
AN EVENT-DRIVEN, INCLUSIONARY AND SECURE
APPROACH TO KERNEL INTEGRITY

Satyajit Grover, Divya Naidu Kolar Sunder, Samuel O. Moffatt and Michael E. Kounavis
Corporate Technology Group, Intel Corporation

Keywords: Rootkits, Kernel, Security, Virtualization, Hypervisor.

Abstract: In this paper we address the problem of protecting computer systems against stealth malware. The problem
is important because the number of known types of stealth malware increases exponentially. Existing
approaches have some advantages for ensuring system integrity but sophisticated techniques utilized by
stealthy malware can thwart them. We propose Runtime Kernel Rootkit Detection (RKRD), a hardware-
based, event-driven, secure and inclusionary approach to kernel integrity that addresses some of the
limitations of the state of the art. Our solution is based on the principles of using virtualization hardware for
isolation, verifying signatures coming from trusted code as opposed to malware for scalability and
performing system checks driven by events. Our RKRD implementation is guided by our goals of strong
isolation, no modifications to target guest OS kernels, easy deployment, minimal infrastructure impact, and
minimal performance overhead. We developed a system prototype and conducted a number of experiments
which show that the performance impact of our solution is negligible.

1 INTRODUCTION

In this paper we address the problem of protecting
computer systems against stealth malware. By the
term ‘stealth malware’ we mean malicious code that
uses rootkit mechanisms to install and actively hide
itself on OS kernels. The problem is important
because the number of known types of stealth
malware has been increasing exponentially. There
were less than 500 types of stealth malware known
before the end of 2005, whereas this number
increased to 5500 by the end of 2006. The problem
is also important because applications running on
computer systems rely on services provided by OS
kernels. Applications assume that the kernel services
are uncompromised, an assumption which is not
always true. Among the many types of attacks
performed by stealth malware, prevalent attacks are
based on modifying code and static data, import
tables, system call tables, interrupt tables and
exception handlers.

Several system integrity mechanisms have been
proposed in the past (e.g., [3, 6, 7, 9]). To some
extent, prior art is not completely adequate for
addressing several types of stealth malware threats.
In what follows we justify our claim. Some detection
mechanisms examine kernel data structures to find

malicious activity (e.g., data structures accessed by
the process explorer, netstat etc.). Such solutions do
not always protect against static code and data
modifications. They also do not address transient
attacks. Other solutions perform heuristic-based
analysis for identifying known malware signatures
in memory. These approaches have some advantages
over the former for ensuring system integrity.
However, sophisticated techniques utilized by
stealthy malware can thwart them. The main
disadvantage of these approaches is that they are
reactive as opposed to proactive solutions to
malware detection. Other approaches check the
correctness of signatures coming from trusted code
as opposed to malware and are thus more scalable
but their security depends on the OS they are trying
to protect.

We propose Runtime Kernel Rootkit Detection
(RKRD) (pronounced ‘record’), a hardware-based,
event-driven, secure and inclusionary approach to
kernel integrity that addresses some of the
limitations of earlier approaches. RKRD is designed
to ensure the integrity of kernel code as well as
critical kernel data structures and the flow of
execution of kernel modules. By ‘event-driven’ we
mean that RKRD detects the introduction/activity of
rootkits and other malicious kernel code at runtime,

411
Grover S., Naidu Kolar Sunder D., O. Moffatt S. and E. Kounavis M. (2008).
AN EVENT-DRIVEN, INCLUSIONARY AND SECURE APPROACH TO KERNEL INTEGRITY.
In Proceedings of the International Conference on Security and Cryptography, pages 411-420
DOI: 10.5220/0001916004110420
Copyright c© SciTePress

specifically at the moment when measured code and
data structures are altered. By ‘secure’ we mean that
RKRD defends itself against attacks using
virtualization technology. Virtualization technology
provides isolation between virtual machines and is
used to protect the RKRD components that measure
the integrity of guest OS kernels. By ‘inclusionary’
we mean that RKRD checks that the signatures
coming from known and trusted code have the
values they should have. It does not scan code
looking for signatures of malicious code, as typical
anti-virus tools do. An inclusionary approach is
therefore proactive and scalable.

We implemented a RKRD prototype based on the
afore-mentioned design principles. Our system
development was guided by the goals of strong
isolation, no modifications to the target guest OS
kernels, easy deployment, minimal infrastructure
impact, and minimal performance overhead. We
conducted experiments with real implementations of
stealthy malware and were able to detect attempts to
compromise system integrity. The experiments
showed that the performance impact of our solution
is negligible.

