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Abstract: In this paper we address the problem of protecting computer systems against stealth malware. The problem 
is important because the number of known types of stealth malware increases exponentially. Existing 
approaches have some advantages for ensuring system integrity but sophisticated techniques utilized by 
stealthy malware can thwart them. We propose Runtime Kernel Rootkit Detection (RKRD), a hardware-
based, event-driven, secure and inclusionary approach to kernel integrity that addresses some of the 
limitations of the state of the art. Our solution is based on the principles of using virtualization hardware for 
isolation, verifying signatures coming from trusted code as opposed to malware for scalability and 
performing system checks driven by events. Our RKRD implementation is guided by our goals of strong 
isolation, no modifications to target guest OS kernels, easy deployment, minimal infrastructure impact, and 
minimal performance overhead. We developed a system prototype and conducted a number of experiments 
which show that the performance impact of our solution is negligible.  

1 INTRODUCTION 

In this paper we address the problem of protecting 
computer systems against stealth malware. By the 
term ‘stealth malware’ we mean malicious code that 
uses rootkit mechanisms to install and actively hide 
itself on OS kernels. The problem is important 
because the number of known types of stealth 
malware has been increasing exponentially. There 
were less than 500 types of stealth malware known 
before the end of 2005, whereas this number 
increased to 5500 by the end of 2006. The problem 
is also important because applications running on 
computer systems rely on services provided by OS 
kernels. Applications assume that the kernel services 
are uncompromised, an assumption which is not 
always true. Among the many types of attacks 
performed by stealth malware, prevalent attacks are 
based on modifying code and static data, import 
tables, system call tables, interrupt tables and 
exception handlers.  

Several system integrity mechanisms have been 
proposed in the past (e.g., [3, 6, 7, 9]). To some 
extent, prior art is not completely adequate for 
addressing several types of stealth malware threats. 
In what follows we justify our claim. Some detection 
mechanisms examine kernel data structures to find 

malicious activity (e.g., data structures accessed by 
the process explorer, netstat etc.). Such solutions do 
not always protect against static code and data 
modifications. They also do not address transient 
attacks. Other solutions perform heuristic-based 
analysis for identifying known malware signatures 
in memory. These approaches have some advantages 
over the former for ensuring system integrity. 
However, sophisticated techniques utilized by 
stealthy malware can thwart them. The main 
disadvantage of these approaches is that they are 
reactive as opposed to proactive solutions to 
malware detection. Other approaches check the 
correctness of signatures coming from trusted code 
as opposed to malware and are thus more scalable 
but their security depends on the OS they are trying 
to protect.  

We propose Runtime Kernel Rootkit Detection 
(RKRD) (pronounced ‘record’), a hardware-based, 
event-driven, secure and inclusionary approach to 
kernel integrity that addresses some of the 
limitations of earlier approaches. RKRD is designed 
to ensure the integrity of kernel code as well as 
critical kernel data structures and the flow of 
execution of kernel modules. By ‘event-driven’ we 
mean that RKRD detects the introduction/activity of 
rootkits and other malicious kernel code at runtime, 
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specifically at the moment when measured code and 
data structures are altered. By ‘secure’ we mean that 
RKRD defends itself against attacks using 
virtualization technology. Virtualization technology 
provides isolation between virtual machines and is 
used to protect the RKRD components that measure 
the integrity of guest OS kernels.  By ‘inclusionary’ 
we mean that RKRD checks that the signatures 
coming from known and trusted code have the 
values they should have. It does not scan code 
looking for signatures of malicious code, as typical 
anti-virus tools do. An inclusionary approach is 
therefore proactive and scalable.  

We implemented a RKRD prototype based on the 
afore-mentioned design principles. Our system 
development was guided by the goals of strong 
isolation, no modifications to the target guest OS 
kernels, easy deployment, minimal infrastructure 
impact, and minimal performance overhead. We 
conducted experiments with real implementations of 
stealthy malware and were able to detect attempts to 
compromise system integrity. The experiments 
showed that the performance impact of our solution 
is negligible. 

