
USING MESSAGE PASSING FOR DEVELOPING
COARSE-GRAINED APPLICATIONS IN OPENMP

Bielecki Wlodzimierz and Palkowski Marek
Faculty of Computer Science, Technical University of Szczecin, Zolnierska 49 st., 71-210 Szczecin, Poland

Keywords: Coarse-grained parallelism, send-receive mechanism, synchronization, agglomeration, locks.

Abstract: A technique for extracting coarse-grained parallelism in loops is presented. It is based on splitting a set of
dependence relations into two sets. The first one is to be used for generating code scanning slices while the
second one permits us to insert send and receive functions to synchronize the slices execution. Codes of
send and receive functions based on both OpenMP and POSIX locks functions are presented. A way of
proper inserting and executing send and receive functions is demonstrated. Using agglomeration and free-
scheduling are discussed for the purpose of improving program performance. Results of experiments are
presented.

1 INTRODUCTION

Extracting coarse-grained parallelism available in
loops is of great importance to develop shared
memory parallel programs. To develop such
programs, the OpenMP standard can be used
(OpenMP, 2007). OpenMP is an Application
Program Interface (API), jointly defined by a group
of major computer hardware and software vendors.
The API supports C/C++ and Fortran on multiple
architectures, including UNIX & Windows NT. It
permits for specifying parallel regions, work
sharing, both barrier and mutual exclusion
synchronization. However OpenMP does not
support directly message passing (send and receive
functions) among threads.

In this paper, we show the need for massage
passing while we develop an OpenMP coarse-
grained parallel program. Then we present how such
a mechanism can be implemented on the basis of
both OpenMP and POSIX locks. Agglomeration and
free-scheduling are discuss to improve program
performance. Results of experiments are presented.

In this paper, we deal with affine loop nests
(Darte 2000). For extracting coarse-grained
parallelism, we use an exact representation of loop-
carried dependences and consequently an exact
dependence analysis which detects a dependence if
and only if it actually exists. To implement our
algorithms, we use the dependence analysis
proposed by Pugh and Wonnacott (Pugh 1998).

2 MOTIVATING EXAMPLE

Let us consider the following loop.

for(i=1; i<=n; i++)
 for(j=1; j<=n; j++)
 a(i,j) = a(i,j-1) + a(i-1,1);

j

i

Figure 1: Dependences in the motivating example.

Using the Petit tool (Kelly 1997), we can extract
the following dependence relations for this loop:

R1 = {[i,j] -> [i,j+1] : 1 <= i <= n && 1 <= j < n},
R2 = {[i,1] -> [i+1,1] : 1 <= i < n && j=1}.

Figure 1 shows the loop iteration space and
dependences for n=m=6. To produce a coarse-
grained parallel program, we may proceed as
follows. Using relation R1, we can generate code
scanning synchronization-free slices. For this

145
Wlodzimierz B. and Marek P. (2008).
USING MESSAGE PASSING FOR DEVELOPING COARSE-GRAINED APPLICATIONS IN OPENMP.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 145-152
DOI: 10.5220/0001873801450152
Copyright c© SciTePress

purpose, we can apply any well-known technique,
for example those presented in (Beletska 2007,
Bielecki 2008). The following loop, scanning
synchronization-free slices being described by
relation R1(see Figure 2), is generated by the Omega
Calculator codegen function (Kelly 1995).

if(n >=2)
for(t1 = 1; t1 <= n; t1++) {
 a(t1,1) = a(t1,0) + a(t1-1,1);
 if (n >= t1 && t1 >= 1) {
 for(t2 = 2; t2 <= n; t2++) {
 a(t1,t2) = a(t1,t2-1) +
 a(t1-1,1);
 }
}

Figure 2: Synchronization-free slices described by R1.

To made this code to be semantically the same as
the working loop, we may insert in it send and
receive functions responsible for preserving
dependences represented by R2. To properly insert
and execute send and receive functions, the values of
the iteration index vector have to be checked. Let us
suppose that a pair of associated send and receive
functions are executed in such a way that the receive
function will wait until the execution of the
correspondent send function is completed. Then for
the motivating example, we may apply the following
way of inserting and executing send and receive
functions.

If the iteration index vector, I, belongs to the set
SET_RECV = (Domain(R1) union Range(R1))
intersection Range(R2), comprising all the
dependence sources and destinations described by
R1 that are simultaneously dependence destinations
described by R2, then a receive function must be
inserted and executed prior the first loop statement
that executes at iteration I. Its arguments are
coordinates of the vector J= R2-1(I).

