
TYPICAL PROBLEMS WITH DEVELOPING MOBILE 
APPLICATIONS FOR HEALTH CARE 

Some Lessons Learned from Developing User-centered Mobile Applications 
in a Hospital Environment 

Andreas Holzinger, Martin Höller, Marcus Bloice 
Institute of Medical Informatics, Statistics and Documentation (IMI), Research Unit HCI4MED 

Graz University Hospital, Auenbruggerplatz 2/V, Graz, Austria 

Berndt Urlesberger 
Department of Neonatalogy, Graz University Hospital, LKH-Universitätsklinikum, Austria 

Keywords: Mobile applications, touch screens, human-computer interaction, information systems. 

Abstract: This paper provides an overview of the experiences gained during the design, development and 
implementation of mobile applications for use within the clinical domain.  Current problems and issues that 
arose during the development of the software are documented and discussed. Medical professionals' 
opinions, both medical doctors and nurses, and their input were coupled with front end development (user 
interface design) and back end development (software engineering) to decide on the most optimum 
development path and to select the most appropriate environments. Most of all, this project can be seen as a 
further example that User-Centered Development (UCD) is necessary, however it is not sufficient when 
developing mobile, cross-platform, and future-proof applications for medicine and health care. 

1 INTRODUCTION  

During the past few years, improvements in the 
technology of touch screens, further miniaturization, 
lower power consumption, and longer battery life 
has made it possible to design and produce better 
mobile computers, tablet PCs, and small mobile 
devices such as PDAs or smart phones. The market 
for such mobile computing devices is rapidly 
expanding whilst at the same time the technological 
performance of these devices is steadily increasing, 
(Antinisca Di & Cecilia, 2007). In this paper we 
concentrate on discussing the lessons learned during 
the development of specific user-centered software 
for tablet PCs and define the tablet PC as our mobile 
computing device (Prey & Weaver, 2007). However, 
although mobile computers have been available for a 
relatively long time in hospitals (Forman & 
Zahorjan, 1994), different studies show that health 
care professionals are reluctant to use poorly 
designed mobile systems, as the patient care 
workload is very time constrained and can be 

extremely hectic (Brekka, 1995), (Holzinger & 
Errath, 2007). Mobile computer user satisfaction is 
certainly an issue and this has not been researched 
extensively (Ozok et al., 2008). Obviously, all 
aspects of Human–Computer Interaction (HCI) and 
Usability Engineering (UE) are of growing 
relevance, and must be especially considered when 
in the process of developing software for medical or 
health care purposes (Holzinger, 2007). This has 
resulted in a set of commonly accepted development 
practices, such as User-Centered Development 
(UCD) (Holzinger, Searle & Nischelwitzer, 2007), 
(Holzinger, Sammer & Hofmann-Wellenhof, 2006).  

Although such considerations are important, we 
must accept that for an application to work well, all 
aspects must be taken into account, and there is the 
potential danger that HCI professionals and usability 
engineers tend to discount the underlying aspects of 
software engineering (SE) (Thimbleby, 2007).  

235Holzinger A., Höller M., Bloice M. and Urlesberger B. (2008).
TYPICAL PROBLEMS WITH DEVELOPING MOBILE APPLICATIONS FOR HEALTH CARE - Some Lessons Learned from Developing User-centered
Mobile Applications in a Hospital Environment.
In Proceedings of the International Conference on e-Business, pages 235-240
DOI: 10.5220/0001909102350240
Copyright c© SciTePress



 

2 MOBILITY IN HEALTHCARE 

There are several areas of healthcare where mobile 
computers are necessary. On top of this, each area 
has its own unique requirements. In order to 
differentiate between them, we form two distinct 
sections: a) Round Assistance, which consists of 
help, or assistance, that a doctor might require when 
doing routine “rounds” of the wards to check the 
patients’ progress, etc.; and b) On-call Assistance, 
which consists of help or assistance that a doctor 
may need while on call-duty. These are not routine 
check-ups on patients; rather they are performed as 
and when deemed necessary by medical 
professionals who are on call-duty. 