The paper is structured as follows: In Section 2 
we discuss principles that underpin the RKRD 
design. Section 3 discusses the RKRD threat model 
along with design assumptions. The system 
architecture is described in Section 4, followed by 
details of our prototype in Section 5. We discuss the 
performance impact of the prototype in Section 6. 
Section 7 discusses how RKRD addresses the threat 
model. Following this, in Section 8 we discuss 
related work in the area. Finally, we present 
concluding remarks in section 9. 

2 DESIGN PRINCIPLES 

In what follows we elaborate on the three principles 
that guide the design of RKRD: 
1. Isolation using Virtualization Hardware. 

Integrity detection mechanisms are vulnerable if 
a circular dependency exists between these 
mechanisms and the OS. Stealthy malware 
utilizes that dependency to hide itself from the 
integrity checking mechanisms. RKRD 
leverages virtualization hardware to create an 
isolated and trusted partition in an untrusted 
environment. This partition is used for running 
the RKRD service that measures guest OS 
kernel integrity. The isolation provided by 
virtualization breaks that dependency. This is 
essential since malware affecting the kernel 
cannot get access to the integrity checking 

solution, thereby mitigating its ability to hide 
itself. 

2. Verifying the Signature of Trusted Code. The 
RKRD approach is based on verifying the 
signatures of known and trusted code in the OS. 
This inclusionary approach is unlike many prior 
approaches to system integrity that scan for 
malicious code signatures. The trusted code 
base on a system presents a limited (and thus 
scalable) footprint for the integrity checking 
solution. It can be effectively monitored to 
drastically narrow the opportunities for 
compromise due to malicious code. 

3. System Checks based on Events. Our 
approach continuously monitors kernel integrity 
through event-driven checking. This mechanism 
can detect a change in the measured code and 
data structures at the moment when they are 
altered. This addresses transient attacks that 
compromise the system briefly and then revert it 
to a known good state. Such attacks can prevent 
existing integrity checkers from discovering 
their activity by compromise kernel. 

3 ASSUMPTIONS AND THREAT 
MODEL 

RKRD assumes immutability of the preboot 
environment. A preboot environment can be 
protected by technologies that perform basic checks 
that ensure the integrity of the boot code. RKRD 
does not assume that the kernel is immutable, just 
that its construction can be verified. We believe that 
this is a fair assumption since the integrity of any 
piece of code or data can be asserted with 
appropriate hash value checks regardless of where 
and when the checks take place. However, 
protecting the preboot environment represents 
substantial engineering effort which is out of the 
scope of this work. Further assumptions made in the 
system design are stated in Section 4. 

We consider a threat model in which the 
adversary gains complete access to the kernel by 
utilizing a documented method, or an exploit based 
on a known bug or vulnerability. This gives the 
adversary the ability to execute code at kernel 
privilege, to modify existing code and data, and to 
insert new code into the control flow. Protecting a 
system from such an adversary poses various 
challenges on operating systems. Operating systems 
typically provide simplicity and performance 
through the use of a single address space for all 
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kernel code. In such case, the adversary can modify 
any crucial system tables, drivers, and also change 
CPU state by modifying general purpose registers. 
In addition, an attack can be waged in a transient 
manner, reverting back to the original state to leave 
no trace for a detection system. RKRD includes such 
transient attacks in its threat model 

Following are the classes of attacks we considered 
when designing RKRD. An analysis on how these 
threats are addressed is presented in Section 7. 
• Import Table Hooking. Applications utilize 

functions exported by libraries and other 
applications. These external calls are maintained 
in an import table. Rootkits can overwrite the 
entries in these tables to alter the control flow 
into malicious code. 

• Code & Static Data Modifications. In this 
method, the actual code of a targeted function is 
overwritten with malicious code. This task is 
accomplished using documented APIs defined 
on modern operating systems. For instance, 
Microsoft has provided APIs such as 
OpenProcess, ReadProcessMemory and 
WriteProcessMemory for writing to and reading 
from another process’s memory. These well-
documented APIs serve as a toolkit for rootkit 
installers. 

• IDT/Exception Handler Hooking. On x86 
processors, an Interrupt Descriptor Table (IDT) 
is used to handle hardware and software 
interrupts. A malicious user can insert a rootkit 
by modifying an IDT entry to point to a 
malicious function instead of the default 
interrupt handler. This method of hooking will 
cause the hooked code to be called before the 
default interrupt handler function. Shadow 
Walker is a well known rootkit that utilizes this 
method. 