The correspondent send function must be
inserted and executed after the last loop statement
executing at iteration J= R2-1(I). Its arguments are
also coordinates of J. That is, we may form a set
SET_SEND as R2-1(SET_RECV). It comprises all

the iterations, after which execution, send functions
must be executed.

To preserve the presented rules, we may insert
send and receive functions as the body of if
condition statements.
 Using the Omega Calculator, we get the following
sets for the working example

SET_RECV={[i,1]:2<=i<=n},
SET_SEND={[i,1] : 1 <= i <= n-1}.

Below we present the loop being formed taking

into account the above presented rules. Figure 3
illustrates for which iterations send and receive
functions should be executed and what are their
arguments.

if (n >= 2) {
par for(t1 = 1; t1 <= n; t1++) {
 if(2 <= t1 && t1 <= n)
 recv(t1-1,1);
 a(t1,1) = a(t1,0) + a(t1-1,1);
 if(1 <= t1 && t1 < n)
 send(t1,1);
 if (n >= t1 && t1 >= 1) {
 for(t2 = 2; t2 <= n; t2++) {
 a(t1,t2) = a(t1,t2-1) +
 a(t1-1,1);
 }
 }
}

j

i
send(1,1)

recv(1,1)

send(1,2)

recv(1,2)

send(1,3)

recv(1,n-1)

Figure 3: Parallel threads with synchronization.

3 ALGORITHM OF
GENERATING
COARSE-GRAINED LOOPS
WITH SEND AND RECEIVE
FUNCTIONS

Below we present an algorithm permitting for proper
inserting and executing send and receive functions.

Algorithm. Inserting send and receive functions.

ICSOFT 2008 - International Conference on Software and Data Technologies

146

Input. 1) set S1 including dependence relations
originating at least two synchronization-free slices;
2) set S2 comprising dependence relations to be used
for the synchronization of the execution of slices
produced by set S1(set S1 and set S2 together
comprise all dependence relations extracted for the
source loop); 3) relations Rel1 and Rel2 representing
the unions of all the relations being comprised in set
S1 and set S2, respectively; for sets S1 and S2, the
following limitation is satisfied: Domain (Rel2)
union Range (Rel2) ∈ Domain (Rel1) union Range
(Rel1).

Output. Coarse-grained parallel code.

Method.
1. Using relations in set S1, generate code scanning
synchronization-free slices applying any well-known
technique, for example (Beletska 2007, Bielecki
2008) and extract all sets, Ij, representing the
iteration space of statement stj, j=1,2,...,q; q is the
number of the loop body statements.
2. Calculate set SET_RECVi = (Domain(Rel1) union
Range(Rel1)) intersection Range(R2i) for each
relation R2i in S2, i=1,2,...,n; n is the number of
relations in S2.
3. Calculate set SET_SEND = Rel2-1(Domain(Rel1)
union Range(Rel1)) intersection Range(Rel2).
4. Before each statement, stj, of the code generated
in step 1 and for each relation R2i, if (SET_RECVi
intersection Ij) ≠ FALSE insert the following code

if(I ∈ SET_RECVi)
 recv(R2i

-1(I)); /*I is the
iteration vector being defined by the
loops surrounding stj */

5. After each statement stj of the code generated in
step 1, if (SET_SEND intersection Ij) ≠ FALSE
insert the following code:

if(I ∈ SET_SEND)
 send(I); /*I is the iteration

vector being defined by the loops
surrounding stj */

Let us generate now code for the motivating
example according to the presented algorithm.

Input.
S1 = {R1}, Rell ={[i,j] -> [i,j+1] : 1 <= i <= n &&
 1 <= j < n},
S2= {R2}, Rel2 ={[i,1] -> [i+1,1] : 1 <= i < n
 && j=1}.
Step 1.

if (n >= 2) {
for(t1 = 1; t1 <= n; t1++) {

 s(t1,1) ; /* a(t1,1) = a(t1,0) +
a(t1-1,1); */

 if (n >= t1 && t1 >= 1) {
 for(t2 = 2; t2 <= n; t2++) {
 s(t1,t2); /* a(t1,t2) =
 a(t1,t2-1) + a(t1-1,1); */
 }
 }

I1 = {[t1,1] : t1 >= 1 && t1 <=n },
I2 = {[t1,t2 : t1 >= 1 && t1 <=n && t2 >= 2 && t2
<=n}

Steps 2,3.
SET_RECV1={[i,1]:2<=i <= n}, SET_SEND={[i,1]
: 1 <= i <= n-1}.

