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Abstract: In this short note, we describe a variant of Shamir’s(n, t)-threshold scheme based on elliptic curves. Moreover,
we show how pairings of elliptic curves can be used to also provide verifiability for the new elliptic curve based
threshold scheme.

1 INTRODUCTION

Sharing a secret between a group of participants is
a well-known and long solved problem in cryptogra-
phy. A (n,t)-threshold scheme is a method by which
a trusted third party computesn secret shares from
a secret and distributes these shares secretly to the
n participants. Ift or more participants pool their
shares, then the secret can be determined, otherwise
no substantial information about the secret is given
(Menezes et al., 1997). Shamir first described a(n,t)-
threshold scheme based on polynomial interpolation
over finite fields (Shamir, 1979). In this short note, we
describe how the ideas of Shamir’s threshold scheme
can be slightly modified to obtain a(n,t)-threshold
scheme based on elliptic curves. An additional prop-
erty of this new scheme is the fact that any already
existing elliptic curve related cryptographic informa-
tion can be reused and existing security devices like
smartcards can easily be adapted to the new threshold
scheme.

We assume that the reader is already familiar with
elliptic curves and their usage in public key crypto-
graphy; descriptions of ECC in theory and prac-
tice can be found in, e.g., (Hankerson et al., 2004),
(Koblitz, 1987), (Certicom, 2000), and many other
publications. In the following, we assume thatK de-
notes a finite prime field withq elements, andE is
a cryptographically secure elliptic curve defined over
K. The group of points onE defined overK is denoted
asE(K).

2 SECRET SHARING USING
ELLIPTIC CURVES

Shamir’s scheme for secret sharing (Shamir, 1979)
uses polynomial arithmetic and interpolation. The
scheme encodes a secret as the constant term of an
otherwise randomly chosen polynomialf (x) of de-
greet −1 defined over a fixed finite fieldK. A share
of the secret is then a pair(xi , f (xi)) ∈ K2. The first
componentxi of this share can even be made public
and directly depend on the identity of the correspond-
ing participant, but the second componentf (xi) must
be absolutely kept secret. Anyt different such pairs
are sufficient to reconstruct the secret using polyno-
mial interpolation; on the other hand, the knowledge
of less thant pairs does not yield the polynomialf ,
and therefore does not open the shared secret.

There exist several algorithms for polynomial in-
terpolation over a field (see, e.g., (Stoer and Burlirsch,
1991)). Using the polynomialω(x) = ∏t

j=1(x−x j),
the Lagrange interpolating polynomialf (x) for t pairs
(xi , f (xi)),1≤ i ≤ t, is given as

f (x) =
t

∑
i=1

ω(x)
(x−xi) ·ω′(xi)

· f (xi) . (1)

Interestingly for elliptic curves, formula (1) is linear
in f (xi), and therefore easy to apply also in the group
of points on an elliptic curve. We assume that from
an ECC setup we already know a cryptographically
strong elliptic curveE defined over a finite prime field
K of q elements and a base pointP∈ E(K) with order
larger thanq. For simplicity, we assume thatE(K) is
cyclic, andP is a generator of the group. Addition-

359
Müller V. (2008).
A SHORT NOTE ON SECRET SHARING USING ELLIPTIC CURVES.
In Proceedings of the International Conference on Security and Cryptography, pages 359-362
DOI: 10.5220/0001918303590362
Copyright c© SciTePress



ally, for every participanti in the threshold scheme
there exists a public key pointQi = di ·P, where the
integer 0< di < ord(P) defines the secret key of that
participant.

The general idea of the elliptic curve(n,t)-thres-
hold scheme is based on the fact that with (1) we
can determinef (λ) ·P for P and any integer 0≤ λ <
q if we know t different points f (xi) · P for mod-
ulo q pairwise different integersxi 6≡ 0 mod ord(P).
Therefore, the trusted third party can set up the sys-
tem by choosing a random polynomialf (x) ∈ K[x]
of degreet − 1, and secretly distributing the shares
(xi , f (xi) ·P),1 ≤ i ≤ n, to then participants. Then
integers 0< xi < q must be pairwise different, but
as in Shamir’s system they can be made public or
directly computable from the identity of the partici-
pants. Secure distribution of the secret partf (xi) ·P
of the shares to the participants can be done by en-
crypting it with the ECC public key of the correspond-
ing participant. Then this ciphertext is either commu-
nicated to that participant over an insecure channel,
or it can be published, since only the owner of the
correct ECC secret key can open that partial share.
When at leastt participants pool their shares, then
they can determine the pointf (0) ·P using (1). In
contrast to Shamir’s system, we do not encode the
global secretm as one of the coordinates of a point,
but we usef (0) ·P as a secret key for some fixed se-
cret key cryptosystem to encryptm. More precisely,
we proceed as in the Elliptic Curve Integrated Encryp-
tion Scheme (e.g., (Certicom, 2000)) and apply a se-
cret key cryptosystemENC, a key derivation function
KDF and a message authentication codeMAC to first
find kE||kM = KDF(x( f (0) ·P)) and then publish the
encrypted secret asc||d wherec = ENC(kE,m) and
d = MAC(kM,c). It is obvious that anybody who can
determine the secret pointf (0)·P can also easily open
the encrypted global secret by first computingkE and
kM and then applying the secret key decryption pro-
cedure.

