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Abstract: Bayesian networks have been widely used in intrusion detection. However, most works showed that they are
ineffective for anomaly detection since novel attacks and new behaviors are not efficiently detected. In this
paper, we firstly analyze this problem due to inadequate treatment of novel and unusual behaviors and to insuf-
ficient decision rules which do not meet anomaly approach requirements. We accordingly propose to enhance
the standard Bayesian classification rule in order to fit anomaly detection objectives and effectively detect
novel attacks. We carried out experimental studies on recent and realhtt p traffic and showed that Bayesian
classifiers using enhanced decision rules allow detecting most novel attacks without triggering significantly
higher false alarm rates.

1 INTRODUCTION

Intrusion detection aims at detecting any mali-
cious action compromising integrity, confidentiality
or availability of computer and network resources or
services (Axelsson, 2000). Intrusion detection sys-
tems (IDSs) are either misuse-based (Snort, 2002)
or anomaly-based (Neumann and Porras, 1999) or a
combination of both the approaches in order to ex-
ploit their mutual complementarities (Tombini et al.,
2004). Anomaly-based approaches build profiles rep-
resenting normal activities and detect intrusions by
comparing current system activities with learnt pro-
files. Every significant deviation may be interpreted
as an intrusion since it represents an anomalous be-
havior. The main advantage of anomaly approaches
lies their potential capacity to detect both known and
novel attacks. However, there is no anomaly approach
ensuring acceptable tradeoff between attack detection
and underlying false alarm rate.
Intrusion detection can be viewed as a classification
problem in order to classify audit events (network
packets, Web server logs, system logs, etc.) as nor-
mal events or attacks. Several works used classi-
fiers in intrusion detection (Kruegel et al., 2003)(Se-
byala et al., 2002)(Valdes and Skinner, 2000) and
achieved acceptable detection rates on well-known
benchmarks such as KDD’99 (Lee, 1999), Darpa’99
(Lippmann et al., 2000). Examples of such classifiers

are Bayesian networks which have been widely used
in intrusion detection. In comparison with other clas-
sifiers, main advantage of Bayesian ones for detecting
anomalous behaviors lies in using all the features and
feature dependencies. For instance, in (Valdes and
Skinner, 2000), naive Bayes classifier is used to de-
tect malicious audit events while in (Kruegel et al.,
2003), authors use Bayesian classification in order to
improve the aggregation of different anomaly detec-
tion model outputs. The recurring problem with the
majority of classifiers is their high false negative rates
mostly caused by the incapacity to correctly classify
novel attacks (Elkan, 2000)(Lee, 1999). For instance,
in (Benferhat and Tabia, 2005)(Barbará et al., 2001),
decision trees and variants of Bayes classifiers are
used to classify network connections and concluded
that their main problem lies in their failure to detect
novel attacks which they classify normal connections.
In this paper, we first analyze and explain the prob-
lem of high false negative rates and Bayesian classi-
fiers incapacity to correctly classify novel behaviors
especially malicious ones. We first focus on how new
behaviors affect and manifest through a given feature
set. Then we explain why standard Bayesian classi-
fication rule fail in detecting these new events. We
consider on one hand problems related to handling
unusual and new behaviors and on other hand prob-
lems due to insufficient decision rules which do not
meet anomaly detection requirements. After that, we
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propose to enhance standard Bayesian classifiers with
four new decision rules in order to improve detect-
ing novel attacks involving abnormal behaviors. The
main objective of enhancing standard Bayesian clas-
sifiers is to detect and identify both known and novel
attacks. Experimental studies on recent real and sim-
ulatedhtt p traffic are carried out to evaluate the ef-
fectiveness of the new decision rules in detecting new
intrusive behaviors. Two variants of Bayesian classi-
fiers using the enhanced classification rule are trained
on real and recenthtt p traffic involving normal data
and several Web attacks. Then we evaluated these
classifiers on known and novel attacks as well novel
normal behaviors.
The rest of this paper is organized as follows: Section
1 briefly presents Bayesian networks and Bayesian
classification. In section 2, we introduce anomaly de-
tection approach. We focus in section 3 on Bayesian
classification problems in detecting novel attacks.
Section 5 proposes enhancements to the standard
Bayesian classification rule in order to improve de-
tecting novel attacks. Experimental studies onhtt p
traffic are presented in section 6. Section 7 concludes
this paper.