• System call Table Hooking. All native system 
service addresses are listed in a data structure 
called the system call table. To call a specific 
system function, the system service dispatcher 
looks up the address of the function in this table. 
With complete access to the kernel, an 
adversary can change the entries in this table to 
point to malicious code instead. 

• Dynamic Kernel Object Manipulation. This is 
a method of altering the dynamic state-keeping 
structures in the kernel. An example is the 
system process table that maintains a list of 
executing processes. By altering such structure, 
the adversary can hide the existence of 

malicious code from auditing software that 
monitors the system. 

It is important to note that there are several 
classes of attacks that RKRD does not address. First, 
RKRD assumes that the user is not the adversary. If 
the user was the adversary, the user could perform 
more aggressive attacks which are beyond the scope 
of this work. Second, RKRD does not address 
buffer/integer overflow/underflow attacks that can 
support control flow changes, data modifications, 
and other malicious activities. There are auxiliary 
methods for handling these attacks like execute 
disable methods, use of canary values etc. Third, 
RKRD does not address attacks resulting from 
conversions to/from canonical formats, input 
verification errors and string formatting. In addition 
it does not defend against race conditions used for 
privilege escalation within the guest OS kernel or 
privilege escalation into the VMM. Another group 
of attacks not addressed by RKRD are DMA device-
based attacks. Virtualization mechanisms can protect 
a kernel from DMA-based attacks by removing the 
kernel and its key data structures from access by 
devices. Another issue not addressed in the threat 
model is attacks against manifests. These attacks 
occur when the software is transported from the 
manufacturer but before it is delivered to the user. 
One big problem that needs to be addressed is the 
management of a potentially large number of 
manifest signing keys. 

4 SYSTEM ARCHITECTURE 

4.1 Virtualization-based Environment 

RKRD is designed to monitor the integrity of the 
kernel to assure that there is no malware inserted 
into any of the OS execution paths. It provides 
continuous integrity verification without interfering 
with the legitimate operations of system patching 
and module installation The RKRD design does not 
require any modification of the guest OS. An 
overview of the system is provided in Figure 1. The 
system control flow is monitored using the 
hypervisor and the integrity verification is done by a 
software component executing in a trusted 
environment that is isolated from the OS as 
described in section 4.3. Integrity verification is 
performed whenever the control flow monitor 
detects a change in the system and in a measured 
component.  
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Figure 1: System Architecture. 

In order to describe our architecture we present a 
brief overview of a virtualization-based system that 
leverages hardware virtualization. On our platform 
we utilized the Intel® Virtualization Technology or 
VT-x; similar mechanism can provide virtualization 
on other processors. Virtualization refers to the 
technique of partitioning the physical resources of a 
processor or a chipset into Virtual Machines (VMs) 
and inserting a higher privilege executive under the 
OS. This executive is known as a hypervisor and the 
privilege level is known as VMX-root mode in VT-
x.  

A control transfer into the hypervisor is called a 
VMExit and transfer of control to a VM is called a 
VMEntry. A VM can explicitly force a VMExit by 
using a VMCALL instruction. Such instruction is 
also called ‘hypercall’. A guest OS runs in VMX-
non-root mode which ensures that critical OS 
operations cause a VMExit. This allows the 
hypervisor to enforce isolation policies. The 
hypervisor manages the launching/shutdown of 
VMs, accesses to memory, and accesses to 
microprocessor registers. It also manages interrupts 
and instruction virtualization and can protect against 
DMA-based attacks. 

In what follows we describe the three main 
components of the RKRD architecture: the Kernel 
Directory Service, the Integrity Measurement 
Module, and the Hypervisor. Details regarding their 
implementation in our prototype are described in 
Section 5. 

