
A GENERAL FRAMEWORK FOR GUESS-AND-DETERMINE AND
TIME-MEMORY-DATA TRADE-OFF ATTACKS ON STREAM

CIPHERS

Guanhan Chew and Khoongming Khoo
DSO National Laboratories, 20 Science Park Drive, 118230, Singapore

Keywords: Guess-and-Determine Attack, Time-Memory-Data Trade-Off Attack, Stream Ciphers.

Abstract: In this paper, we present a framework for guess-and-determine attack on stream ciphers that relies on guessing
part of the internal state and solving for the remaining unknown cipher state based on known keystream bits.
We show that this basic attack can always be extended to a Time-Memory-Data (TMD) Trade-Off attack.
This allows us to easily extend any guess-and-determine attack to a guess-and-determine TMD attack, which
improves the online attack at the expense of memory, pre-processing time, and data requirement. Lastly, we
illustrate three applications of the attack framework.

1 INTRODUCTION

In this paper, we study the guess-and-determine attack
on stream ciphers. We will consider ciphers which
satisfy the following attack criteria.

Attack Criteria. Assume we have a cipher with an
n-bit internal state which maps its internal state to a
fixed number of output bits at every clock. We will
consider ciphers where we can guessk bits of the
secret state and solve for the remainingn− k secret
state bits based onl ≥ n− k keystream bits (some-
timesl = n−k keystream bits will suffice).

We shall show how this basic attack can be ex-
tended to a guess-and-determine time-memory-data
(GD-TMD) trade-off attack.

The time-memory-data (TMD) trade-off attack
(Biryukov and Shamir, 2000) is an extension of the
time-memory-trade-off (TMTO) attack of (Hellman,
1980). In the attack of (Biryukov and Shamir, 2000),
the authors show that when the adversary has more
data to work with, he can improve on (lessen) the on-
line attack complexity and more importantly, lessen
the pre-computation complexity (which is usually the
hardest part of TMTO attacks).

Our GD-TMD attack is similar in principle to the
usual TMD attack which aims to invert the mapping
from internal state to output bits. However, the differ-
ence is that each evaluation step of a Hellman chain in
GD-TMD consists of a mini guess-and-determine at-

tack, as compared to a cipher evaluation in the normal
TMD attack. We show that although our GD-TMD
attack has the same complexity trade-offs as a TMD
attack on the cipher with comparable memory and
keystream resources, our attack allows much more
optimal complexities to be achieved in practice when
more data is available to the adversary. Our frame-
work allows an adversary to convert any guess-and
determine attack to a GD-TMD attack easily. This al-
lows for improved TMD attacks with better complexi-
ties as opposed to applying the normal TMD attack of
(Biryukov and Shamir, 2000) on the cipher directly.

Finally, we show how our framework can be ap-
plied in practice. As shown in Section 3, we convert
the guess-and-determine attack on Toyocrypt (Mihal-
jevic and Imai, 2002) to a GD-TMD attack. In this
case, the framework allows us to do the conversion
easily without going through the substantial explana-
tion given in (Mihaljevic and Imai, 2002). Second,
the authors of (Khoo et. al., 2007) showed that when a
Maiorana-McFarland function is used as a filter func-
tion in stream ciphers, guess-and-determine attacks
and GD-TMD attacks can be performed on them. Two
scenarios which are not considered in (Khoo et. al.,
2007) are attacks on the vectorial filter combiner and
combinatorial generator. We shall show how a guess-
and-determine attack can be performed on them and
how this can be easily converted to a GD-TMD attack
for better online attack complexity.

300
Chew G. and Khoo K. (2008).
A GENERAL FRAMEWORK FOR GUESS-AND-DETERMINE AND TIME-MEMORY-DATA TRADE-OFF ATTACKS ON STREAM CIPHERS.
In Proceedings of the International Conference on Security and Cryptography, pages 300-305
DOI: 10.5220/0001918703000305
Copyright c© SciTePress

2 GUESS-AND-DETERMINE
ATTACK

Assuming the cipher satisfies our attack criteria, let
the minimum number of state bits that needs to be
guessed, givenl known keystream bits, bekmin. This
minimum value can depend onn, l and properties
of the cipher. We can, of course, choose to guess
more than this minimum number. If we letk, such
thatkmin ≤ k ≤ n, be the number of internal state bits
guessed in the attack, then the attack complexityT is

T = 2k×G [n, l ,k], (1)

where functionG [·] is the complexity of solving the
system of equations for each guess. The exact form
of this function will differ from cipher to cipher.