The paper is structured as follows: In Section 2
we discuss principles that underpin the RKRD
design. Section 3 discusses the RKRD threat model
along with design assumptions. The system
architecture is described in Section 4, followed by
details of our prototype in Section 5. We discuss the
performance impact of the prototype in Section 6.
Section 7 discusses how RKRD addresses the threat
model. Following this, in Section 8 we discuss
related work in the area. Finally, we present
concluding remarks in section 9.

2 DESIGN PRINCIPLES

In what follows we elaborate on the three principles
that guide the design of RKRD:
1. Isolation using Virtualization Hardware.

Integrity detection mechanisms are vulnerable if
a circular dependency exists between these
mechanisms and the OS. Stealthy malware
utilizes that dependency to hide itself from the
integrity checking mechanisms. RKRD
leverages virtualization hardware to create an
isolated and trusted partition in an untrusted
environment. This partition is used for running
the RKRD service that measures guest OS
kernel integrity. The isolation provided by
virtualization breaks that dependency. This is
essential since malware affecting the kernel
cannot get access to the integrity checking

solution, thereby mitigating its ability to hide
itself.

2. Verifying the Signature of Trusted Code. The
RKRD approach is based on verifying the
signatures of known and trusted code in the OS.
This inclusionary approach is unlike many prior
approaches to system integrity that scan for
malicious code signatures. The trusted code
base on a system presents a limited (and thus
scalable) footprint for the integrity checking
solution. It can be effectively monitored to
drastically narrow the opportunities for
compromise due to malicious code.

3. System Checks based on Events. Our
approach continuously monitors kernel integrity
through event-driven checking. This mechanism
can detect a change in the measured code and
data structures at the moment when they are
altered. This addresses transient attacks that
compromise the system briefly and then revert it
to a known good state. Such attacks can prevent
existing integrity checkers from discovering
their activity by compromise kernel.

3 ASSUMPTIONS AND THREAT
MODEL

RKRD assumes immutability of the preboot
environment. A preboot environment can be
protected by technologies that perform basic checks
that ensure the integrity of the boot code. RKRD
does not assume that the kernel is immutable, just
that its construction can be verified. We believe that
this is a fair assumption since the integrity of any
piece of code or data can be asserted with
appropriate hash value checks regardless of where
and when the checks take place. However,
protecting the preboot environment represents
substantial engineering effort which is out of the
scope of this work. Further assumptions made in the
system design are stated in Section 4.

We consider a threat model in which the
adversary gains complete access to the kernel by
utilizing a documented method, or an exploit based
on a known bug or vulnerability. This gives the
adversary the ability to execute code at kernel
privilege, to modify existing code and data, and to
insert new code into the control flow. Protecting a
system from such an adversary poses various
challenges on operating systems. Operating systems
typically provide simplicity and performance
through the use of a single address space for all

SECRYPT 2008 - International Conference on Security and Cryptography

412

kernel code. In such case, the adversary can modify
any crucial system tables, drivers, and also change
CPU state by modifying general purpose registers.
In addition, an attack can be waged in a transient
manner, reverting back to the original state to leave
no trace for a detection system. RKRD includes such
transient attacks in its threat model

Following are the classes of attacks we considered
when designing RKRD. An analysis on how these
threats are addressed is presented in Section 7.
• Import Table Hooking. Applications utilize

functions exported by libraries and other
applications. These external calls are maintained
in an import table. Rootkits can overwrite the
entries in these tables to alter the control flow
into malicious code.

• Code & Static Data Modifications. In this
method, the actual code of a targeted function is
overwritten with malicious code. This task is
accomplished using documented APIs defined
on modern operating systems. For instance,
Microsoft has provided APIs such as
OpenProcess, ReadProcessMemory and
WriteProcessMemory for writing to and reading
from another process’s memory. These well-
documented APIs serve as a toolkit for rootkit
installers.

• IDT/Exception Handler Hooking. On x86
processors, an Interrupt Descriptor Table (IDT)
is used to handle hardware and software
interrupts. A malicious user can insert a rootkit
by modifying an IDT entry to point to a
malicious function instead of the default
interrupt handler. This method of hooking will
cause the hooked code to be called before the
default interrupt handler function. Shadow
Walker is a well known rootkit that utilizes this
method.