4.2 Kernel Directory Service (KDS) 

The KDS is designed to execute as a service on the 
guest OS every time a new module is loaded. It 
provides the hypervisor with the names and 
locations (virtual addresses) of modules loaded in 
the kernel through a hypercall. The hypervisor 
passes this information to the Integrity Measurement 
Module (IMM). A compromised KDS will not affect 
the security of RKRD. If a rootkit is installed 
through compromising the KDS, the presence of this 
rootkit can be detected by checks on other critical 
data structures (i.e., import and export tables, SSDT 
and IDT tables) as described in the next section.  
KDS exists to improve the performance of the 
system by identifying the location of the kernel 
components that are verified in memory by the IMM 

4.3 Integrity Measurement Module 
(IMM) 

The Integrity Measurement Module (IMM) is 
responsible for checking the integrity of kernel 
modules and data structures. It executes on a VM 
isolated by the hypervisor from the guest OS. This 
isolation satisfies the first design principle as stated 
in Section 2.  
The IMM checks the integrity of kernel modules by 
comparing their pages in memory against their 
corresponding integrity manifest (Hardjono and 
Smith, 2006). These manifests are accessible to the 
IMM on its file system in the isolated partition. We 
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assume that  the integrity of the manifest database 
can be guaranteed. However, the security of that 
approach is beyond the scope of this paper. RKRD 
assumes that only legitimate kernel code has an 
associated manifest and that the code is not self-
modifying in a non-deterministic way. A manifest 
contains cryptographic hashes for each page of the 
code and static data sections of the module. It also 
contains the structures that are required to revert 
relocations done by the loader, and the module's 
import and export tables. Each manifest is created 
simply by extracting this information from the 
compiled binary file of a module, e.g. an ELF file on 
Linux® and a Portable Executable (PE) file for the 
Windows® XP Operating System. The information 
in a manifest allows the IMM to reconstruct a 
module’s relevant data structures from a runtime 
snapshot of the module’s memory. This is essential 
to RKRD because it provides us with a means of 
determining that a module’s runtime memory 
matches its compile time state. An uncompromised 
system should exhibit no discrepancies between its 
runtime and compile time images.  

The IMM checks system integrity by executing a 
three phase ‘IMM integrity’ algorithm: 
• Phase 1. For each module, the IMM verifies 

each page of the code and static data sections by 
comparing its cryptographic hash against the 
original stored in the manifest. Also, it extracts 
the memory location of all the exported and 
imported symbols. This information is utilized 
in the following phases and also for future 
checks. 

• Phase 2. For each module, the IMM finds all 
the imported entries and verifies that they are 
being exported by a module that passed Phase 1. 

• Phase 3. The IMM extracts data structures that 
point to essential services, such as system calls 
and interrupt handlers, and verifies that these 
services lie within modules that have passed 
phases 1 and 2. This phase can be extended to 
other guest OS data structures. 

This algorithm satisfies the second design 
principle as stated in Section 2. A detailed 
description of our implementation of this algorithm 
is provided in Section 5. By running this algorithm 
on all system modules we can verify that they are in 
accordance with the original intent of the module 
author as recorded in the manifest. The IMM then 
marks each module as passed or failed and notifies 
the hypervisor. All modules that pass are marked as 
measured and included in the trust boundary. On an 
uncompromised system, all modules should pass the 

integrity check since the IMM has their manifests 
and they should only be interacting with other 
measured code. If any module fails the test then that 
event is interpreted as the detection of malware. The 
hypervisor can then take preventive action, e.g. log 
the activity and halt the guest OS. 

4.4 Hypervisor 

The hypervisor serves as a trusted entity in our 
system, extending the ‘root of trust’ provided by the 
hardware platform. The hypervisor has three main 
functions in the RKRD architecture. First, it 
maintains system integrity state that includes a list of 
all modules that are executing as part of the kernel. 
This list is initiated by the KDS and is reinforced by 
constant monitoring of the guest OS. Second, it 
monitors events that may alter system state and 
triggers integrity verification if necessary. This 
mechanism satisfies the third design principle as 
stated in Section 2. The hypervisor monitors the 
guest OS for the following events and initiates 
integrity checks as needed: 
• Addition or Removal of Modules. Each time a 

module is loaded into or removed from the 
kernel, the hypervisor performs an integrity 
check by executing the IMM integrity 
algorithm.  