Two main clinical situations exist which 
determine whether or not a Patient Data 
Management System (PDMS) is used in the unit, 
Again, this depends on a number of factors. Wards 
that use such PDMSs face specific problems (Junger 
et al., 2001). 

However, any pros of automatic data storage are 
also faced with cons: a) overloading the medical 
professional with data b) communication difficulties 
that occur with patient details. In both of the above 
cases, these problems will ensure that the future 
worth of mobile applications is secured. 

All PDMSs have basic operation centers, which 
are generally PCs that are within a distance of two to 
three meters from the patient. There, the majority of 
the medical operations are performed (data 
observation, decision finding, drug prescription). 
Due to the huge amount of data available to the 
medical professional using the PDMS, it is difficult 
to gain a quick overview of the patient’s situation. 
Details can be found within the PDMS, but 
overviews are difficult to get. Switching between 
different patient details on the same computer/screen 
requires a lot of time and is actually not especially 
helpful.  

One solution to this problem may be a set of two 
to three screens, on which data is displayed. Another 
solution would, of course, be the use of a mobile 
device, which communicates with the PDMS (via 
WLAN, for example). 

A problem which is often encountered when 
doing rounds on the medical wards is that any 
discussion of a patient’s medical needs is often 
centered on the PC display belonging to the patient. 
Most often, one person sits while others stand 
around in a circle in order to view the display. This 
situation presents several problems, not least the 
difficulty in seeing smaller details on the screen 
(which does, of course, depend on the number of 

persons within group) and, furthermore, the situation 
is conducive to a communicative environment. An 
optimum solution to this problem would be to use 
mobile devices, which would aid communication 
and ease data visualization. 

PDMSs are often located within intensive care 
units; units with standard care patients do not have 
PDMSs (this is due to the fact that in this case 
monitoring data does not have to be stored 
continuously). In such circumstances mobile 
applications could be used as information servers 
during a round (displaying laboratory data, etc.). 
Here mobile applications are essential. 

In both the above scenarios the mobile device 
has to have a screen size and display resolution 
suitable for graphical data presentation. Therefore 
only tablet PCs or laptops are appropriate. Due to 
hospital budget shortages, duties-on-call have 
become more common. In such a situation a senior 
doctor is available by phone. Data presentation using 
mobile applications eases decision finding and is 
beneficial to the senior doctor. In such cases, mobile 
devices such as PDAs or smart phones may also be 
appropriate. However, this is true only in very 
specific circumstances. 

3 METHODS AND MATERIALS 

Within our project the prototype of a mobile system 
for visualizing a patient’s overall status during ward 
rounds was developed for the intensive care unit of 
the department of neonatology at Graz University 
Hospital, which is amongst the largest in Europe.  

An automatic patient monitoring system stores a 
huge amount of various data at fixed intervals of 15 
minutes for each patient. The measured data consists 
of vital signs, administered medications, expulsions, 
and so on.  

The problem for the medical professionals was 
twofold: 1) The system’s user interface for viewing 
and analyzing the data is, however, very cluttered 
and containing extreme large amount of data in a 
unstructured way. Although a graphical timeline plot 
is provided, doctors often have to analyse the raw 
numeric data. The average time spent on the analysis 
of one patient is between 5 and 15 minutes, 
depending on the doctor’s experience. 2) The system 
is non mobile, requiring the medical professionals to 
proceed to the stationary PC’s. 

The aim of our project was not only to provide 
mobility but also to significantly reduce the time 
spent on information perception, so the raw data 
only has to be analyzed if the patient is not in a good 

ICE-B 2008 - International Conference on e-Business

236



 

 

condition. This is accomplished by providing instant 
visual feedback about the patient’s status using a 
combination of star plots and traffic light metaphor. 

3.1 Device 

The device used for the prototype was an LE1600 
tablet PC by Motion Computing, which supports 
stylus and finger input. Extensive experiments about 
the differences between finger versus stylus input 
have already been undertaken (Holzinger et al., 
2008b). Table 1 contains the technical specifications 
of this device.  

Table 1: Technical specifications of the LE1600. 