2 BAYESIAN CLASSIFIERS

Anomaly detection can be viewed, to some extent, as
classifiers which are mapping functions from a dis-
crete or continuous feature space to a discrete set of
class labels. Once a classifier is built on labeled train-
ing data, it can classify any new instance. Decision
trees (Quinlan, 1986) and Bayesian classifiers (Fried-
man et al., 1997) are well-known classifiers.
Bayesian networks are powerful graphical models for
representing and reasoning under uncertainty condi-
tions (Jensen, 1996). They consist of a graphical com-
ponent DAG (Directed Acyclic Graph) and a quanti-
tative probabilistic one. The graphical component al-
lows an easy representation of domain knowledge in
the form of an influence network (vertices represent
events while edges represent ”influence” relations be-
tween these events). The probabilistic component ex-
presses uncertainty relative to relationships between
domain variables using conditional probability tables.
Bayesian classification is a particular kind of
Bayesian inference. Classification is ensured by com-
puting the greatest a posteriori probability of the class
variable given an attribute vector. Namely, having
an attribute vector A (observed variablesA0 = a0 ,
A1 = a1 , .., An = an ), it is required to find the most
plausible class valueck (ck ∈C={c1, c2,..,cm}) for this
observation. The classck associated toA is the class

with the most a posteriori probabilityp(ck/A). Then
Bayesian classification rule can be written as follows:

Class= argmaxck∈C(p(ci/A)) (1)

Term p(ci/A) denotes the posterior probability of
having classci given the evidenceA. This probability
is computed using Bayes rule as follows:

p(ci/A) =
p(A/ci)∗ p(ci)

p(A)
(2)

In practice, the denominator of Equation 2 is ignored
because it does not depend on the different classes.
Equation 2 means that posterior probability is propor-
tional to likelihood and prior probabilities while evi-
dence probability is just a normalizing constant. For
computation complexity reasons, naive Bayes classi-
fier (which the simplest form of Bayes networks) as-
sumes that features are independent in the class vari-
able context. This assumption leads to the following
formula

p(ci/A) =
p(a1/ci)∗ p(a2/ci)..p(an/ci)∗ p(ci)

p(A)
(3)

In the other Bayesian classifiers such as TAN (Tree
Augmented Naive Bayes), BAN (Augmented Naive
Bayes) and GBN (General Bayes Network), Equation
2 takes into account feature dependencies in comput-
ing conditional probabilities as it is denoted in Equa-
tion 4.

p(ci/A) =
p(a1/Pa(a1))∗ ..∗ p(an/Pa(an))∗ p(ci)

p(A)
(4)

TermsPa(ai) denote parents of featureai . Note that
learning naive Bayes classifiers requires only train-
ing data to compute the conditional probability tables
since the structure is known. The other Bayesian clas-
sifiers require both structure and parameter learning.

3 ANOMALY DETECTION

Anomaly approaches build models or profiles rep-
resenting normal activities and detect intrusions by
computing deviations of current system activities
form normal activity profile. Every significant de-
viation may be interpreted as an intrusion since it
represents an anomalous behavior. Anomaly-based
IDSs are efficient in detecting new attacks but cause
high false alarm rates which may really encumber the
application of anomaly-based IDSs in real environ-
ments. In fact, configuring anomaly-based systems
to acceptable false alarm rates result in failure to de-
tect most malicious activities. The main advantage of
anomaly detection lies in it potential capacity to de-
tect both new and unknown (previously unseen) as
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well as known attacks. The capacity to detect un-
known/new attacks is a key feature in IDSs effective-
ness. This is particularly critical since new attacks ap-
pear every day and it often takes several days between
the apparition of a new attack and updating signature
data bases or fixing/correcting the exploit.
In (Kumar and Spafford, 1994), authors maintain that
intrusive activities used to extract signatures or train
detection systems are a subset of anomalous behav-
iors and pointed out four audit event possibilities with
non zero probabilities:

• Intrusive but not anomalous (False Negative):
They are attacks where input data do not catch any
anomalous evidence. This is usually due to fea-
ture extraction problem. Therefore, new attacks
often require supplementary features and data in
order to be detected.

• Not intrusive but anomalous (False positive):
Commonly called false alarms, these events are
legitimate but new. Consequently, they signifi-
cantly deviate from normal events profile. This
problem requires updating normal profiles in or-
der to integrate such new normal events.