• Change in a Measured Data Structure. 
Checks are also required when a measured data 
structure is altered. The hypervisor continuously 
monitors such structures by marking their 
shadow pages as read-only and intercepting any 
changes made to them. Any attempt to alter 
their content is routed through the hypervisor’s 
page fault handler, which initiates a check to 
verify it. 

• Paging-in of Measured Pages. Malware can 
overwrite a page of a system module when it is 
written out to the page file on disk. When that 
page is loaded back in response to a page fault, 
the module can be infected by the corrupted 
code on it.  In order to prevent such an attack, 
the hypervisor intercepts all page faults that 
read a page into memory from the disk. It then 
checks the integrity of that page as described in 
phase 1 of the IMM integrity algorithm. 

The hypervisor also satisfies requests made by the 
IMM for copies of pages of guest OS memory that 
are to be verified. 
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5 PROTOTYPE 

We implemented RKRD as a proof of concept and 
system prototype. In this section we describe our 
implementation with respect to the system 
architecture. 

5.1 Software 

We implemented a light-weight hypervisor for our 
prototype. Our hypervisor provides us with the 
capabilities to monitor system events as required and 
to create shadow page tables needed to intercept 
paging events and modifications to data structures. 
We extended it to provide interfaces for 
communication with KDS and the IMM and to 
monitor guest OS events for initiating integrity 
checks. The guest OS in our prototype is Windows® 
XP with Service Pack 2. We used this OS to 
demonstrate that our technology works on a 
proprietary environment for which we do not have 
access to the source code (and thus did not modify 
for the sake of providing kernel integrity). Our 
architecture works just as well with any other OS, 
provided we can generate the appropriate manifests. 
The KDS is implemented as an OS service and 
leverages the standard EnumDeviceDrivers API 
(Microsoft Corporation, 2008) for its task of 
collecting information about system modules.  

In addition to the basic software platform 
described above, our design requires host OS 
specific manifests. We wrote a tool in Visual C++ 
for the generation of manifests of OS system 
modules. The tool requires only a compiled binary 
file as input. On the Windows® XP operating 
system the system modules are implemented in the 
PE file format (Microsoft Corporation, 2006). These 
modules include executables (including the kernel), 
DLLs and device drivers. These manifests contain 
cryptographic hashes based on the SHA-1 algorithm. 
The security provided by a hash algorithm typically 
depends on the assumptions made on the computing 
capability of the attacker. We are aware of recent 
cryptanalytic work (Wang et al., 2005) which 
substantially reduced the complexity of finding 
collisions in SHA-1. If SHA-1 is considered 
insecure under some attacker assumptions it can be 
replaced by any other hash function which 
demonstrates better collision and pre-image 
resistance. Manifests also contain the relocation fix-
ups, Import Address Table (IAT), Export Table 
(ET), Import Lookup Table (ILT) and other PE file 
tables.  

5.2 System Operation 

At boot time, the hypervisor launches the guest OS 
and the IMM in separate virtual machines. The IMM 
registers with the hypervisor using a hypercall. This 
process of registration establishes a shared memory 
area between the two that is protected by the 
hypervisor. After launching the IMM VM, the KDS 
is started on the guest OS. It sends the list of 
executing system modules to the hypervisor, 
including the name and virtual address of each. The 
hypervisor initiates a system integrity check by 
sending this information to the IMM. The IMM then 
executes the IMM integrity algorithm for integrity 
verification as shown in Figure 2. 

In phase 1 the IMM executes the following steps 
for each module: 
• accesses the corresponding manifest and utilizes 

it to request the module’s memory image from 
the hypervisor. The hypervisor copies the 
requested memory pages from the guest OS into 
the memory shared with the IMM. 

• reconstructs the compile time image of the 
module using these pages along with the 
information from the manifest. 

• verifies the integrity of each page of the code 
and static data sections of the module based on 
the SHA-1 cryptographic hash values in the 
manifest. 

• stores the necessary PE file tables for the 
module. 

In phase 2 the IMM executes the following steps for 
each module: 
• verifies the links (function pointers) between 

the module and its dependencies using the ILT 
information from the manifest along with the 
ET and IAT entries collected in phase 1. 

• iterates through all ILT entries and finds the 
corresponding ET entries. 