Steps 4,5.

if (n >= 2) {
for(t1 = 1; t1 <= n; t1++) {
 if(2 <= t1 && t1 <= n)
 recv(t1-1,1);
 s(t1,1) ; // st1
 if(1 <= t1 && t1 < n)
 send(t1,1);
 if (n >= t1 && t1 >= 1) {
 for(t2 = 2; t2 <= n; t2++) {
 s(t1,t2); //st2
 }
 } }

For I2, we have SET_RECV2 intersection I2 =
FALSE, SET_SEND2 intersection I2 = FALSE,
therefore send and receive functions are not inserted
for statement st2.

4 IMPLEMENTATION OF SEND
AND RECEIVE FUNCTIONS

In order to implement send and receive functions,
we use lock functions. A lock function takes a lock
variable as an argument. Firstly we present send and
receive functions based on OpenMP lock functions,
then we demonstrate how they can be implemented
on the basis of POSIX lock functions.

4.1 Send and Receive Functions based
on OpenMP Lock Functions

For each vector I, belonging to set S_SEND or set
S_RECV, a structure, s_synch, is created. The
structure consists of a binary released lock mutex
and a boolean variable executed initialized with the
false value. Below we present the code of the send

USING MESSAGE PASSING FOR DEVELOPING COARSE-GRAINED APPLICATIONS IN OPENMP

147

function.

void send(int t1, int t2,...,int tn)
{
 struct s_synch *set_c =
 &SET_SEND[t1][t2]..[tn];
 omp_set_lock(&set_c->mutex);
 set_c->executed = 1;
 omp_unset_lock(&set_c->mutex);
}

The arguments of the send function are

coordinates of vector I, n is the number of
coordinates of I. Firstly the function gets the
reference to a correspondent structure. The function
omp_set_lock acquires the correspondent lock and
waiting until it becomes available, if necessary. The
next statement sets the variable executed to true. The
function omp_unset_lock releases the lock mutex,
resuming a waiting thread.

Below is the code of the receive function.

void recv(int t1, int t2,...,int tn)
{

 struct s_comm *set_c =
 &SET_RECV[t1][t2]...[tn];
 while(1)
 {
 omp_set_lock(&set_c->mutex);
 if(!(set_c->executed))
 omp_unset_lock(
 &set_c->mutex);
 else {
 omp_unset_lock(
 &set_c->mutex);
 break;
 }
 }
 }

The arguments of the receive function are
coordinates of vector I. Firstly the function gets the
reference to a correspondent structure. In order to
check the variable executed, the lock has to be set by
means of the function omp_set_lock. A thread
executes the while loop as long as the value of the
variable executed is false (at each iteration, it
releases the lock and next locks the lock again).

When the value of the variable executed becomes
true(a correspondent send function was executed),
the execution of the receive function is terminated
allowing a waiting thread to be resumed.

4.2 Send and Receive Functions based
on POSIX Lock Functions

The disadvantage of the OpenMP lock functions is
that waiting is active, causing wasting processor

cycles. The send and receive functions, implemented
with POSIX Threads (Posix 2004), do not posses
such a disadvantage.

A condition variable in POSIX allows threads to
wait until some event is occurred without wasting
CPU cycles. Several threads may wait on the same
condition variable until some other thread signals
this condition variable (sending a notification).
Then, one of the threads waiting on this condition
variable wakes up. It is possible also to wake up all
threads waiting on a condition variable by using a
broadcast method on this variable.

It is worth to note that a condition variable does
not provide locking. Thus, a lock is used along with
a condition variable, to provide necessary locking
when accessing this condition variable.

The code of the send function is as follows.

void send(int t1, int t2,...,int tn)
{
 struct s_comm *set_c =

&SET_SEND[t1][t2]...[tn];
 pthread_mutex_lock(&set_c->mutex);
 set_c->executed = 1;
 pthread_cond_broadcast(

 &set_c->cond);
 pthread_mutex_unlock(
 &set_c->mutex);

}

Firstly, the function pthread_mutex_lock

acquires the lock on the mutex variable. If the mutex
variable is already locked by another thread, the call
of this function will block the calling thread until the
mutex variable is unlocked. Then the variable
executed is set to true, signaling that the iteration
defined by vector I=(t1,t2,…,tn) has been executed.
The POSIX function pthread_cond_brodcast
signals all waiting threads on the condition variable
cond and causes their awaking up. Finally, the
function pthread_mutex_unlock unlocks the mutex
variable. Below the code of the receive function is
presented.

void recv(int t1, int t2,...,int tn)
{
 struct s_comm *set_c =
 &SET_RECV[t1][t2]...[tn];
 pthread_mutex_lock(&set_c->mutex);
 if(!(set_c->executed))
 pthread_cond_wait(
 &set_c->cond, &set_c->mutex);
 pthread_mutex_unlock(
 &set_c->mutex);
}

ICSOFT 2008 - International Conference on Software and Data Technologies

148

Firstly the lock is locked. Then the variable
executed is checked. If its value is false, the thread,
calling the receive function, is put to sleep. The
function pthread_cond_wait blocks the calling
thread until the specified condition, cond, is
signaled. This function is called while the mutex
variable is locked, and it will automatically release
the mutex variable while it waits. After the signal is
received and the tread is awakened, the mutex
variable will be automatically locked for use by the
tread. Finally the thread releases the lock calling the
function pthread_mutex_unlock. If the variable
executed was set to true, the thread only releases the
mutex variable and continues computing.