CPU Intel Pentium M at 1.6 GHz 
Memory 1 GB 

Display size 12.1” XGA LCD 
Display dimensions 247 mm x186 mm 
Display resolution 1024 px × 768 px 

Hard disk size 60 GB 
Weight 1.4 kg 

Physical 
dimensions 

296 mm x 240 mm x 18.7 mm 

3.2 Software 

The software was written using Java 1.5 and the 
Swing user interface toolkit, where we had quite 
positive experiences from former projects 
(Holzinger et al., 2008a). Basically, services should 
be adapted at runtime to the features of the device. 
Also, end users should at any time specify that 
services are delivered to match certain parameters. 
For example, end users may request that an image be 
printed while specifying a particular resolution, 
format and/or number of colours (Stefano, Claudia 
& Luigi, 2007). 

3.2.1 Visualization Front-end 

The front end is based on so called “visualization 
modules”. Each module is created and configured by 
the medical doctor. It reflects a subset of the 
available data, containing interrelated values. The 
doctor chooses which values are contained within 
the module. The module “Circulation” for example 
would contain heart rate, blood pressure, oxygen 
saturation, etc. For each of these values the medical 
doctor sets three intervals for defining the alarm 
states of good, mediocre and bad. Each module has 
an overall alarm state, which can too be good, 
mediocre or bad. This overall alarm state is defined 
by the individual values’ alarm states.  

If, for example, value A is bad, the overall alarm 
state of the module becomes bad too. In the 
visualization the alarm state is represented using the 
traffic light metaphor, i.e. the background of the star 
plot is filled with green, yellow or red . 

3.2.2 Database Interface 

The database in question was an Oracle 8i database, 
for which there are JDBC drivers available. Java 
Database Connectivity is an API (Application 
Programming Interface) which allows database-
independent connectivity between the Java 
programming language and a wide range of  
databases, including Oracle 8i (Oracle, 2008). 

Oracle have available a JDBC compliant driver 
for this database which allowed for relatively quick 
development of the interface between the Java 
program and the patient data. 

Of course, speed was also an issue – without 
good response times the software would not be 
useful as a way of accessing data quickly and easily. 
However, in this regard JDBC and Oracle perform 
extremely well. Database and driver support, 
therefore, was not a technological issue when 
developing the application; however it was a factor 
which played a role in deciding which programming 
language to chose. It is also worth pointing out that 
were the JDBC drivers not available, this would 
have led to an extremely long development cycle 
and may not have been possible at all.  

This is an absolutely crucial aspect that must be 
considered when developing mobile applications 
that access an external database: your programming 
language/platform/database combination must have: 

a) the ability to perform the required task and, 
less obviously,  

b) should have available quality drivers and 
libraries to ease development. 

4 LESSONS LEARNED  

4.1 General 

As already mentioned in the introduction, mobile 
devices have increased in capability by many factors 
over the past few years, in terms of both features, 
such as integrated cameras, and raw processing 
power. Coupled with the fact that mobile devices 
now contain many of the attributes that constitutes a 
PC, several software development platforms have 
become available by various vendors, most notably 

TYPICAL PROBLEMS WITH DEVELOPING MOBILE APPLICATIONS FOR HEALTH CARE - Some Lessons
Learned from Developing User-centered Mobile Applications in a Hospital Environment

237



 

Google, Microsoft, and Sun Microsystems, among 
others. However, their usefulness in the area of 
medicine must be discussed.  

Interestingly, the proliferation of mobile phones, 
and jointly, the popularity of games for mobile 
phones have cemented Java’s position as the 
environment of choice for developing mobile 
applications for small devices.  

Having said this, developing applications in the 
area of medicine requires that a platform inhibits far 
different attributes than those platforms used to 
develop mobile games. In this section, we discuss 
the problems, and currently available solutions for 
developing real-world, cross-platform solutions for 
mobile devices. 

4.2 Currently Available Cross 
Platform Development 
Environments 

In the classical development world, if you wish to 
develop a piece of software you must usually first 
decide on the device on which you will develop your 
application. Palm, for example, offer an SDK for 
their devices which eases the development of 
applications. Therefore, software developed for 
Palm devices can only be run on Palm OS.  