Theorem 1. Knowledge of t or more shares opens the
global secret m. On the other hand, knowledge of
less than t shares only yields at least q/2 many pos-
sibilities for the input of the KDF if the order of P is
greater than q.

Proof: The proof is essentially equal to the proof
of Shamir’s system. As described above, the point
f (0) · P can be determined easily with polynomial
interpolation fort or more known shares. On the
other hand, there areq possible constant terms for
polynomials of degreet −1 given at mostt −1 pairs
(xi , f (xi)). If the order ofP is greater thanq, then this
leads toq possibilities for the pointf (0) ·P. Since
we are using only thex-coordinate of that point to en-

crypt the global secret, there remain at leastq/2 many
possible inputs to theKDF . �

It should be noted thatKDF andENC should be
chosen with appropriate parameters (especially pro-
viding a sufficiently large key space forENC) since
otherwise the total system will be insecure. After the
setup of the threshold scheme, the following protocol
can be started by a dedicated participant (with index
1) to open the shared secret with the help oft−1 other
participants:

• Participant 1 chooses a random pointH ∈ E(K),
decrypts his encrypted sharef (x1) ·P using his se-
cret ECC key and determines with his share the
resultH−

ω(0)
x1·ω′(x1)

·( f (x1) ·P). Then he sends this
information to the next participant. Note that if all
valuesxi are publicly known, thenω(0) andω′(xi)
can be precomputed.

• The second participant decrypts his secret share
f (x2) ·P with his secret ECC key, subtracts the

point ω(0)
x2·ω′(x2)

· ( f (x2) ·P) from his input point and
sends the result to the next participant. All other
participants do the same with their shares, respec-
tively. The last participants forwards the result to
participant 1 that started the whole protocol.

• Participant 1 subtracts the randomly chosen initial
pointH from his input point and obtains the secret
point f (0) ·P. He can then open the global secret.

The proof that this scheme really determinesf (0) ·P
directly follows from (1). Note that this EC threshold
scheme is neither ideal nor perfect, but nevertheless it
is practical since it does not require knowledge of any
additional secret key.

3 VERIFIABLE SECRET
SHARING VARIANTS

In the last 10 years, bilinear maps for elliptic curves
(also denoted pairings) have been applied to various
cryptographic applications (CL, 2008). We can also
use such maps for the EC(n,t)-threshold scheme to
provide additional properties. Assume that for a given
cryptographically strong elliptic curveE there exists
a some small positive integersand a bilinear mape

e : E(K)×E(K) −→ Ks; e(a·P,b·Q) = e(P,Q)ab

with the additional property that for pointsP 6= O we
havee(P,P) 6= 1. Such maps are for example given by
the Weil pairing or the Tate pairing (Galbraith et al.,
2002). The importance of these maps for crypto-
graphic applications is the fact that they “link” the
discrete logarithm in the elliptic curve point group to
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a discrete logarithm in the finite fieldKs. Therefore,
the security of the ECC system enforces certain con-
ditions onE andK such that the discrete logarithm
problem inKs is also difficult to solve. In the follow-
ing, we will make use of such maps to add verifica-
tion procedures to the EC threshold scheme described
above (note that similar techniques were also used in
(Baek and Zheng, 2004) and (Liu et al., 2007)).

3.1 Verifiable Secret Sharingà La
Feldman

We describe an EC variant for the verifiable secret
sharing scheme of Feldman (Feldman, 1987), where
additional information (so called commitments) is
provided such that the participants can verify the cor-
rectness of their shares.

The commitments in the EC variant of Feldman’s
scheme are given as the field elementse(P,P)ai ∈
Ks,0 ≤ i ≤ t −1, where theai are the coefficients of
the secret polynomialf (x) used for the construction
of the shares. These commitments are published by
the trusted third party after the system setup. Using
these commitments, every participant can determine
for anyλ ∈ K the value

e(P,P) f (λ) =
t−1

∏
i=0

(

e(P,P)ai

)λi

. (2)

Therefore, the j-th participant can determine
e(P,P) f (xj ) in two ways: either with (2), or by using
his private sharef (x j) ·P and a pairing computation.
If both values should be different, then either his
private share was wrong, or the trusted third party
cheated with the publication of the valuese(P,P)ai .