• System call Table Hooking. All native system
service addresses are listed in a data structure
called the system call table. To call a specific
system function, the system service dispatcher
looks up the address of the function in this table.
With complete access to the kernel, an
adversary can change the entries in this table to
point to malicious code instead.

• Dynamic Kernel Object Manipulation. This is
a method of altering the dynamic state-keeping
structures in the kernel. An example is the
system process table that maintains a list of
executing processes. By altering such structure,
the adversary can hide the existence of

malicious code from auditing software that
monitors the system.

It is important to note that there are several
classes of attacks that RKRD does not address. First,
RKRD assumes that the user is not the adversary. If
the user was the adversary, the user could perform
more aggressive attacks which are beyond the scope
of this work. Second, RKRD does not address
buffer/integer overflow/underflow attacks that can
support control flow changes, data modifications,
and other malicious activities. There are auxiliary
methods for handling these attacks like execute
disable methods, use of canary values etc. Third,
RKRD does not address attacks resulting from
conversions to/from canonical formats, input
verification errors and string formatting. In addition
it does not defend against race conditions used for
privilege escalation within the guest OS kernel or
privilege escalation into the VMM. Another group
of attacks not addressed by RKRD are DMA device-
based attacks. Virtualization mechanisms can protect
a kernel from DMA-based attacks by removing the
kernel and its key data structures from access by
devices. Another issue not addressed in the threat
model is attacks against manifests. These attacks
occur when the software is transported from the
manufacturer but before it is delivered to the user.
One big problem that needs to be addressed is the
management of a potentially large number of
manifest signing keys.

4 SYSTEM ARCHITECTURE

4.1 Virtualization-based Environment

RKRD is designed to monitor the integrity of the
kernel to assure that there is no malware inserted
into any of the OS execution paths. It provides
continuous integrity verification without interfering
with the legitimate operations of system patching
and module installation The RKRD design does not
require any modification of the guest OS. An
overview of the system is provided in Figure 1. The
system control flow is monitored using the
hypervisor and the integrity verification is done by a
software component executing in a trusted
environment that is isolated from the OS as
described in section 4.3. Integrity verification is
performed whenever the control flow monitor
detects a change in the system and in a measured
component.

AN EVENT-DRIVEN, INCLUSIONARY AND SECURE APPROACH TO KERNEL INTEGRITY

413

Hypervisor

Integrity
Manifests

Kernel Directory Services

User Operating System Isolated VM

Shared
MemoryKernel data structures

OS Memory Manager

Integrity Measurement Module (IMM)

Monitor events

Hardware

Hypercall Interface

Figure 1: System Architecture.

In order to describe our architecture we present a
brief overview of a virtualization-based system that
leverages hardware virtualization. On our platform
we utilized the Intel® Virtualization Technology or
VT-x; similar mechanism can provide virtualization
on other processors. Virtualization refers to the
technique of partitioning the physical resources of a
processor or a chipset into Virtual Machines (VMs)
and inserting a higher privilege executive under the
OS. This executive is known as a hypervisor and the
privilege level is known as VMX-root mode in VT-
x.

A control transfer into the hypervisor is called a
VMExit and transfer of control to a VM is called a
VMEntry. A VM can explicitly force a VMExit by
using a VMCALL instruction. Such instruction is
also called ‘hypercall’. A guest OS runs in VMX-
non-root mode which ensures that critical OS
operations cause a VMExit. This allows the
hypervisor to enforce isolation policies. The
hypervisor manages the launching/shutdown of
VMs, accesses to memory, and accesses to
microprocessor registers. It also manages interrupts
and instruction virtualization and can protect against
DMA-based attacks.

In what follows we describe the three main
components of the RKRD architecture: the Kernel
Directory Service, the Integrity Measurement
Module, and the Hypervisor. Details regarding their
implementation in our prototype are described in
Section 5.