• verifies if the IAT entries match the virtual 
addresses determined in the previous step for 
ILT entries 

In phase 3 the IMM: 
• requests the hypervisor to retrieve the System 

Services Descriptor Table (SSDT) and verifies 
that all entries in it point to measured  code; and 

• requests the hypervisor to retrieve the Interrupt 
Descriptor Table (IDT) entries from memory 
(first 32) and verifies that the they point to 
measured code. 
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For each module and each data structure that passes 
verification, the IMM notifies the hypervisor. 

During system operation, the hypervisor 
monitors events as described in Section 4 and 
initiates integrity checks as needed. If at any time 
the IMM detects an unknown modification to the 
system, it marks it as an unexpected change and 
notifies the hypervisor. The hypervisor can then take 
corrective action based on system policy, including 
halting the host OS to prevent damage from 
malware. We note that a shadow page is marked as 
‘read-only’ before or after checks.  
 
IMM_INTEGRITY_ALGO(kernel_module_list l,  
             int list_size) 
{ 
   int i; 
   for(i = 0; i < list_size; i++) 

{ 
 kernel_module m = get_module(l, i); 
      manifest f = open_manifest(m); 
      image g = get_memory_image(m); 
      if((section(f) == CODE) || 
         (section(f) == STATIC_DATA)) 
 { 
    page_list p = get_pages(g); 
    int j; 

   for (j=0; j < psize(g); j++) 
   { 
      if(hash_from_manifest(f,j) 
      != hash_from_memory(p, j)) 
      { 
         error(BAD_MODULE, j); 
      } 
   } 
} 
store_tables_for_next_phases(f, g); 

}  
//end of phase 1 
 
for(i = 0; i < list_size; i++) 
{ 

 kernel_module m = get_module(l, i); 
      imported_entries_list il =  
    get_imported_entries(m); 
 exported_entries_list el =  
    get_exported_entries(il, m); 

int j; 
for (j=0; j < lsize(il); j++) 

    { 
          if(il[j] != el[j]) 
    { 

error(BAD_IT_ENTRY, m, j); 
   } 
} 
add_module_into_pass_list(m); 

} 
//end of phase 2 

 
table ssdt = get_SSDT_table(); 
table idt = get_IDT_table(); 
for(i = 0; i < lsize(ssdt); i++) 
{ 
 if(!is_in_phase_2_pass_list(ssdt[i])) 
 { 
      error(BAD_SSDT_ENTRY, i); 
 } 
} 
for(i = 0; i < lsize(idt); i++) 
{ 
 if(!is_in_phase_2_pass_list(idt[i])) 
 { 
      error(BAD_IDT_ENTRY, i); 
 } 
} 

} 
//end of phase 3 
 

Figure 2: The IMM Integrity Algorithm. 

6 PERFORMANCE 

The primary goal of RKRD is to develop a system 
that can verifiably detect many popular exploits of 
system vulnerabilities. However, it is important that 
its operation does not have a significant impact on 
the performance of the measured system. This 
section provides some analysis on the performance 
impact of the prototype. 

We measured the time taken to execute the three 
phases of the IMM integrity algorithm. We collected 
two sets of data. A first set was collected using the 
prototype to verify four Windows® XP kernel 
modules: ntoskrnl.exe, hal.dll, kdcom.dll, and 
bootvid.dll. These modules were selected because 
they are required for critical system functionality. 
Another set was collected from all kernel modules. 
All experiments were performed on an Intel® 
Centrino platform with a 1.83 GHz Core™ Duo 
processor and 2GB of DDR2 RAM. 

Performance data for the verification of the four 
critical modules, broken up by each phase of our 
integrity check algorithm, can be found in Table 1. 
Phase 1 completes in 71 ms. There were 
approximately 490 pages worth of data verified and 
structures extracted, at 0.14 ms/page. Each page is 
4KB in size. Phase 2 averaged 6 ms and phase 3 
averaged 1 ms. Table 2 provides performance data 
on the time required to verify all kernel modules that 
can be identified using standard user-level 
Windows® APIs. The total number of modules 
varied between 100 and 102 on our test system. 
Phase 1 averaged 444 ms, phase 2 averaged 255 ms, 
and phase 3 averaged 1 ms for all modules. 