3 GUESS-AND-DETERMINE
TIME-MEMORY-DATA
TRADE-OFF ATTACK

The attack time complexity in (1) can be improved
upon when we apply the Time-Memory-Data Trade-
Off attack of (Biryukov and Shamir, 2000), which is
based on Hellman’s original time-memory trade-off
attack in (Hellman, 1980). Oeschlin’s rainbow attack
(Oeschlin, 2003) is not discussed here since the time-
memory-data trade-off curve of the rainbow method
has been shown in (Biryukov et. al., 2006) to be infe-
rior to that for Hellman’s method.

Our procedure is similar to that described in Theo-
rem 2 of (Khoo et. al., 2007). Definingn, k andl as in
the previous section, we choose a fixed stringc such
thatc∈GF(2)l . We define the functionf : GF(2)n →
GF(2)k+l so that

f (x̃) = (k+ l)-bit output of the keystream generator

when the internal state is initialized to ˜x∈ GF(2)n.
Given x ∈ GF(2)k, andc, we can solve foru ∈

GF(2)n−k such that the firstl output keystream bits
of the stream cipher when initialized to the state(x||u)
is the stringc, where ‘||’ denotes concatenation of bit
strings. With this initial state, we can further generate
k additional keystream bitsy, so thaty∈ GF(2)k. We
define(c||y) to be the keystream bits when the cipher
is initialized to the state(x||u):

f (x||u) = (c||y). (2)

Let D = 2d be the amount of data. For our case,
D is the number of occurences of the stringc in

our keystream. We define the search functionsF (c)
i :

GF(2)k → GF(2)k for i = 1, . . . ,t/D as follows:

F (c)
i (x) = y⊕Xi

wherex and y are related through (2), and theXi ’s
are distinct randomly generated bit strings inGF(2)k.
This search function will be used to compute the
TMD tables, each with lengtht, which will be used to
conduct an attack similar to that described in (Khoo
et. al., 2007).

We define m to be the total number of rows
needed in a table if we were to carry out a Time-
Memory (TM) Trade-Off attack as described in (Hell-
man, 1980). The entire state spaceN is equal tomt2

by the matrix stopping rule (Hellman, 1980). Since
we are performing a TMD attack, this search space
can be reduced tomt2/D according to the amount of
dataD that we have. According to (Biryukov and
Shamir, 2000), we shall uset/D tables each of size
m× t. Since we are only storing the start points and
end points, each table will only requirem units of
memory. Thus the amount of memoryM required
for the t/D tables isM = mt/D. For every one of
the D data points, computing allt iterations of the
t/D search functions would require approximately
t× t/D×G [n, l ,k] units of processing time. Since we
haveD units of data, the total online attack timeT is
t2×G [n, l ,k]. Substituting these parameters into the
trade-off equation gives:

TM2D2 = t2×G [n, l ,k]× (mt/D)2×D2

= m2t4G [n, l ,k]

= N2G [n, l ,k]

= 22kG [n, l ,k],

where we have made use ofN = mt2 to eliminate the
m’s and t ’s and derive the trade-off curve equation
TM2D2 = N2G [n, l ,k].

During pre-processing,t evaluations of functions

F (c)
i need to be made for every row, with a complexity

of G [n, l ,k] for each evaluation. Thus the complex-
ity in building t/D tables ofm rows ist ×G [n, l ,k]×
t/D×m= mt2/D×G [n, l ,k] = N/D×G [n, l ,k].

We can summarise the previous discussion with
the following results:

Memory = M = 2mem

Data = D = 2d

Pre-processing Complexity= N/D×G [n, l ,k]

= 2k−d ×G [n, l ,k]

Length of constant stringc = l

Online Attack Complexity = T

= 22(k−(d+mem))

× G [n, l ,k] (3)

In deriving the above result, we need to ensure that
conditions implicit in the derivation of TMD Trade-
Off curve are satisfied, i.e. the amount of memory

A GENERAL FRAMEWORK FOR GUESS-AND-DETERMINE AND TIME-MEMORY-DATA TRADE-OFF
ATTACKS ON STREAM CIPHERS

301

M and the data availableD should not be arbitrarily
chosen even when they appear to satisfyTM2D2 =
N2. For example, supposeN = 296 and in our attack,
we chooseM = 280 andD = 210. Although the pre-
processing complexity and online attack complexity
of 286 and 212 seem valid, the number of tablest/D,
as defined previously, is less than 1. UsingM = mt/D
andN = mt2, we gett/D = N/(MD2) = 2k−mem−2d =
296−80−20 = 2−4 < 1.