4.2 Kernel Directory Service (KDS)

The KDS is designed to execute as a service on the
guest OS every time a new module is loaded. It
provides the hypervisor with the names and
locations (virtual addresses) of modules loaded in
the kernel through a hypercall. The hypervisor
passes this information to the Integrity Measurement
Module (IMM). A compromised KDS will not affect
the security of RKRD. If a rootkit is installed
through compromising the KDS, the presence of this
rootkit can be detected by checks on other critical
data structures (i.e., import and export tables, SSDT
and IDT tables) as described in the next section.
KDS exists to improve the performance of the
system by identifying the location of the kernel
components that are verified in memory by the IMM

4.3 Integrity Measurement Module
(IMM)

The Integrity Measurement Module (IMM) is
responsible for checking the integrity of kernel
modules and data structures. It executes on a VM
isolated by the hypervisor from the guest OS. This
isolation satisfies the first design principle as stated
in Section 2.
The IMM checks the integrity of kernel modules by
comparing their pages in memory against their
corresponding integrity manifest (Hardjono and
Smith, 2006). These manifests are accessible to the
IMM on its file system in the isolated partition. We

SECRYPT 2008 - International Conference on Security and Cryptography

414

assume that the integrity of the manifest database
can be guaranteed. However, the security of that
approach is beyond the scope of this paper. RKRD
assumes that only legitimate kernel code has an
associated manifest and that the code is not self-
modifying in a non-deterministic way. A manifest
contains cryptographic hashes for each page of the
code and static data sections of the module. It also
contains the structures that are required to revert
relocations done by the loader, and the module's
import and export tables. Each manifest is created
simply by extracting this information from the
compiled binary file of a module, e.g. an ELF file on
Linux® and a Portable Executable (PE) file for the
Windows® XP Operating System. The information
in a manifest allows the IMM to reconstruct a
module’s relevant data structures from a runtime
snapshot of the module’s memory. This is essential
to RKRD because it provides us with a means of
determining that a module’s runtime memory
matches its compile time state. An uncompromised
system should exhibit no discrepancies between its
runtime and compile time images.

The IMM checks system integrity by executing a
three phase ‘IMM integrity’ algorithm:
• Phase 1. For each module, the IMM verifies

each page of the code and static data sections by
comparing its cryptographic hash against the
original stored in the manifest. Also, it extracts
the memory location of all the exported and
imported symbols. This information is utilized
in the following phases and also for future
checks.

• Phase 2. For each module, the IMM finds all
the imported entries and verifies that they are
being exported by a module that passed Phase 1.

• Phase 3. The IMM extracts data structures that
point to essential services, such as system calls
and interrupt handlers, and verifies that these
services lie within modules that have passed
phases 1 and 2. This phase can be extended to
other guest OS data structures.

This algorithm satisfies the second design
principle as stated in Section 2. A detailed
description of our implementation of this algorithm
is provided in Section 5. By running this algorithm
on all system modules we can verify that they are in
accordance with the original intent of the module
author as recorded in the manifest. The IMM then
marks each module as passed or failed and notifies
the hypervisor. All modules that pass are marked as
measured and included in the trust boundary. On an
uncompromised system, all modules should pass the

integrity check since the IMM has their manifests
and they should only be interacting with other
measured code. If any module fails the test then that
event is interpreted as the detection of malware. The
hypervisor can then take preventive action, e.g. log
the activity and halt the guest OS.

4.4 Hypervisor

The hypervisor serves as a trusted entity in our
system, extending the ‘root of trust’ provided by the
hardware platform. The hypervisor has three main
functions in the RKRD architecture. First, it
maintains system integrity state that includes a list of
all modules that are executing as part of the kernel.
This list is initiated by the KDS and is reinforced by
constant monitoring of the guest OS. Second, it
monitors events that may alter system state and
triggers integrity verification if necessary. This
mechanism satisfies the third design principle as
stated in Section 2. The hypervisor monitors the
guest OS for the following events and initiates
integrity checks as needed:
• Addition or Removal of Modules. Each time a

module is loaded into or removed from the
kernel, the hypervisor performs an integrity
check by executing the IMM integrity
algorithm.

• Change in a Measured Data Structure.
Checks are also required when a measured data
structure is altered. The hypervisor continuously
monitors such structures by marking their
shadow pages as read-only and intercepting any
changes made to them. Any attempt to alter
their content is routed through the hypervisor’s
page fault handler, which initiates a check to
verify it.

• Paging-in of Measured Pages. Malware can
overwrite a page of a system module when it is
written out to the page file on disk. When that
page is loaded back in response to a page fault,
the module can be infected by the corrupted
code on it. In order to prevent such an attack,
the hypervisor intercepts all page faults that
read a page into memory from the disk. It then
checks the integrity of that page as described in
phase 1 of the IMM integrity algorithm.

The hypervisor also satisfies requests made by the
IMM for copies of pages of guest OS memory that
are to be verified.