• Not intrusive and not anomalous (True Negative):
They correspond to known normal events.

• Intrusive and anomalous (True Positive): Such
events correspond to attacks where intrusive ev-
idence is caught by input data.

In practice, when profiling normal activities for
anomaly detection purposes, it is only a subset of nor-
mal activities which is profiled. This fact explains
in part false alarm rates relative to anomaly-based
IDSs. In (Kruegel et al., 2003), other problems caus-
ing high false alarm rates were identified such as sim-
plistic individual anomaly scores aggregation. Simi-
larly, building attack models or profiles involves only
a subset of all intrusive activities and attack variants.
This results in failure in detecting several new attacks
and attack variants. For instance, feature extraction
focuses on known attacks and normal events in or-
der to differentiate between normal and intrusive au-
dit events. Consequently, there will always be new
attacks for which old feature sets do not catch new
attacks evidence. In order to analyze the standard
Bayesian classification incapacity to detect novel at-
tacks, we particularly focus on how novel attacks in-
volving new behaviors affect feature sets which pro-
vide input data to be analyzed.

3.1 Novel Attacks’ Impact on Feature
Sets

The following are different possibilities about how
new anomalous events affect and manifest through
feature sets:

1. New Value(s) in a Feature(s). A never seen1

value is anomalous and it is due in most cases to
a malicious event. For example, Web server re-
sponse codes are from a fixed set of predefined
values (ex. 200, 404, 500,..). If a new response
code or any other response is observed, then this
constitutes an anomalous event. For instance, suc-
cessful shell code attacks cause server response
without a common code. Similarly, a network
service using a new and uncommon port num-
ber is probably intrusive since most back-door
attacks communicate through uncommon ports
while common services are associated with com-
mon port numbers.

2. New Combination of Known Values. In normal
audit events, there are correlations and relation-
ships between features. Then an anomalous event
can be in the form of a never seen combination
of normal values. For example, in somehtt p re-
quests, numerical values are often provided as pa-
rameters. The same values which are correctly
handled by a given program, can in other con-
texts cause value misinterpretations and result in
anomalous behaviors.

3. New Sequence of Events. There are several nor-
mal audit events which show sequence patterns.
For example, in on-line marketing applications,
users are first authenticated usinghtt psprotocol
for confidential data transfers. Then a user session
beginning withouthtt psauthentication is proba-
bly intrusive since the application control flow has
not been followed. Such intrusive evidence can
be caught by history features summarizing past
events or by using appropriate mining anomaly
sequence patterns algorithms.

4. No Anomalous Evidence. In this case, new
anomalous events do not result in any unseen ev-
idence. The underlying problem here is related to
feature extraction and selection since not enough
data is used for catching the anomalous evidence.

From a theoretical point of view, the first three
possibilities can be detected since intrusive behavior
evidence had appeared in the feature set. For instance,

1By never seen valuewe mean new value in case of
nominal features or very deviating value in case of numeri-
cal features.
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naive Bayes classifier can be used to detect new val-
ues appearing in features because this classifier uses
all features. However, new value combinations re-
quire using attribute dependencies in order to be de-
tected. A TAN, BAN or GBN classifiers (Friedman
et al., 1997) can be suitable for detecting such anoma-
lous evidence. As for anomalous sequence patterns,
they can be detected by Bayesian classifiers if the fea-
ture set includes derived features properly summariz-
ing past event sequences. However, anomalous audit
event of fourth case can not be detected for lack of
any anomalous evidence in the audit event. In prac-
tice, most novel attacks involving novel behaviors are
flagged normal due to inadequate handling of novel
and unusual events and insufficient decision rule.

4 WHY STANDARD BAYESIAN
CLASSIFIERS FAIL IN
DETECTING NOVEL ATTACKS

In intrusion detection, each instance to classify rep-
resents an audit event (network packet, connection,
application log record, etc.).
Novel attacks often involve new behaviors. However,
in spite of these anomalousness evidence in the fea-
ture set, Bayesian classifiers flag in most cases novel
attacks as normal events. This failure is mainly due to
the following problems:

1. Inadequate Handling of Novel and Unusual Be-
haviors: New and unusual values or value combi-
nations are often involved by novel attacks. How-
ever, Bayesian classifiers handle such evidence
inadequately regarding anomaly detection objec-
tives. For instance, new values cause zero proba-
bilities which most implementations replace with
extremely small values and rely on remaining fea-
tures in order to classify the instance in hand.
An other problem with handling new and unusual
events is floating point underflows which happen
when multiplying several small probabilities.