Limiting yourself to one single platform 
seriously diminishes your potential market when 
selling your software, or, in the case of the medical 
profession, may demand redevelopment (if, for 
example, a device or platform is no longer available 
when inventory is recycled). Cross-platform 
development, in many respects, eases this as you can 
develop software that runs on any device where the 
runtime environment is available (Bishop & 
Horspool, 2006). 

Since Java’s philosophy of “write once, run 
anywhere” was incepted, several vendors have 
delivered cross platform languages.  

Microsoft has developed .NET, and its Micro 
Edition competes with Java’s Mobile Edition in the 
mobile domain. A new player in this area is Google, 
who, along with 30 other technology companies, is 
currently touting the Android platform (Android, 
2008). If a doctor or medical professional were to 
carry a device with them at all times, it would 
suffice to say that the device must just be portable. 
Tablet PCs have the advantage of having high 
system resources, large screens, and most run the 
ubiquitous Windows operating system.  

On Windows, there are any number of cross-
platform development environments that one could 
choose from, varying from the obvious, to the 

slightly more abstract yet equally capable 
alternatives (such as Adobe’s Air, and Microsoft’s 
Silverlight). 

4.3 Java SDK 

Creating game applications using the Java SDK 
seems to be the de facto way of producing 
applications for small devices, but here we must 
judge its worth as a platform for more serious 
application development.  

A number of aspects of the Java SDK were 
analysed. For example, Java has been known to 
render fonts very poorly on screen, and has been a 
topic of discussion for quite some time, with various 
workarounds and techniques available to cure the 
problem. Another severe restriction is the missing 
support for floating point numbers in MIDP (Mobile 
Information Device Profile) versions prior to 2.0, 
though there exist third party workarounds for this 
problem. So long as the mobile device is MIDP 2 
compliant, this is no longer an issue, however this is 
something which must be ascertained before 
development begins and could potentially be an 
issue in the future lifecycle of your software. 

4.4 Alternatives to Java - AJAX 

AJAX is a term used to describe a number of 
currently available technologies that when combined 
form a framework with which you can build 
desktop-like applications for the web (Turner & 
Wang, 2007).  

The often touted examples are Google’s AJAX 
applications such as Gmail, Calendar or Maps – they 
allow drag & drop, ‘refreshless’ updating of 
information, and offer a desktop like and feel.  

Of course, being AJAX applications, they can 
run on any supported browser such as Firefox, 
Safari, or Internet Explorer, eliminating the need for 
the developer to worry about which operating 
system the user is running, as long as the operating 
system itself supports the browser. This has the 
added advantage that most of the high-end 
technology can reside on a server rather than on the 
user’s device. An AJAX application can therefore 
access an Oracle database, without the programmer 
having to worry about Oracle drivers being available 
for their framework/operating system combination  

One of AJAX’s advantages stems from the very 
fact that it was conceived as an internet platform – it 
is geared towards users implementing a point and 
click device rather than a keyboard. This bodes well 
for small devices, as input is generally carried out 

ICE-B 2008 - International Conference on e-Business

238



 

 

using a stylus rather than a keyboard. Using Google 
Maps on a traditional PC, for example, it is possible 
to find your street and house without having to input 
a single character into the keyboard (assuming some 
knowledge of geography). Creating applications, 
therefore, using AJAX geared towards mobile 
devices that utilize styli should demand no extra 
effort of the part of the programmer; in fact the 
inverse is true – it should be more instinctive to 
generate applications that do not require keyboard 
input.  

4.5 Java Limitations 

Java’s Runtime Environment (i.e. the Java Virtual 
Machine) is not platform independent. It is simply a 
runtime which is available on a (diminishing) 
number of platforms. Its source code, however, is 
platform independent, but this is also true of C/C++ 
code, often referenced as being platform specific. 
Consider the following example in Java:  
for (int i = 1; i <= 10; i++) 

 { 
 System.out.println("Number: " + i); 

 } 
And the following code written in C++. 
     
for(int i = 1; i <= 10; i++) 
    { 
     cout << "Number: " << i << endl;   
    } 

Both these source codes are transferable between 
platforms. The C++ code requires that a compiler is 
available for the platform that you want to run your 
code on, but the same is true of Java – it requires 
that a Java VM is available on the machine you wish 
to run your code on.  