For stream ciphers whose internal state maps
to one keystream bit after every clock, the amount
of consecutive keystream bits corresponding to the
above parameters is 2l+d. This is because the fixed
stringc of lengthl will occur, on average, once in 2l

consecutive keystream bits. If there are 2d data, this
implies that the total keystream length is 2l+d. Using
a similar reasoning, for stream ciphers whose internal
state maps toµ keystream bits after every clock, the
amount of consecutive keystream bits isµ×2l+d.

4 ADVANTAGES OF GD-TMD
OVER NORMAL TMD ATTACK

In this section, we compare the guess-and-determine
TMD attack from the last section with a normal
TMD attack (Biryukov and Shamir, 2000) based on
the same amount of memory and 2l+d consecutive
keystream bits, wherel ≈ n−k. We consider a stream
cipher whose internal state maps to one keystream bit
after every clock. In this case, the amount of data is
equal to the length of keystream for the normal TMD
attack.
For Normal TMD Attack:

mt2 = 2n andmt = 2mem×2d+n−k,

which implies:

t = 2k−(mem+d) andm= 22(mem+d−k)+n.

In the pre-computation phase, t/2d+n−k =

2k−mem−(n−k)−2d tables of sizem = 22(mem+d−k)+n

are stored. For at least one table to be computed, we
need:

2k−mem−n−2d≥ 0

=⇒ d ≤ (2k−mem−n)/2

= (k−mem− (n−k))/2. (4)

The attack complexity of the Normal TMD attack
is 22(k−(d+mem)) encryptions.
For Guess-and-Determine TMD Attack:

mt2 = 2k andmt = 2mem×2d,

which implies:

t = 2k−(mem+d) andm= 22(mem+d)−k.

In the pre-computation phase,t/2d = 2k−mem−2d ta-
bles of sizem= 22(mem+d)−k are stored. For at least
one table to be computed, we need:

k−mem−2d≥ 0 =⇒ d ≤ (k−mem)/2. (5)

The attack complexity for the GD-TMD attack is
22(k−(d+mem)) × G [n, l ,k]. We see that even though
this attack complexity may be slightly higher than that
for the normal TMD attacks, this attack has two ad-
vantages over the normal TMD attack:

1. Larger Range of Values for d. Based on the in-
equalities in (4) and (5), the GD-TMD attack has a
larger upper bound ford. This allows us to utilize
a larger amount of data, should it become avail-
able, and in so doing, achieve a lower overall at-
tack complexity.

2. Smaller Memory Requirement. Another advan-
tage of the GD-TMD attack is that we only need
to storek-bit words as compared to storingn-bit
words in the normal TMD attack. Thus the GD-
TMD attack only usesk/n of the memory required
in the normal TMD attack.

5 APPLICATIONS

5.1 Attack on the Toyocrypt Cipher

The Toyocrypt stream cipher is Cryptrec submission
for the Japanese government initiative to find cryp-
tographic standards. It is based on a 128-bit modu-
lar feedback shift register (MLFSR) filtered by a bal-
anced 128-bit boolean function of degree 64 with high
nonlinearity. The MLFSR is a linear state machine
where the feedback function correspond to a triangu-
lar matrix. In (Mihaljevic and Imai, 2002), the authors
described a basic guess-and-determine attack where
they make use of the property that if 64 input bits of
the filter functionf (x) is known, thenf (x) becomes a
linear function. They guess 96 of the input bits and
obtain 32 linear equations from 32 keystream bits.
This linear system can be solved to obtain the 32 re-
maining unknown bits.

By applying the Guess-and-determine TMD at-
tack (GD-TMD) of Section 3, we easily get the fol-
lowing trade-offs:

SECRYPT 2008 - International Conference on Security and Cryptography

302

Memory = M = 2mem

Data = D = 2d

Pre-processing Complexity= N/D

× G [n, l ,k]

= 296−d

× G [128,32,96]

Length of constant stringc = 32

Online Attack Complexity = T

= 22(96−d−mem)

× G [128,32,96],

where t/2d = 296−mem−2d tables of size m =

22(mem+d)−96 are stored. The amount of keystream re-
quired is 2l+d since the cipher maps the internal state
to one keystream bit at every clock. In comparison,
a substantial part of (Mihaljevic and Imai, 2002) is
devoted to explaining how the guess-and-determine
attack can be converted into a TMD attack.