2. Insufficient Decision Rules: The objective of stan-
dard classification rules is to maximize classify-
ing previously unseen instances relying on known
(training) behaviors. However, unseen behav-
iors which should be flagged abnormal according
to anomaly approach, are associated with known
behavior classes. For instance, Bayesian clas-
sifiers rely only on likelihood and prior prob-
abilities to ensure classification. This strongly
penalizes detection of new and unusual behav-
iors in favor of frequent and common behaviors.
As we will see in experimental studies, standard

Bayesian classifiers predict the major part of new
normal/intrusive audit events as normal events
(Benferhat and Tabia, 2005). Attacks often have
specific signatures and may have slight variations.
Consequently, a new (or very deviating) value in
featureai will force the conditional probability
p(ai/Attackk) to zero (or an extremely negligible
value in case of numeric features). Then the like-
lihood of the evidence will be negligible over all
classes. This problem is even stressed by the weak
a priori frequencies of some attack classes. As
a consequence, classification will depend in this
case on class prior probabilities. Given that nor-
mal training events often represent most training
data (Lippmann et al., 2000)(Elkan, 2000), then
new audit evidence will be classified normal. Fur-
thermore, normal events are characterized by very
large variance (Benferhat and Tabia, 2008b) be-
cause normal activities involve several users, ap-
plications, etc. This leads in most cases to a condi-
tional probability of an attribute value in the nor-
mal classp(ai/Normal) greater than zero.

5 ENHANCING STANDARD
BAYESIAN CLASSIFICATION
RULE

In this section, we focus on enhancing Bayesian clas-
sifiers in order to effectively detect novel attacks.
Bayesian classification lies on posterior probabilities
given the evidence to classify (according to Equations
1 and 2). The normality associated with audit eventE
(observed variablesE0 = e0 , E1 = e1 , ..,En = en ) can
be measured by posterior probabilityp(Normal/E).
This measure is proportional to the likelihood ofE in
Normalclass and prior probability ofNormalclass.
In practice, normality can not be directly inferred
from probability p(Normal/E) because this proba-
bility is biased. For instance, major Bayesian clas-
sifier implementations ignore denominator of Equa-
tion 2 while zero probability and floating point un-
derflow problems are handled heuristically. Assume
for instance that a never seen value had appeared in
a nominal featureei . Then according to Equation 2,
the probabilityp(ei/ck) equals zero over all classes
ck. In most implementations, it is an extremely small
value that is assigned to this probability. The strategy
of assigning non zero probabilities in case of new val-
ues is to use remaining features and prior probabilities
in order to classify the instance in hand. The other
problem consists in floating point underflow which is
caused by multiplying several small probabilities each
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varying between 0 and 1. This case is often handled
by fixing a lower limit when multiplying probabili-
ties. In the following, we propose enhancements in
order to better handle novel behaviors and effectively
detect novel attacks.

5.1 Enhancing Bayesian Classification
Rule to Exploit
Normality/Abnormality Duality

Anomaly-based systems flag audit events ”Normal”
or ”Abnormal” according to a computed normality
degree associated with each audit event. Having
two scaled functions computing respectively normal-
ity and abnormality relative to audit eventE then
these two functions are dual. Namely, this propriety
can be formulated as follows:

Normality(E)+Abnormality(E)= constant (5)

The intuitive interpretation of this propriety is
more an event is normal, less it is abnormal. Con-
versely, less normal is the event, it is more abnormal.
Translated in probability terms, Equation 5 gives the
following propriety:

P(Normal/E)+P(Abnormal/E)= 1 (6)

Term P(Normal/E) (resp. P(Abnormal/E)) de-
notes the probability that audit eventE is normal
(resp. abnormal). Bayesian classifiers associate a
probability distribution with the instance to classify
(audit event) and return the class having the utmost
posterior probability. Let us assume for instance
that training data involve normal data (with class la-
bel Normal) and several attack categories (labeled
Attack1, Attack2,.., Attackn). Consider the case when
p(Normal/E) is greater than all posterior probabili-
ties p(Attack1/E),.., p(Attackn/E). In this case, stan-
dard Bayesian rule, will returnNormal class accord-
ing to Equation 1. However, if

p(E/Normal) < (p(E/Attack1)+ ..+ p(E/Attackn))