AN EVENT-DRIVEN, INCLUSIONARY AND SECURE APPROACH TO KERNEL INTEGRITY

415

5 PROTOTYPE

We implemented RKRD as a proof of concept and
system prototype. In this section we describe our
implementation with respect to the system
architecture.

5.1 Software

We implemented a light-weight hypervisor for our
prototype. Our hypervisor provides us with the
capabilities to monitor system events as required and
to create shadow page tables needed to intercept
paging events and modifications to data structures.
We extended it to provide interfaces for
communication with KDS and the IMM and to
monitor guest OS events for initiating integrity
checks. The guest OS in our prototype is Windows®
XP with Service Pack 2. We used this OS to
demonstrate that our technology works on a
proprietary environment for which we do not have
access to the source code (and thus did not modify
for the sake of providing kernel integrity). Our
architecture works just as well with any other OS,
provided we can generate the appropriate manifests.
The KDS is implemented as an OS service and
leverages the standard EnumDeviceDrivers API
(Microsoft Corporation, 2008) for its task of
collecting information about system modules.

In addition to the basic software platform
described above, our design requires host OS
specific manifests. We wrote a tool in Visual C++
for the generation of manifests of OS system
modules. The tool requires only a compiled binary
file as input. On the Windows® XP operating
system the system modules are implemented in the
PE file format (Microsoft Corporation, 2006). These
modules include executables (including the kernel),
DLLs and device drivers. These manifests contain
cryptographic hashes based on the SHA-1 algorithm.
The security provided by a hash algorithm typically
depends on the assumptions made on the computing
capability of the attacker. We are aware of recent
cryptanalytic work (Wang et al., 2005) which
substantially reduced the complexity of finding
collisions in SHA-1. If SHA-1 is considered
insecure under some attacker assumptions it can be
replaced by any other hash function which
demonstrates better collision and pre-image
resistance. Manifests also contain the relocation fix-
ups, Import Address Table (IAT), Export Table
(ET), Import Lookup Table (ILT) and other PE file
tables.

5.2 System Operation

At boot time, the hypervisor launches the guest OS
and the IMM in separate virtual machines. The IMM
registers with the hypervisor using a hypercall. This
process of registration establishes a shared memory
area between the two that is protected by the
hypervisor. After launching the IMM VM, the KDS
is started on the guest OS. It sends the list of
executing system modules to the hypervisor,
including the name and virtual address of each. The
hypervisor initiates a system integrity check by
sending this information to the IMM. The IMM then
executes the IMM integrity algorithm for integrity
verification as shown in Figure 2.

In phase 1 the IMM executes the following steps
for each module:
• accesses the corresponding manifest and utilizes

it to request the module’s memory image from
the hypervisor. The hypervisor copies the
requested memory pages from the guest OS into
the memory shared with the IMM.

• reconstructs the compile time image of the
module using these pages along with the
information from the manifest.

• verifies the integrity of each page of the code
and static data sections of the module based on
the SHA-1 cryptographic hash values in the
manifest.

• stores the necessary PE file tables for the
module.

In phase 2 the IMM executes the following steps for
each module:
• verifies the links (function pointers) between

the module and its dependencies using the ILT
information from the manifest along with the
ET and IAT entries collected in phase 1.

• iterates through all ILT entries and finds the
corresponding ET entries.

• verifies if the IAT entries match the virtual
addresses determined in the previous step for
ILT entries

In phase 3 the IMM:
• requests the hypervisor to retrieve the System

Services Descriptor Table (SSDT) and verifies
that all entries in it point to measured code; and

• requests the hypervisor to retrieve the Interrupt
Descriptor Table (IDT) entries from memory
(first 32) and verifies that the they point to
measured code.

SECRYPT 2008 - International Conference on Security and Cryptography

416

For each module and each data structure that passes
verification, the IMM notifies the hypervisor.

During system operation, the hypervisor
monitors events as described in Section 4 and
initiates integrity checks as needed. If at any time
the IMM detects an unknown modification to the
system, it marks it as an unexpected change and
notifies the hypervisor. The hypervisor can then take
corrective action based on system policy, including
halting the host OS to prevent damage from
malware. We note that a shadow page is marked as
‘read-only’ before or after checks.