Table 1: Time taken for 4 critical modules on a 
hypervisor. 

Phase 1 Phase 2 Phase 3 Total 
71 ms 6 ms 1 ms 78 ms 

Table 2: Time taken for all modules on a hypervisor. 

Phase 1 Phase 2 Phase 3 Total 
444 ms 255 ms 1 ms 700 ms 

 
We also created a version of the algorithm that ran 

in a non-virtualized environment. It used a kernel 
driver to service memory access requests of the 
application. This was done to calculate the 
performance overhead of using hypercalls for 
memory access. The performance data for the four 
critical modules and for all modules is provided in 
Tables 3 and 4 respectively. The overhead 
associated with virtualization is significant. The time 
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it took to complete the algorithm for the four 
modules increased by 28% between the virtualized 
and non-virtualized case, and by 29% for the case of 
all modules. The overhead of running the IMM on a 
virtualized system comes from the overhead of using 
hypercalls and the performance overhead of running 
in a virtualized environment. The algorithm itself 
performs well but future work is required to reduce 
the overhead of virtualization and hypercalls.  

Table 3: Time taken for 4 critical modules without 
hypervisor. 

Phase 1 Phase 2 Phase 3 Total 
55 ms 5 ms 1 ms 61 ms 

Table 4: Time taken for all modules without hypervisor. 

Phase 1 Phase 2 Phase 3 Total 
300 ms 241 ms 1 ms 542 ms 

 
There are several simple event-driven checks that 

were highlighted previously. When pages holding 
module code or static data sections are paged in 
from disk they must be verified. We monitored the 
number of page faults in the system to see how often 
pages are paged in from disk. Figure 3 shows the 
rate of paging of code section pages on the test 
system under normal desktop use for the four critical 
modules when the OS is running on top of the 
hypervisor. The spikes in the figure happen when a 
new application set is loaded.  

page faults per second

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 500 1000 1500 2000
time (s)  

Figure 3: Rate of Paging from Disk. 

Another event-driven check involves verifying the 
integrity of the SSDT and the IDT whenever they 
are modified. These data structures and the pages 
they reside on were not modified during normal 
system operation on our test platform and this check 
should only need to be performed rarely, such as 
when a piece of software is loaded into the kernel. 
With less than 2 page faults per second, the 
performance impact of the integrity check is less 

than 0.1%. A third event based check, which is also 
rare, is to verify the integrity of a page in memory 
that contains code or static data of a protected 
module if an alteration is made.  

The system only performs a full verification of all 
the modules the first time or when a new module is 
loaded. Otherwise the system performs event based 
checks on occurrences as described above which are 
rare on our test system. These have minimum impact 
on the system performance. 

7 THREAT ANALYSIS 

In this section we revisit the threat model described 
in Section 3 and show how RKRD addresses the 
threats discussed there.  
• Import Table Hooking. RKRD monitors the 

entire control flow of code executing in the 
kernel, from memory accesses to higher level 
OS control structures, providing malware no 
place to insert itself into the control flow.  
Specifically, Phase 2 of the algorithm addresses 
import and export table hooking. It ensures that 
the links (function pointers) between a system 
module and its dependencies are unmodified 
and point to the exact address location provided 
by the dependency in its export table.  

• Code & Static Data Modifications. Phase 1 of 
the algorithm described above ensures that the 
code and static data sections remain unmodified 
during the runtime execution of a module. It is 
invoked whenever the hypervisor intercepts 
events that may cause the memory image of a 
module to change. 

• IDT/Exception Handler and System call 
Table Hooking. Phase 3 of the algorithm 
addresses attacks to the system data structures. 
As the hypervisor continuously monitors the 
structures and intercepts any modification to 
them, RKRD can ensure that they are not 
altered by malicious code, without limiting 
alterations to them by measured code. This 
addresses the threat from system call table 
hooking and interrupt table hooking.  