Then according to Equation 6, the probability that
audit eventE is abnormal is 1-(p(Normal/E)). In-
tuitively, this audit event should be flagged anoma-
lous. We accordingly propose to enhance standard
Bayesian rule as follows:

Rule 1:
If p(Normal/E)<(∑(p(ck 6= Normal/E))

then Class =argmaxck∈C(p(ck 6= Normal/E)
else Class =argmaxck∈C(p(ck/E))

Rule 1 enhances standard Bayesian classifica-
tion rule in order to take into account normal-
ity/abnormality duality relative to audit events. Un-
like standard Bayesian classification rule, Rule 1 first
compares normality with abnormality relative to au-
dit eventE and returnsNormal only when the poste-
rior probabilityp(Normal/E) is greater than the sum
of posterior probabilitiesp(Attacki/E). When abnor-
mality is more important, this rule returns the attack
having the utmost posterior probability.

5.2 Enhancing Bayesian Classification
Rule to Exploit Zero Probabilities

As discussed in Section 4, anomalous audit events
will affect the feature set either by new values, new
value combinations or new audit event sequences.
Then classifying anomalous events strongly depends
on how zero-probability and floating point underflow
problems are dealt with. However, since a zero prob-
ability is due to new (hence anomalous) value, then
this is anomalousness evidence. The underlying inter-
pretation is that instance to classify involves a never
seen evidence. Then anomaly approach should flag
this audit event anomalous. Similarly, an extremely
small a posteriori probability can be interpreted as a
very unusual event, hence anomalous. Then, stan-
dard Bayesian classification rule can accordingly be
enhanced in the following way:

• If there is a featureei where probabilityp(ei/ck)
equals zero over all training classes, then this is a
new value (never seen in training data). Enhanced
Bayesian classification rule can be formulated as
follows:
Rule 2:

If ∃ ei , ∀k, p(ei/ck) = 0 then Class= New

else Class= argmaxck∈C(p(ck/E))

• New intrusive behaviors can be in the form
of unseen combination of seen values. In this
case, feature dependencies must be used in
order to reveal such anomalousness. Since new
value combinations will cause zero conditional
probabilities, then this anomalous evidence can
be formulated as follows:

Rule 3:

If ∃ ei , p(ei/Pa(ei) = 0 then Class= New

else Class= argmaxck(p(ck/E))

Note that when building Bayesian classifiers,
structure learning algorithms extract feature de-
pendencies from training data. Then there may
be unseen value combinations that can not be de-
tected if the corresponding dependencies are not
extracted during structure learning phase.
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5.3 Enhancing Bayesian Classification
Rule to Exploit Likelihood of
Unusual Attacks

When training classifiers, some attacks have often
very small frequencies in training data sets. The
problem with such prior probabilities is to strongly
penalize the corresponding attacks likelihood. This
problem was pointed out in (Ben-Amor et al., 2003)
where authors proposed simple duplication of weak
classes in order to enhance their prior probabilities.
An alternative solution is to exploit the likelihood of
audit events as if training classes (Normal, Attack1,..,
Attackn) were equiprobable. Assume for instance
intrusive audit eventE is likely to be an attack (for
example, likelihoodp(E/Attackj) is the most im-
portant). Because of the negligible prior probability
of Attackj , posterior probabilityp(Attackj/E) will
be extremely small whilep(Normal/E) can be
significant sinceNormal class prior probability is
important. Then we can rely on likelihood in order to
detect attacks with small frequencies:

Rule 4:

If ∃ Attackj , ∀k, p(E/Attackj ) >= p(E/ck) and

p(Normal/E) > P(Attackj/E) and p(Attackj) < ε
then Class= Attackj

else Class= argmaxck∈C(p(ck/E))

This rule is provided in order to help detecting
anomalous events with best likelihood in attacks hav-
ing extremely small prior probabilities (p(Attackj) <
ε). It will be applied only if the proportion of in-
stances ofAttackj in training data is less than thresh-
old ε fixed by the expert. For example, this threshold
can fixed for attacks representing less that 1% of the
training set. Then Rule 4 will be applied only for at-
tacks representing less 1% of training instances.
Note that standard Bayesian classification rule (see
Equation 1) is applied only if Rules 1, 2, 3 and 4
can not be applied. As for the priority for applying
these rules, we must begin by zero probability rules
(Rules 1 and 2) then normality/abnormality duality
rule (Rule 3) and finally likelihood rule (Rule 4).