The main difference is that the compiled output 
is not transferable, but the code is. Of course, 
programs are far more complicated than this, and 
even primitive types, such as integers, vary in size 
from C++ compiler to C++ compiler. And Java’s 
compiled output is transferable from one platform to 
another, without even the need to recompile, 
something impossible to achieve with a C++ 
compiled application. However, this still begs the 
question: is Java useful as a platform in the medical 
domain where usage on mobile or small devices is a 
must? The authors thinks so. While Java’s Virtual 
Machine is available only for Windows, Mac OS 
and Linux\UNIX, these are only operating systems 
available for tablet PCs as of the time of writing. It 
also seems very unlikely that another operating 
system will appear in the foreseeable future. 

One more thing to consider, however, is that Java 
is not available for Windows Mobile or Palm 
(discontinued since the 12th of January, 2008). It is 
therefore the author’s opinion that AJAX could still 
be considered the most optimal solution in creating 
cross platform applications. However, it is unlikely 
that PDAs have the required resolution and screen 
size required to view patient information effectively. 
Of course, that is not to say AJAX cannot run on 
tablet PCs, this is certainly what AJAX was 
designed to do. Consider also the quickly changing 
medical field – AJAX applications when run, by 
definition, are always up to date (this, however, is 
also true of Java’s Webstart). Therefore, ruling out 
AJAX altogether would be foolish, it certainly has 
its niche, but perhaps not in the medical domain, or 
rather not in our specific area of patient care in the 
medical field. 

4.6 NET 

Microsoft’s .NET framework is as platform 
independent as Java, in the sense that the runtime 
can be ported to any platform. Currently Microsoft 
only supplies a runtime for the Windows line of 
operating systems, but because Microsoft submits 
the specification for the Common Language 
Infrastructure to both ECMA and ISO, it is an open 
standard. Therefore, it is possible for third parties to 
create implementations of the framework on other 
platforms. This is currently the goal of the Mono 
project, which aims to port the framework to Linux. 
However, for our requirements in the medical 
domain, we required a far more concrete 
implementation, and Java officially releases several 
versions of its framework, something that ruled out 
.NET at this time for our purposes.  

Again, inter-platform operability was an absolute 
requirement for us, as potentially many different 
machines and platforms would be using the software 
across the university hospital, and because we have 
no control over what devices the hospital purchases 
for its medical professionals. 

4.7 Chosen Platform 

The decision was made to opt for Java as the 
language of choice. The medical domain demands 
unique considerations that eventually ruled out most 
platforms that are currently available. Several years 
from now, .NET may be a contender, and AJAX was 
certainly a consideration. However, AJAX lacks the 
maturity and robustness required for the purposes of 
this project, and Java’s large library meant 

TYPICAL PROBLEMS WITH DEVELOPING MOBILE APPLICATIONS FOR HEALTH CARE - Some Lessons
Learned from Developing User-centered Mobile Applications in a Hospital Environment

239



 

development could be performed as rapidly as 
possible. It can be seen that the field of medicine 
demands far more considerations when developing a 
piece of software. Everything must be considered, 
from screen resolution, platform availability, speed, 
portability, library capability, and supported 
technologies. Java’ maturity, concrete standards 
(such as the JDBC API) and wide ranging third party 
support makes it the choice for medical software 
development. 

5 CONCLUSIONS 

It is clear that special considerations must be made 
when developing applications in the medical 
domain, especially if these applications should be 
platform independent, future proof, and mobile. 
There are a plethora of frameworks, environments, 
and programming languages available, each with 
their own specific advantages and disadvantages but 
only some are suitable for the medical domain. By 
reading this paper, it should be possible to save 
anyone a lot of research and work if you they are 
considering writing a cross platform, portable 
application in the medical domain. Almost all 
considerations were taken into account, from screen 
resolution, doctors’ wishes, language suitability, and 
operating system capability. By working close to 
medical professionals, UI experts, and software 
engineers, it was possible to ascertain what special 
considerations must be taken into account when 
working in this field. By analysing these 
considerations, a number of concrete factors could 
be defined which eventually led to development path 
and programming environment that was chosen. 