If we choosed = 16 andmem= 64, then we have
the following attack complexities:

Memory = M = 264

Data = D = 216

Pre-processing Complexity= N/D×G [n, l ,k]

= 280×G [128,32,96]

Length of constant stringc = 32

Online Attack Complexity = T

= 22(96−16−64)

× G [128,32,96]

= 232×G [128,32,96]

where 296−64−2×16 = 1 table of size 22(64+16)−96 =
264 is stored and the amount of keystream required is
232+16 = 248. The same attack complexity is obtained
in (Mihaljevic and Imai, 2002). Note that the authors
assumed that the complexityG [128,32,96], which is
that of solving a 32×32 linear system is negligible. In
this case,G [128,32,96] can be taken as 322/64= 24

where we consider Gaussian elimination on a 64-bit
processor. This is because we can consider the XOR
of two 64-bit words as 1 operation.

The preprocessing complexity is 284 while the
overall online attack complexity is 236.

5.1.1 Comparison with Normal TMD Attack

For comparison, we consider the scenario in Section
4 where we apply the normal TMD with 232+d data,
on the Toyocrypt cipher with 128-bit key.

Memory = M = 2mem

Data = D = 232+d

Pre-processing Complexity= N/D

= 2128−(32+d)

= 296−d

Online Attack Complexity = T

= 22(128−(32+d)−mem)

= 22(96−d−mem),

where t/232+d = 264−mem−2d tables of sizem =

22(mem+d)−64 are stored.
We see that the trade-off for memory, pre-

processing and attack complexities are exactly the
same for both the normal TMD and GD-TMD at-
tacks. The only difference is the number and size of
the stored tables. For at least a table to be formed in
the normal TMD attack, we need 64−mem−2d≥ 0
which impliesd ≤ (64−mem)/2.

Assume we have 248 keystream bits andM =
2mem= 264 memory at our disposal. For at least one
table to be formed, we needd ≤ (64−mem)/2 = 0,
which implies we can only use at mostD = 232+d =
232+0 = 232 keystream bits. In that case, the attack
complexity is 22(96−d−mem) = 22(96−0−64) = 264. This
is still worse than the attack complexity of 236 which
we obtained by the GD-TMD attack for the same sce-
nario. Furthermore, sinced = 0, the preprocessing
complexity is 296 which is also much larger than that
of the GD-TMD attack.

5.2 Attack on the Filter Combiner
based on Vectorial
Maiorana-McFarland Functions

The guess-and-determine attack on the filter combiner
based on Maiorana-McFarland equations has been
studied in (Khoo et. al., 2007). In this Section, we
generalize this attack to one on the filter combiner
with vectorial output. Using our framework, we eas-
ily convert it to a TMD attack for better online attack
complexity.

We consider the case where 2 LFSRs — LFSR1
and LFSR2 — of lengthsn1 andn2 respectively (so
thatn= n1+n2), are filtered by a vectorial Maiorana-
McFarland functionF : GF(2)n → GF(2)µ defined
by:

F(x0, . . . ,xn−1)

= (f0(x0, . . . ,xn−1), . . . , fµ−1(x0, . . . ,xn−1))

where each functionf j : GF(2)n → GF(2) is defined

A GENERAL FRAMEWORK FOR GUESS-AND-DETERMINE AND TIME-MEMORY-DATA TRADE-OFF
ATTACKS ON STREAM CIPHERS

303

by:

f j(x0, . . . ,xn−1)

= (xr , . . . ,xn−1) ·φ j(x0, . . . ,xr−1)

+ g j(x0, . . . ,xr−1), (6)

for j = 0, . . . ,µ−1. The functionsφ j andg j are de-
fined byφ j : GF(2)r → GF(2)n−r andg j : GF(2)r →
GF(2). The symbol ‘·’ denotes the usual dot prod-
uct. The inputs to these functionsx0, . . . ,xr−1, which
are not necessarily adjacent nor indexed in the or-
der in which they appear on the LFSRs, are tapped
from amongst the bits of both LFSRs. Vectorial
Maiorana-McFarland functions are used because they
have good cryptographic properties (see (Pasalic and
Maitra, 2001; Carlet, 2002))