IMM_INTEGRITY_ALGO(kernel_module_list l,
 int list_size)
{
 int i;
 for(i = 0; i < list_size; i++)

{
 kernel_module m = get_module(l, i);
 manifest f = open_manifest(m);
 image g = get_memory_image(m);
 if((section(f) == CODE) ||
 (section(f) == STATIC_DATA))
 {
 page_list p = get_pages(g);
 int j;

 for (j=0; j < psize(g); j++)
 {
 if(hash_from_manifest(f,j)
 != hash_from_memory(p, j))
 {
 error(BAD_MODULE, j);
 }
 }
}
store_tables_for_next_phases(f, g);

}
//end of phase 1

for(i = 0; i < list_size; i++)
{

 kernel_module m = get_module(l, i);
 imported_entries_list il =
 get_imported_entries(m);
 exported_entries_list el =
 get_exported_entries(il, m);

int j;
for (j=0; j < lsize(il); j++)

 {
 if(il[j] != el[j])
 {

error(BAD_IT_ENTRY, m, j);
 }
}
add_module_into_pass_list(m);

}
//end of phase 2

table ssdt = get_SSDT_table();
table idt = get_IDT_table();
for(i = 0; i < lsize(ssdt); i++)
{
 if(!is_in_phase_2_pass_list(ssdt[i]))
 {
 error(BAD_SSDT_ENTRY, i);
 }
}
for(i = 0; i < lsize(idt); i++)
{
 if(!is_in_phase_2_pass_list(idt[i]))
 {
 error(BAD_IDT_ENTRY, i);
 }
}

}
//end of phase 3

Figure 2: The IMM Integrity Algorithm.

6 PERFORMANCE

The primary goal of RKRD is to develop a system
that can verifiably detect many popular exploits of
system vulnerabilities. However, it is important that
its operation does not have a significant impact on
the performance of the measured system. This
section provides some analysis on the performance
impact of the prototype.

We measured the time taken to execute the three
phases of the IMM integrity algorithm. We collected
two sets of data. A first set was collected using the
prototype to verify four Windows® XP kernel
modules: ntoskrnl.exe, hal.dll, kdcom.dll, and
bootvid.dll. These modules were selected because
they are required for critical system functionality.
Another set was collected from all kernel modules.
All experiments were performed on an Intel®
Centrino platform with a 1.83 GHz Core™ Duo
processor and 2GB of DDR2 RAM.

Performance data for the verification of the four
critical modules, broken up by each phase of our
integrity check algorithm, can be found in Table 1.
Phase 1 completes in 71 ms. There were
approximately 490 pages worth of data verified and
structures extracted, at 0.14 ms/page. Each page is
4KB in size. Phase 2 averaged 6 ms and phase 3
averaged 1 ms. Table 2 provides performance data
on the time required to verify all kernel modules that
can be identified using standard user-level
Windows® APIs. The total number of modules
varied between 100 and 102 on our test system.
Phase 1 averaged 444 ms, phase 2 averaged 255 ms,
and phase 3 averaged 1 ms for all modules.

Table 1: Time taken for 4 critical modules on a
hypervisor.

Phase 1 Phase 2 Phase 3 Total
71 ms 6 ms 1 ms 78 ms

Table 2: Time taken for all modules on a hypervisor.

Phase 1 Phase 2 Phase 3 Total
444 ms 255 ms 1 ms 700 ms

We also created a version of the algorithm that ran

in a non-virtualized environment. It used a kernel
driver to service memory access requests of the
application. This was done to calculate the
performance overhead of using hypercalls for
memory access. The performance data for the four
critical modules and for all modules is provided in
Tables 3 and 4 respectively. The overhead
associated with virtualization is significant. The time

AN EVENT-DRIVEN, INCLUSIONARY AND SECURE APPROACH TO KERNEL INTEGRITY

417

it took to complete the algorithm for the four
modules increased by 28% between the virtualized
and non-virtualized case, and by 29% for the case of
all modules. The overhead of running the IMM on a
virtualized system comes from the overhead of using
hypercalls and the performance overhead of running
in a virtualized environment. The algorithm itself
performs well but future work is required to reduce
the overhead of virtualization and hypercalls.

Table 3: Time taken for 4 critical modules without
hypervisor.

Phase 1 Phase 2 Phase 3 Total
55 ms 5 ms 1 ms 61 ms

Table 4: Time taken for all modules without hypervisor.

