file ”honeyd.conf”, it generates a corre-
spondence table where each entry corresponds to an
IP address of a virtual machine managed by honeyd
with the associated virtual MAC address. By using
this table, the arpd daemon will answer ARP requests
for virtual IP address by sending the corresponding
virtual MAC address. The proxy is configured to lis-
ten to the network in promiscuous mode, and as soon
as it receives a frame, it verifies its destination MAC
address. If this address has an entry in the correspon-
dence table then the later is replaced by the MAC ad-
dress of the honeyd machine and the frame sent to
it. The frames generated by honeyd are sent at first
towards the proxy. The later will change their MAC
source addresses by the virtual MAC addresses ac-
cording to IP source addresses of packets carried in
these frames, and sends them then toward their final
destination. So the general algorithm of this module
is:
MainProgram MACAddTransMod
Import honeyd.conf, allocated_addrs_file,

virtual_MAC_addrs_file ;
Var corresp_table : ObjectTable; Begin
corresp_table.Initialization(honeyd.conf,
allocated_addrs_file,
virtual_MAC_addrs_file);

BeginPARALLEL
While true Do
Sleep(T);
corresp_table.Update(allocated_addrs_file,
virtual_MAC_addrs_file);

EndWhile
PARALLEL
Manage_traffic(corresp_table);

EndPARALLEL
End.

Procedure Manage_traffic(corresp_table)
Var traf : StringObject ;
Begin
BeginPARALLEL // Traffic intended

// towards honeyd.
While true Do
Capture_traffic(eth0, traf) ;
If Belong_to(traf.Dest_ip_addr(),
corresp_table) Then
traf.Change_dest_MAC_addr(

honeyd_MAC_add);
Send_to_honeyd(traf) ;

EndIf
EndWhile

PARALLEL // Outgoing traffic of honeyd.
While true Do
Receive_honeyd_outbound_traffic(traf);
MAC_Addr:=corresp_table.Extract_MAC_addr(

traf.Src_IP_addr());
traf.Change_src_MAC_addr(MAC_Addr);
Send_to_network(traf);

EndWhile
EndPARALLEL

EndProcedure

4.3 Virtual MAC Addresses Generator

As its name implies, this module is built to generate
a list of unused virtual MAC addresses in the hon-
eyds LAN.This list will then be used by the MAC

Addresses Translation Module to generate the corre-
spondence table.

Furthermore, the MAC addresses conflict arises
only in the local area networks (the sources and ad-
dressees machines have a direct physical link among
them), so the creation of the virtual MAC addresses
list is relatively easy. It is enough to generate in
a unpredictable way a big number of virtual MAC
addresses of various usual builders, and delete from
it afterward all the addresses already existing in our
physical local area network, by a simple comparison
with a file containing the list of all MAC addresses of
our physical local area network.

4.4 IP Addresses Check Module
This module is conceived to fix the addresses conflict
problems like those noticed in the last experimenta-
tion. Every start up of honeyd, this module verifies
the IP addresses allocated to the various templates in
the configuration file in order to test if there is no real
machine which took one of these addresses, by using
the same technique used with the DHCP mechanism.
As soon as it discovers that one of these addresses is
already associated with another real machine, it shows
an error message to the administrator and does not
start until the issue is resolved. To facilitate the ad-
ministrator task, this mechanism must be able to look
for the free addresses in order to suggest them with
the message. So the general algorithm of this module
is:
MainProgram IPAddCheckMod
Import allocated_addrs_file, honeyd.conf;
Var honeypots_ip_list,

erreur_ip_list : ListObject;
Begin
honeypots_ip_list[] :=
Extract_ip(honeyd.conf);
For i=1 to honeypots_ip_list[].length() Do
If Allocated(honeypots_ip_list[i]) Then

erreur_ip_list.Insert(
honeypots_ip_list[i]);

EndIf
EndFor
If Not Empty(erreur_ip_list) Then
free_ip := Extract_free_ip(
allocated_addrs_file);
Alert_administrator(alert_msg,
erreur_ip_list);
Offer_to_administrator(free_ip);

EndIf
End.