Assuming we guess enough bits in LFSRs so that
the inputs to theφ j and g j functions for p con-
secutive clocks are completely determined, and that
the keystream bits corresponding to these clocks are
known, then (6) is linearized and can be solved via
Gaussian elimination, if enough keystream bits are
available to form a full-ranked system of linear equa-
tions. If the number of bits guessed in LFSR1 and
LFSR2 arek1 andk2 respectively, and the number of
known keystream bits isl = p×µ, then the time com-
plexity of this attack as described by Equation 1, is
2k1+k2 ×G [n, p×µ,k1 + k2], where the functionG [·]
represents the complexity of Gaussian elimination for
each guess. For the resulting system of linear equa-
tions to be solvable, we require that the number of
equations be at least as many as the number of un-
knowns, i.e. p× µ ≥ n1 + n2 − (k1 + k2), which is
equivalentlyk1 + k2 ≥ n1 + n2 − µ× p. The param-
etersk1 and k2 also need to satisfy some minimum
bound so that the inputs to the functionsφ j andg j are
determined, i.e.k1 ≥ k1,min andk2 ≥ k2,min for some
k1,min ≥ r andk2,min ≥ r that depend on the positions
of the tap points.

Suppose thatn1 = 33, n2 = 31, µ = 3 andr = 5.
Let these 5 bits that are to be guessed be tapped from
amongst the leftmost 10 bits and 7 bits of LFSR1
and LFSR2 respectively. Both LFSRs clock in the
left direction. Hence the minimum number of bits
(k1,min,k2,min) we can guess for this attack to be effec-
tive are 10 from LFSR1 and 7 from LFSR2. Depend-
ing on the number of keystream bits we have and the
attack complexity we would like to achieve, the total
number of guessed bitsk1 and k2 can vary accord-
ing to the conditions stipulated previously. Suppose
that we guess the leftmost 19 and 16 bits of LFSR1
and LFSR2 respectively. Then the total number of un-
known bits is 33−19+ 31−16= 29. Furthermore,
the leftmost 10 and 7 bits of LFSR1 and LFSR2 are
determined forp= 10 consecutive clocks. If we know

the 10×3= 30 keystream bits corresponding to these
clocks, we can solve for the un-guessed bits since we
have more linear equations than unknowns.

Furthermore, if we have more keystream bits, the
attack can be extended to a TMD Trade-Off Attack.
The constant string lengthl used in the TMD Trade-
Off Attack needs to be fixed at the length of keystream
for which the Guess-and-Determine attack was con-
ducted. For this attack, we need to find at least one
occurrence of the chosen string, which can only be
taken at intervals ofµ keystream bits. This implies
that we need at least aboutµ× 2l known keystream
bits. The time complexity and other parameters are as
derived in Equation (3).

Suppose we chooseM = 215 andD = 25 for the
above scenario, then the TMD attack complexity is
233.72 with a preprocessing time of 233.72. The factor
G [64,30,35] can be taken to be 292/64≈ 23.72 if we
consider Gaussian elimination of 29 unknown vari-
ables on a 64-bit processor. The amount of keystream
bits required is 3×2µ×p+d = 3×23×10+5 = 3×235.
To summarise,

Memory = M = 215

Data = D = 25

Pre-processing Complexity= N/D×G [n, l ,k]

= 235−5

× G [64,30,35]

= 233.72

Online Attack Complexity = T

= 22(35−15−5)

× G [n, l ,k]

= 233.72.

In this case,t/2d = 235−15−2×5 = 210 tables of size
m= 22(15+5)−35 = 25 are stored.

5.3 Attack on the Combinatorial
Generator based on
Maiorana-McFarland Functions

We consider a combinatorial generator wheren LF-
SRs, each of length approximately1 L, are filtered by
the following Maiorana-McFarland function to pro-
duce 1 keystream bit at each clock.

f (x0, . . . ,xn−1)

= (xr , . . . ,xn−1) ·φ(x0, . . . ,xr−1)

+ g(x0, . . . ,xr−1). (7)

1We choose the lengths of the LFSRs to be approxi-
mately equal but mutually coprime to obtain a large com-
bined period. The derived trade-off values are approximate.

SECRYPT 2008 - International Conference on Security and Cryptography

304

In this setup, one bit from each of then LFSRs is
tapped into the input of the functionf . The functions
φ andg are defined byφ : GF(2)r → GF(2)n−r and
g : GF(2)r → GF(2). Each of ther bits in these func-
tions are tapped from the firstr LFSRs.