Phase 1 Phase 2 Phase 3 Total
300 ms 241 ms 1 ms 542 ms

There are several simple event-driven checks that

were highlighted previously. When pages holding
module code or static data sections are paged in
from disk they must be verified. We monitored the
number of page faults in the system to see how often
pages are paged in from disk. Figure 3 shows the
rate of paging of code section pages on the test
system under normal desktop use for the four critical
modules when the OS is running on top of the
hypervisor. The spikes in the figure happen when a
new application set is loaded.

page faults per second

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 500 1000 1500 2000
time (s)

Figure 3: Rate of Paging from Disk.

Another event-driven check involves verifying the
integrity of the SSDT and the IDT whenever they
are modified. These data structures and the pages
they reside on were not modified during normal
system operation on our test platform and this check
should only need to be performed rarely, such as
when a piece of software is loaded into the kernel.
With less than 2 page faults per second, the
performance impact of the integrity check is less

than 0.1%. A third event based check, which is also
rare, is to verify the integrity of a page in memory
that contains code or static data of a protected
module if an alteration is made.

The system only performs a full verification of all
the modules the first time or when a new module is
loaded. Otherwise the system performs event based
checks on occurrences as described above which are
rare on our test system. These have minimum impact
on the system performance.

7 THREAT ANALYSIS

In this section we revisit the threat model described
in Section 3 and show how RKRD addresses the
threats discussed there.
• Import Table Hooking. RKRD monitors the

entire control flow of code executing in the
kernel, from memory accesses to higher level
OS control structures, providing malware no
place to insert itself into the control flow.
Specifically, Phase 2 of the algorithm addresses
import and export table hooking. It ensures that
the links (function pointers) between a system
module and its dependencies are unmodified
and point to the exact address location provided
by the dependency in its export table.

• Code & Static Data Modifications. Phase 1 of
the algorithm described above ensures that the
code and static data sections remain unmodified
during the runtime execution of a module. It is
invoked whenever the hypervisor intercepts
events that may cause the memory image of a
module to change.

• IDT/Exception Handler and System call
Table Hooking. Phase 3 of the algorithm
addresses attacks to the system data structures.
As the hypervisor continuously monitors the
structures and intercepts any modification to
them, RKRD can ensure that they are not
altered by malicious code, without limiting
alterations to them by measured code. This
addresses the threat from system call table
hooking and interrupt table hooking.

• Dynamic Kernel Object Manipulation.
RKRD can monitor any structure specified by
the programmer and hence it can monitor
dynamic kernel objects in addition to the IDT
and SSDT data structures specified in the IMM
integrity algorithm.

SECRYPT 2008 - International Conference on Security and Cryptography

418

• Transient Attacks. The RKRD architecture
prevents transient attacks through the use of a
hypervisor which monitors events that may alter
previously measured code or structures. The
monitoring can intercept a modification at the
moment it occurs. On interception, control is
transferred to the higher privilege of the
hypervisor and returns to the guest OS if and
only if the modification is found to be valid.

8 RELATED WORK

Copilot (Petroni et al., 2004) is a kernel integrity
monitor that runs on a coprocessor system attached
to the PCI bus of the host being monitored. This
removes the dependence on the host kernel and can
thus independently monitor the kernel. Copilot
accesses the contents of the host’s main memory
over the PCI bus. However it has been shown that
memory access over the PCI bus can be spoofed to
limit or even alter the contents of the memory being
examined (Rutkowska, 2007). Such an attempt
thwarts the independent monitor. Our technology
does not rely on the PCI bus. Instead we utilize
hardware virtualization to run our monitor and
manager from the highest privilege of a hypervisor.
This provides us with direct access to the system
memory. Furthermore, Copilot cannot detect
transient attacks, those that change the kernel state
and then change it back before Copilot rescans the
system. In our design, the hypervisor can initiate a
system scan the moment measured code or data
structure changes from its last measured state.

PatchGuard (Microsoft Corporation, 2007) is a
Microsoft technology that monitors and measures
essential system data structures and modules in order
to detect tampering. The measuring is done by
performing a checksum. It is however still
dependent on the OS. A kernel rootkit can exploit
that dependency to its own advantage. Our
technology provides protection to the system data
structures and modules by measuring them using a
cryptographic hash from a higher privilege entity,
i.e. the hypervisor using hardware virtualization.
This also enables us to similarly measure any OS
without modifying its source code.