• Dynamic Kernel Object Manipulation. 
RKRD can monitor any structure specified by 
the programmer and hence it can monitor 
dynamic kernel objects in addition to the IDT 
and SSDT data structures specified in the IMM 
integrity algorithm. 
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• Transient Attacks. The RKRD architecture 
prevents transient attacks through the use of a 
hypervisor which monitors events that may alter 
previously measured code or structures. The 
monitoring can intercept a modification at the 
moment it occurs. On interception, control is 
transferred to the higher privilege of the 
hypervisor and returns to the guest OS if and 
only if the modification is found to be valid. 

8 RELATED WORK 

Copilot (Petroni et al., 2004) is a kernel integrity 
monitor that runs on a coprocessor system attached 
to the PCI bus of the host being monitored. This 
removes the dependence on the host kernel and can 
thus independently monitor the kernel. Copilot 
accesses the contents of the host’s main memory 
over the PCI bus. However it has been shown that 
memory access over the PCI bus can be spoofed to 
limit or even alter the contents of the memory being 
examined (Rutkowska, 2007). Such an attempt 
thwarts the independent monitor. Our technology 
does not rely on the PCI bus. Instead we utilize 
hardware virtualization to run our monitor and 
manager from the highest privilege of a hypervisor. 
This provides us with direct access to the system 
memory. Furthermore, Copilot cannot detect 
transient attacks, those that change the kernel state 
and then change it back before Copilot rescans the 
system. In our design, the hypervisor can initiate a 
system scan the moment measured code or data 
structure changes from its last measured state. 

PatchGuard (Microsoft Corporation, 2007) is a 
Microsoft technology that monitors and measures 
essential system data structures and modules in order 
to detect tampering. The measuring is done by 
performing a checksum. It is however still 
dependent on the OS. A kernel rootkit can exploit 
that dependency to its own advantage. Our 
technology provides protection to the system data 
structures and modules by measuring them using a 
cryptographic hash from a higher privilege entity, 
i.e. the hypervisor using hardware virtualization. 
This also enables us to similarly measure any OS 
without modifying its source code. 

SecVisor (Seshadri et al., 2007) is a hypervisor 
that is designed to ensure code integrity for 
commodity kernels. It attempts to ensure that code 
executing at the kernel privilege level has been 
approved by the user. However, it makes no attempt 
to ensure that code executing at the kernel privilege 
does not tamper with system modules or structure. It 

is well understood that such a scenario is possible 
using standard driver loading procedures or 
exploiting bugs in the kernel. With our approach we 
can protect the trusted areas of the kernel from other 
areas to detect such attacks. Also, unlike SecVisor, 
our approach does not need any modification to the 
OS kernel source. 

System Virginity Verifier 2.3 (Rutkowska, 2005) 
makes sure that a user program or any kernel module 
does not modify the code sections in the kernel code. 
It is done by verifying if the code sections of 
important system DLLs and system drivers (kernel 
modules) are the same in memory and in the 
corresponding PE file on disk. Our technology is 
capable of checking all system drivers loaded, not 
just the important kernel modules as in SVV. SVV 
uses a software based approach to compare the code 
section in the memory and the PE file, unlike our 
approach which is based on hardware virtualization. 

9 CONCLUDING REMARKS 

We presented a runtime rootkit detection system that 
uses hardware virtualization technology to measure 
and monitor the integrity of a kernel. It ensures 
system integrity against an adversary with complete 
access to the kernel. We believe that our work has 
some importance because it addresses a number of 
limitations of the state-of-the-art, as discussed in the 
related work section. Our approach is independent of 
the OS and does not require any modification to the 
measured kernel or system modules. We have 
demonstrated the feasibility of our approach via a 
prototype implementation that has minimum impact 
on the performance on the system.  

There are several classes of attacks that RKRD 
does not address. RKRD does not address 
buffer/integer overflow/underflow attacks. RKRD 
also does not address attacks resulting from 
conversions to/from canonical formats, input 
verification errors and string formatting. In addition 
it does not defend against race conditions used for 
privilege escalation and DMA device-based attacks. 
Another issue not addressed is the management of 
signed manifest keys and in the threat model, the 
attacks against manifests. In future work, we 
propose to enhance the threat model to include some 
of these attacks as well as more sophisticated 
malware. We would also like to address the main 
source of performance impact i.e. the copying of 
memory pages from the guest OS to the IMM VM. 
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