We see that if we guess the content of the firstr
LFSRs, then equation (7) becomes linear and the con-
tent of then− r remaining LFSR’s can be obtained
by linear algebra based on(n− r)L keystream bits.
The complexity of this guess-and-determine attack is
2rL ×G [nL,(n− r)L, rL] whereG [nL,(n− r)L, rL] =
((n−r)L)2/64 (assuming we do Gaussian elimination
on a 64-bit machine).

By applying the Guess-and-determine TMD at-
tack (GD-TMD) of Section 3, we easily get the fol-
lowing trade-offs:

Memory = M = 2mem

Data = D = 2d

Pre-processing Complexity= 2nL/D

× G [nL,(n− r)L, rL]

= 2nL−d

× ((n− r)L)2/64

Length of constant stringc = rL

Online Attack Complexity = T

= 22(rL−d−mem)

× ((n− r)L)2/64,

where t/2d = 2rL−mem−2d tables of size m =

22(mem+d)−rL are stored. To form at least one ta-
ble, we needrL −mem− 2d ≥ 0 which impliesd ≤
(rL − mem)/2. Since this cipher maps the internal
state to one keystream bit at each clock, the amount
of keystream bits required is 2rL+d.

6 CONCLUSIONS

We have presented the general framework for Guess-
and-Determine attacks on stream ciphers that satisfy
certain attack criteria. This approach has been ex-
tended to that of a Time-Memory-Data Trade-Off at-
tack. Results for the complexities and other attack
parameters have been derived. We conclude by illus-
trating this framework with attacks on the Toyocrypt
cipher, the vectorial filter combiner and the combina-
torial generator.

We note that in all our examples, our attack frame-
work is applied on stream ciphers involving a filter
function which becomes linear when certain input bits
are guessed. Other stream ciphers on which our attack
framework may be applied include clock-controlled

stream ciphers. In some of these ciphers, guessing
the key bits which control the irregular clocking may
cause the keystream equations to be linear. Then the
remaining key bits can be solved by Gaussian elimi-
nation. By applying the result of Section 3, we can
easily convert these attacks to a GD-TMD attack on
clock controlled stream ciphers.

REFERENCES

A. Biryukov, S. Mukhopadhyay and P. Sarkar (2006). Im-
proved time-memory trade-offs with multiple data. In
LNCS 3897,Selected Areas in Cryptography 2005,
pp. 110-127. Springer-Verlag.

Biryukov, A. and Shamir, A. (2000). Cryptanalytic
time/memory/data tradeoffs for stream ciphers. In
LNCS 1976,ASIACRYPT 2000, pp. 1-13. Springer-
Verlag.

Carlet, C. (2002). A larger class of cryptographic boolean
functions via a study of the Maiorana-McFarland con-
struction. InLNCS 2442,Crypto’2002, pp. 549-564.
Springer-Verlag.

Hellman, M. (1980). A cryptanalytic time-memory trade-
off. In IEEE Trans. on Information Theory, vol. 26,
pp.401-406.

K. Khoo, G. Gong. and H.K. Lee. (2006). The rainbow at-
tack on stream ciphers based on Maiorana-McFarland
functions. InLNCS 3989,Applied Cryptography and
Network Security 2006, pp. 194-206 (Corrected ver-
sion of this paper can be found in (Khoo et. al., 2007)).
Springer-Verlag.

K. Khoo, G. Gong, H.K. Lee and G. Chew (2007). The
time-memory-data trade-off attack on stream ciphers
based on Maiorana-McFarland functions. InCryp-
tology ePrint Archive Report 2007/242, found at
’http://eprint.iacr.org/2007/242’. (Corrected version
of (Khoo et. al., 2006)).

Mihaljevic, M. and Imai, H. (2002). Cryptanalysis of
Toyocrypt-HS1 stream cipher. InIEICE Trans. Fun-
damentals, vol. E85-A no. 1, pp. 66-73.

Oeschlin, P. (2003). Making a faster cryptanalytic time-
memory trade-off. InLNCS 2729,CRYPTO 2003,
pp. 617-630. Springer-Verlag.

Pasalic, E. and Maitra, S. (2001). Linear codes in construct-
ing resilient functions with high nonlinearity. InLNCS
2259,Selected Areas in Cryptography 2001, pp. 60-
74. Springer-Verlag.

A GENERAL FRAMEWORK FOR GUESS-AND-DETERMINE AND TIME-MEMORY-DATA TRADE-OFF
ATTACKS ON STREAM CIPHERS

305