Lemma 1. If the two results are equal and the trusted
third party did not cheat, then the private share of the
j-th participant really equals f(x j ) ·P.

Proof: Assume that the share of thej-th participant
is incorrect, i.e. he receives a pointλ ·P for some in-
tegerλ 6= f (x j ), but nevertheless the test above suc-
ceeds. Thene(P,P) f (xj ) = e(P,P)λ, or equivalently,
e(P,P) f (xj )−λ = 1. So f (x j) ≡ λ mod ord(P), and
λ ·P= f (x j ) ·P, a contradiction. �

With (2), it is obvious that everybody can deter-
mine e(P,P) f (λ) for every integer 0≤ λ < q. The
pairing inversion problem is defined as the problem
to compute for given valuee(P,H) a suitable point
H. If the pairing inversion problem were easy, then
it would be also easy to determine individual shares
for non-legitimate users – just determine the field el-
emente(P,P)( f (xj ) with (2) and solve the correspond-
ing pairing inversion problem. This would break the

complete EC threshold scheme. However, pairing in-
version seems in general to be hard (Galbraith et al.,
2008).

Therefore, practical parameters for the EC thresh-
old scheme should be chosen such that no “simple”
algorithm for the pairing inversion problem is known
for the used elliptic curve.

3.2 Distributing the Global Secret to All
other Participants

The protocol presented in the last section was started
by some dedicated participant. That participant
needed the help of at leastt −1 other participants to
determine the pointf (0) ·P and so open the global
secretm. A disadvantage of this protocol is the fact
that only one out of thet involved participants finally
knowsm. Using the commitments defined above, the
dedicated participant can announce the pointf (0) ·P
to all other participants, of course encrypted with the
individual secret EC keys of the other participants.
Any participant can then use the commitments to de-
termine the valuee(P,P) f (0) using (2) and a pairing
computation with the received point, such that he can
verify the correctness of the information he received
from the dedicated first participant. Of course, knowl-
edge of the pointf (0) ·P is also sufficient to deter-
mine the global secret. Note that directly sending an
encrypted version ofm to all other participants does
not given them the possibility to verify the correctness
of m.

3.3 Verifying Intermediate Results

We can extend the verifiability described in the last
section such that even the validity of all intermedi-
ate results can be verified. In this variant, a cheating
participant (i.e. a participant that does not apply his
own private share) can be determined. We extend the
protocol given in Section 2 such that every partici-
pant publishes an own commitment of his contribu-
tion. Remember that thej-participant in the protocol
forwards the pointRj = H −∑ j

i=1
ω(0)

xi ·ω′(xi)
· ( f (xi) ·P)

to the next participant. The commitments of the par-
ticipants are then given as follows: the initial parti-
cipant publishes his commitmente(P,H) ande(P,R1),
whereas all other participant add their own commit-
ments ase(P,Rj).

Using these participant commitments, it is easy to
check the validity of each intermediate result:

e(P,Rj) = e(P,H) ·
j

∏
i=1

(

e(P,P) f (xi)
)−ω(0)/(xi ·ω′(xi ))

.
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Since the dedicated participant that starts the protocol
is interested in obtaining the global secret, he should
have no interest in cheating, and we assume that he is
honest.

Theorem 2. If the first participant is honest, then the
identity of any cheating participant can be determined
from the participant commitments.

Proof: During the protocol, every participant com-
pares the pairing value determined with the input
point he received from the previous participant with
that participant’s commitment. If both pairing val-
ues do not match, then obviously that participant was
cheating, and the protocol exits with error. Note also
that

e(P,Rj) = e(P,Rj−1) ·
(

e(P,P) f (xj )
)−ω(0)/(xj ·ω′(xj ))

,

(3)
such that the correctness of thej-th commitment de-
pends directly on the correctness of the previous com-
mitment (note that the second term in the product can
be computed using the trusted third party’s commit-
ments). Therefore, the commitment of the first par-
ticipant can be used to successively verify the cor-
rectness of all other participants’ commitments such
that a cheating participantj must publish his correct
commitmente(P,Rj). Assume that he cheats by for-
warding a wrong intermediate pointR′

j 6= Rj to the
next participant. Sincee(P,R′

j) = e(P,Rj) implies
e(P,R′

j − Rj) = 1 or R′
j = Rj (note that the group

of points is cyclic), this will be detected by partici-
pant j +1 when he compares the two possibilities for
e(P,Rj) determined with (3) and with a pairing com-
putation based on his two input pointsP andR′

j . �

4 CONCLUSIONS

In this short note we have presented a simple general-
ization of Shamir’s(n,t)-threshold scheme based on
elliptic curves and three variants of it that use bilinear
maps. This EC threshold scheme needs no additional
secret keys, since it reuses existing public and secret
ECC keys. It can therefore be directly used with ex-
isting EC security devices.
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