REFERENCES 

Android (2008), Open Handset Alliance, Online available: 
www.openhandsetalliance.com/android_overview.htm
l, last access: 2008-06-10 

Antinisca Di, M., Cecilia, M. (2007) Performance analysis 
and prediction of physically mobile systems. 6th 
international workshop on Software and performance. 
Buenos Aires, ACM, 129-132. 

Bishop, J., Horspool, N. (2006) Cross-platform 
development: Software that lasts. Computer, 39, 10, 
26-35. 

Brekka, T. (1995) Select mobile computers tailored to 
healthcare environment. Health Management 
Technology, 16, 13, 48, 50. 

Forman, G., Zahorjan, J. (1994) The Challenges of Mobile 
Computing. IEEE Computer, 27, 4, 38-47. 

Holzinger, A. (Ed.) (2007) HCI and Usability for 
Medicine and Health Care: Third Symposium of the 
Workgroup HCI&UE of the Austrian Computer 
Society, USAB 2007, LNCS 4799, Berlin, Heidelberg, 
New York, Springer. 

Holzinger, A., Emberger, W., Wassertheurer, S. & Neal, 
L. (2008a) Design, Development and Evaluation of 
Online Interactive Simulation Software for Learning 
Human Genetics. Elektrotechnik & 
Informationstechnik (e&i), 125, 5, 190-196. 

Holzinger, A., Errath, M. (2007) Mobile computer Web-
application design in medicine: some research based 
guidelines. Univ Access in the Information Society 
International Journal, 6, 1, 31-41. 

Holzinger, A., Höller, M., Schedlbauer, M., Urlesberger, 
B. (2008b). An Investigation of Finger versus Stylus 
Input in Medical Scenarios. ITI 2008: 30th 
International Conference on Information Technology 
Interfaces, June, 23-26, 2008, Cavtat, Dubrovnik, 
IEEE, in print.  

Holzinger, A., Sammer, P., Hofmann-Wellenhof, R. 
(2006) Mobile Computing in Medicine: Designing 
Mobile Questionnaires for Elderly and Partially 
Sighted People. Springer LNCS 4061. Berlin, New 
York, Springer, 732-739. 

Holzinger, A., Searle, G., Nischelwitzer, A. (2007) On 
some Aspects of Improving Mobile Applications for 
the Elderly. In: Stephanidis, C. (Ed.) Coping with 
Diversity in Universal Access, Research and 
Development Methods in Universal Access, LNCS 
4554. Berlin, Heidelberg, New York, Springer, 923-
932. 

Junger, A., Michel, A., Benson, M., Quinzio, L. A., Hafer, 
J., Hartmann, B., Brandenstein, P., Marquardt, K., 
Hempelmann, G. (2001) Evaluation of the suitability 
of a patient data management system for ICUs on a 
general ward. International Journal of Medical 
Informatics, 64, 1, 57-66. 

Oracle (2008), Oracle 8i. Online available: 
http://java.sun.com/javase/technologies/database last 
access: 2008-06-10 

Ozok, A. A., Benson, D., Chakraborty, J., Norcio, A. F. 
(2008) A comparative study between tablet and laptop 
PCs: User satisfaction and preferences. International 
Journal of Human-Computer Interaction, 24, 3, 329-
352. 

Prey, J., Weaver, A. (2007) Tablet PC technology: The 
next generation. Computer, 40, 9, 32-33. 

Stefano, C., Claudia, R., Luigi, U. (2007) A Java mobile-
enabled environment to access adaptive services. 5th 
international symposium on Principles and practice of 
programming in Java. Lisboa, Portugal, ACM, 249-
254. 

Thimbleby, H. (2007) User-Centered Methods Are 
Insufficient for Safety Critical Systems. In: Holzinger, 
A. (Ed.) USAB 200, LNCS 4799. Berlin, Heidelberg, 
New York, Springer, 1-20. 

Turner, A., Wang, C. (2007) AJAX: Selecting the 
framework that fits - The right tools make the 
difference. Dr Dobbs Journal, 32, 6, 40-42. 

ICE-B 2008 - International Conference on e-Business

240