SecVisor (Seshadri et al., 2007) is a hypervisor
that is designed to ensure code integrity for
commodity kernels. It attempts to ensure that code
executing at the kernel privilege level has been
approved by the user. However, it makes no attempt
to ensure that code executing at the kernel privilege
does not tamper with system modules or structure. It

is well understood that such a scenario is possible
using standard driver loading procedures or
exploiting bugs in the kernel. With our approach we
can protect the trusted areas of the kernel from other
areas to detect such attacks. Also, unlike SecVisor,
our approach does not need any modification to the
OS kernel source.

System Virginity Verifier 2.3 (Rutkowska, 2005)
makes sure that a user program or any kernel module
does not modify the code sections in the kernel code.
It is done by verifying if the code sections of
important system DLLs and system drivers (kernel
modules) are the same in memory and in the
corresponding PE file on disk. Our technology is
capable of checking all system drivers loaded, not
just the important kernel modules as in SVV. SVV
uses a software based approach to compare the code
section in the memory and the PE file, unlike our
approach which is based on hardware virtualization.

9 CONCLUDING REMARKS

We presented a runtime rootkit detection system that
uses hardware virtualization technology to measure
and monitor the integrity of a kernel. It ensures
system integrity against an adversary with complete
access to the kernel. We believe that our work has
some importance because it addresses a number of
limitations of the state-of-the-art, as discussed in the
related work section. Our approach is independent of
the OS and does not require any modification to the
measured kernel or system modules. We have
demonstrated the feasibility of our approach via a
prototype implementation that has minimum impact
on the performance on the system.

There are several classes of attacks that RKRD
does not address. RKRD does not address
buffer/integer overflow/underflow attacks. RKRD
also does not address attacks resulting from
conversions to/from canonical formats, input
verification errors and string formatting. In addition
it does not defend against race conditions used for
privilege escalation and DMA device-based attacks.
Another issue not addressed is the management of
signed manifest keys and in the threat model, the
attacks against manifests. In future work, we
propose to enhance the threat model to include some
of these attacks as well as more sophisticated
malware. We would also like to address the main
source of performance impact i.e. the copying of
memory pages from the guest OS to the IMM VM.

AN EVENT-DRIVEN, INCLUSIONARY AND SECURE APPROACH TO KERNEL INTEGRITY

419

ACKNOWLEDGEMENTS

The authors would like to thank David M. Durham
and Hormuzd Khosravi for their contributions to
many of the concepts discussed in this paper as well
as spearheading the RKRD project in the lab. They
would also like to thank Gaya Nagabhushan for
helping with building the RKRD prototype and Jesse
Walker, Prashant Dewan and Travis Schluessler for
their useful suggestions on how to improve the
quality of the paper.

REFERENCES

X. Wang, Y. L. Yin and H. Yu, “Finding Collisions in the
Full SHA-1”, Lecture Notes in Computer Science,
Vol. 3621 (November 2005), pp. 17-36

Microsoft Corporation. “Microsoft portable executable
and common object file format specification”.
Available at: http://www.microsoft.com/whdc/system/
platform/firm-ware/PECOFF.mspx, 2006.

Microsoft Corporation. “Kernel enhancements for
windows vista and windows server 2008”. Available at:
http://www.microsoft.com/whdc/system/vista/kernel-
en. mspx, 2007.

Microsoft Corporation. “Enumdevicedrivers function
(windows)”. http://msdn2.microsoft.com/en-us/library/
ms682617(VS.85).aspx, 2008.

T. Hardjono and N. Smith. “TCG infrastructure working
group architecture part ii – integrity management.
Specification”, Trusted Computing Group, 2006.
https://www.trustedcomputinggroup.org/specs/IWG/I
WG ArchitecturePartII v1.0.pdf.

N. L. Petroni Jr., T. Fraser, J. Molina, and W. A. Arbaugh,
“Copilot - a coprocessor-based kernel runtime
integrity monitor”, In USENIX Security Symposium,
pages 179–194. USENIX, 2004.

J. Rutkowska. “System virginity verifier, defining the
roadmap for malware detection on windows system”.
Kuala Lumpur, Malaysia, September 2005.

J. Rutkowska. “Beyond the CPU: Defeating hardware
based RAM acquisition Tools”, BlackHat DC 2007,
February 2007.

A. Seshadri, M. Luk, N. Qu, and A. Perrig. “Secvisor: a
tiny hypervisor to provide lifetime kernel code
integrity for commodity OSs”. In Thomas C. Bressoud
and M. Frans Kaashoek, editors, SOSP, pages 335–
350. ACM, 2007.

SECRYPT 2008 - International Conference on Security and Cryptography

420