6 EXPERIMENTAL STUDIES

In this section, we provide experimental studies of our
enhanced Bayesian classification rule onhtt p traffic
including normal real data and severalhtt p attacks.
Before giving further details, we first present train-
ing and testing data sets then provide the experimen-
tations’ results.

6.1 Training and Testing Data Sets

We carried out experimentations on a realhtt p traf-
fic collected on a University campus during 2007.
Note that this traffic includes inboundhtt p connec-
tions to the university Web server and outboundhtt p
connections of inside university users requesting out-
side Web servers. We extractedhtt p traffic and pre-
processed it into connection records using only packet
payloads. Eachhtt p connection is characterized by
four feature categories(Benferhat and Tabia, 2008a):
Request general featuresproviding general informa-
tion onhtt p requests. Examples of such features are
request method, request length, etc.
Request content featuressearching for particularly
suspicious patterns inhtt p requests. The number
of non printable/metacharacters, number of directory
traversal patterns, etc. are few examples of request
content features.
Response featuresextracted by analyzinghtt p re-
sponse to a given request. These features can reveal
the success or failure of an attack and can reveal sus-
picious htt p content in the response, in which case
Web clients are targeted by a possible attack. Ex-
amples of these features are response code, response
time, etc.
Request history featuresproviding statistics about
past connections given that several Web attacks such
as flooding, brute-force, Web vulnerability scans per-
form through several repetitive connections. Exam-
ples of such features are the number/rate of con-
nections issued by same source host and requesting
same/different URIs.
Note that in order to label the preprocessedhtt p traf-
fic (as normal or attack), we analyzed this data using
Snort(Snort, 2002) IDS as well as manual analysis.
As for other attacks, we simulated most of the attacks
involved in (Ingham and Inoue, 2007) which is to
our knowledge the most extensive and uptodate open
Web-attack data set. In addition, we played vulnera-
bility scanning sessions using w3af(Riancho, 2007).

Attacks of Table 1 are categorized according to the
vulnerability category involved in each attack. Re-
garding attacks effects, attacks of Table 1 include de-
nial of service attacks, vulnerability scans, informa-
tion leak, unauthorized and remote access (Ingham
and Inoue, 2007). In order to evaluate the generaliza-
tion capacities and the ability to detect new attacks,
we build a testing data set including normal realhtt p
connections as well as known attacks, known attack
variations and novel ones (attacks in bold in Table 1).
Note that new attacks included in testing data either
involve new feature values or anomalous value com-
binations.
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Table 1: Training/testing data set distribution.

Training data Testing data

Class Number % Number %

Normal 55342 55.87% 61378 88.88 %

Vulnerability scan 31152 31.45% 4456 6.45 %

Buffer overflow 9 0.009% 15 0.02%

Value misinterpretation 2 0.002% 1 0.00%

Poor management 3 0.003% 0 0.00%

URL decoding error 3 0.003% 0 0.00%

Other input validations 44 0.044% 4 0.01 %

Flooding 12488 12.61% 3159 4.57 %

Cross Site Scripting 0 0.00% 6 0.0001 %

SQL injection 0 0.00% 14 0.001 %

Command injection 0 0.00% 9 0.001 %

Total 99043 100% 69061 100%

6.2 Brief Description of Naive Bayes
and TAN Classifiers

Naive Bayes classifier is the simplest form of
Bayesian networks. Its graphical component only
includes two node types: (1) A unique parent node
called root which is associated to the hidden variable
in classification problems, and (2) a child node for
every observed variable (attribute). Note that naive
Bayes assumes that child nodes are independent in
their parent context. It is a simplifying assumption
which is not true in many real world problems but
useful for reducing computational complexity. In
order into relax this problematic assumption, other
Bayesian classifiers represent some of feature depen-
dencies. For instance TAN classifier is a naive Bayes
classifier augmented by allowing child node depen-
dencies to form a tree (Friedman et al., 1997). We use
naive Bayes classifier in order to evaluate the ability to
detect anomalous events causing new feature values
while TAN classifier is used for detecting new value
combinations as TAN classifiers allow child node de-
pendencies.