4.5 Modified ARPD Daemon
As we said first, the mechanism of arpd daemon is to-
tally changed. It is no more based on the send out
of its own broadcast ARP requests to be sure that
an IP address is truly unused before claiming it with
an ARP reply. It rather works in conjunction with
the correspondence table supplied by the ”MACAd-
dTransMod” module containing all the free IP ad-
dresses with the virtual MAC address. So, when it

SECRYPT 2008 - International Conference on Security and Cryptography

70

receives an ARP request for such an IP address, the
deamon verifies directly in the correspondence table
if there is an entry for this address or not and if it
is the case, it extracts the virtual MAC address cor-
responding to this address from the correspondence
table, then it loads it in the answered packet and send
it to the requester. So, the general algorithm of the
arpd daemon is:

MainProgram ARPd
Import corresp_table ;
Begin
While true Do
Capture_ARP_Requests(eth0, arp_req);
If Belong_to(arp_req.ip_addr(),
corresp_table) Then
MAC_Addr:=
corresp_table.Extract_MAC_addr(
arp_req.ip_addr());
arp_rep := prepare_ARP_reply(MAC_Addr);
Send_reply(arp_rep, arp_req.src());

EndIf
EndWhile

End.

To our knowledge, there will be no possibility in
the future to exploit the flaws discovered in this ar-
ticle with the implementation of those three modules
and their integration with the current honeyd technol-
ogy. This hardens honeyd defences against attacks
intended to detect honeypots.

5 CONCLUSIONS

In this paper, we have presented various techniques
that can be used by potential attackers to detect the
presence of any Honeyd-based honeypot. They can
subsequently modify their attack to either avoid the
honeypot or send misleading traffic to the honeypot
to hide their actions. We have made different exper-
imental tests that allow us to highlight suspect be-
haviors of honeyd technology, and demonstrate how
an attacker can exploit easily these flaws to detect
the presence of this technology. Furthermore, we
have presented some possible solutions to solve the-
ses problems.

So, with this work, we can say that the honeyd
technology really acquired more strength against de-
tection attacks. But naturally, the flaws discovered in
this article are not the only ones. Therere certainly
other flaws which awaits us to be discovered. Only
with hard work can we find them before they are ex-
ploited by malicious hackers.

REFERENCES

Anagnostakis, K. G., Sidiroglou, S., Akritidis, P.,
Xinidis, K., Markatos, E., and Keromytis, A. D.

(2005). Detecting targeted attacks using shadow
honeypots. In SSYM’05: Proceedings of the 14th
conference on USENIX Security Symposium.

Dornseif, M., Holz, T., and Klein, C. (2004). Nose-
break – attacking honeynets. In Proceedings of
the 5th IEEE Information Assurance Workshop.

Fu, X., Yu, W., Cheng, D., Tan, X., Streff, K., and
Graham, S. (2006). On recognizing virtual hon-
eypots and countermeasures. DASC, IEEE Com-
puter Society.

Holz, T. and Raynal, F. (2005). Detecting honeypots
and other suspicious environments. In Systems,
Man and Cybernetics (SMC) Information Assur-
ance Workshop.

Jiang, X. and Xu, D. (2004). Collapsar: A vm-based
architecture for network attack detention center.
In Proceedings of 13th USENIX Security Sympo-
sium.

Krawetz, N. (2004). Anti-honeypot technology. IEEE
Security and Privacy, 2.1.

Lamping, U. (2004). Ethereal Developer’s Guide:
18189 for Ethereal 0.10.14. The Free Software
Foundation.

Provos, N. (2002). OpenBSD System Manager’s
Manual.

Provos, N. (2003). Honeyd : A virtual honeypot dae-
mon (extended abstract). In Security Workshop
in networking System, Hamburg.

Provos, N. (2005). Honeyd Project.
http://www.honeyd.org. Documentation
and tools for general ”honeyd” users.

Song, D. and Provos, N. (2003). arpd.
http://www.honeyd.org/tools.php. Docu-
mentation and tools for general ”honeyd”
users.

Spitzner, L. (2002). Honeypots: Tracking Hackers.
Addison-Wesley Longman Publishing, Boston.

Website1 (2008). Vmware homepage.
http://www.vmware.com. Documentation
and tools for general ”vmware” users.

HONEYD DETECTION VIA ABNORMAL BEHAVIORS GENERATED BY THE ARPD DAEMON

71