6.3 Standard vs Enhanced Bayesian
Classification Rule onhtt pTraffic

Table 2 compares results of standard then enhanced
naive Bayes and TAN classifiers built on training data
and evaluated on testing one.

Note that enhanced classification rule evaluated in
Table 2 uses normality/abnormality duality and zero
probabilities (see Rule 1, 2 and 3).
Experiments on standard Bayesian classification rule:
At first sight, both classifiers achieve good detection
rates regarding their PCCs (Percent of Correct Classi-

Table 2: Evaluation of naive Bayes (NB) and TAN classi-
fiers using standard/enhanced Bayesian classification rules
onhtt p traffic.

Standard Enhanced

Bayesian rule Bayesian rule

NB TAN NB TAN

Normal 98.2% 99.9% 91.7% 97.8%

Vulnerability scan 15.8% 44.1% 100% 100%

Buffer overflow 6.7% 20.2% 80% 100%

Value misinterpretation100% 0.00% 100% 100%

Other input validation75.0% 100% 100% 100%

Flooding 100% 100% 100% 100%

Cross Site Scripting 0.00% 0.00 % 100% 100%

SQL injection 0.00% 0.00% 100 % 100%

Command injection 0.00% 0.00 % 100 % 100%

Total PCC92.87% 96.24% 96.45% 98.07%

fication) but they are ineffective in detecting novel at-
tacks (attacks in bold in Table 2). Confusion matrixes
relative to this experimentation show that naive Bayes
and TAN classifiers misclassified all new attacks and
predicted themNormal. However, results of Table 2
show that TAN classifier performs better than naive
Bayes since it represents some feature dependencies.
Furthermore, testing attacks causing new value com-
binations of seen anomalous values (involved sepa-
rately in different training attacks) cause false nega-
tives. For instance, testing vulnerability scans are not
well detected since they involve new value combina-
tions.
Experiments on enhanced Bayesian classification
rule: Naive Bayes and TAN classifiers using the en-
hanced rule perform significantly better than with
standard rule. More particularly, both the classi-
fiers succeeded in detecting both novel and known
attacks. Unlike naive Bayes, enhanced TAN classi-
fier improves detection rates without triggering higher
false alarm rate (see PCC ofNormal class in Table
2). Furthermore, TAN classifier correctly detects and
identifies all known and novel attacks.
Figure 1 reports results of enhanced naive Bayes us-
ing likelihood rule (see Rule 4) with a threshold fixed
to different values.

Figure 1: Naive Bayes evaluation using different thresholds
for Rule 4.
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Figure 1 shows that novel attacks detection rates
can be improved by exploiting likelihood of attacks
having small prior probabilities. For instance, fixing
the threshold of Rule 4 to 1% significantly improves
detection rates of several attacks since the detection
of these attacks was strongly penalized by their fre-
quencies in training data.
Results of Table 2 and Figure 1 show that significant
improvements can be achieved in detecting novel at-
tacks by enhancing standard classification rules in or-
der to meet anomaly detection requirements.
Note that we carried out other experimentations2 on
Darpa’99 data set (Lippmann et al., 2000) and con-
cluded that our enhancements allow significantly im-
proving the detection of novel attacks.

7 CONCLUSIONS

In this paper, we proposed enhancements to the stan-
dard Bayesian classification rule in order to effec-
tively detect both known and novel attacks. We firstly
analyzed Bayesian classifiers failure to detect most
novel attacks which they flag normal behaviors. Ac-
cordingly, we proposed to enhance standard Bayesian
classification rule in order to meet anomaly detec-
tion objectives. Our enhancements aim at better han-
dling novel and unusual behaviors and providing a
Bayesian classification rule which better fits anomaly
detection requirements. More precisely, we proposed
enhancements to exploit normality/abnormality dual-
ity relative to audit events as well as zero probabilities
caused by anomalous evidence occurrence and likeli-
hood of attacks having extremely small prior proba-
bilities. Experiments on recenthtt p traffic involving
real data and several Web attacks showed the signifi-
cant improvements achieved by the enhanced classifi-
cation rule in comparison with the standard one.
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