5 SLICES AGGLOMERATION
AND ORDER OF ITERATIONS
SCANNING

To reduce the volume of synchronization among
threads, it is worth to agglomerate several slices into
one macro-slice to be executed by an OpenMP
thread. This permits for eliminating synchronization
among slices within a macro-slice. For this purporse,
we can combine several slices into one macro-slice.
Let us suppose that applying agglomeration we
produced N macro-slices. Then we add an additional
parallel loop to scan those N macro-slices. The
remaining inner loops with new lower and upper
bounds lb, ub(their values depend on N) are
executed serialy and scan iterations of a particular
macro-slice.

To avoid inner synchronization in a macro-slice,
additional constraints in if statements must be added
(step 4, 5 in the algorithm presented in Section 3).
We have to check for each vector I whether
iterations R2i

-1(I) and R2(I) belong to the iterations
of a macro-slice. If this is not true, synchronization
is required.

Program performance will depend not only on
the volume of synchronization but also on how we
scan iterations of macro-slices. Figure 4 represents
two different ways to scan iterations of macro-slices.
On the left-hand side, iterations are scanned in
lexicographic order, for example, for the first macro-
slice the order of the iteration execution is (1,1),
(1,2),...., (2,1), (2,2),.... On the right-hand side,
iterations are executed according to the free-
scheduling policy (Darte 2000) that supposes that in
each step we execute those iterations whose input
data is already completed, i.e., in each step the
iterations between a pair of skewing neighborhood

lines are executed (the order of their execution can
be arbitrary because they all have completed data).
There is barrier synchronization in the end of each
step. For example, for the first macro-slice the
following order of the iterations execution is valid:
step1: (1,1), step2: (2,1) , (1,2), step3: (3,1), (2,2),
(1,3) and so on. It is obvious that applying the free-
scheduling policy improves the program
performance because it reduces the waiting time. For
example, applying lexicographic scanning, the
second macro-slice can start its execution after the
execution of 13 iterations(see Figure 4) while
applying the free-scheduling policy, we can start the
execution of the second macro-slice after the
execution of 4 iterations only.

In paper (Bielecki 2008), we proposed how to
generate code scanning iterations according to the
free-scheduling policy. For scanning macro-slices,
we should add a tuple to a set holding iterations to
be executed at the next step (Bielecki 2008), only if
an iteration R2i(I) belongs to the iterations of a
macro-slice.

Below, we present the pseudo-code that scans
iterations of macro-slices for our working example
according to the free-schedule policy. This code is
generated on the basis of the approach presented by
us in paper (Bielecki 2008), and the described above
way to insert send and receive functions. The
additional constraints permitting for avoiding inner
synchronization are bolded in the pseudocode below.

par for w = 1 to N {
// calculate upper and lower
//bounds, ub and lb as follows

 // pack = ((o_ub-1)+1)/N,
 //lb = pack *(w-1)+o_lb;
 // ub = (w==N) ? n : pack *w;
 // where o_lb, o_ub are the lower
//and upper bounds of the outermost
//loop generated in step 1 of the
//algorithm presented in Section 3
 S’ = Ø;
 for t=lb to ub {
 I = [t,1]
 Add I to S’;
 }
 while(S’ != Ø) {

S_tmp= Ø;
foreach(vector I=[i,j] in S’) {
 if(j==1 && 2 <= i && i <= n &&

!(i-1>=lb && i-1 <= ub)) /*
receive message from another
macro-slice */

 recv(i-1,1);
 s1(I);
 if(j==1 && 1 <= i && i < n &&

(!(i+1>=lb && i+1 <= ub)))

USING MESSAGE PASSING FOR DEVELOPING COARSE-GRAINED APPLICATIONS IN OPENMP

149

Figure 4: Illustrating slices agglomeration and the order of iterations scanning.

Table 1: Loops for experiments.

Loop 1 Loop 2 Loop3

for i=1 to n do
 for j=1 to n do
 a(i,j) = a(i,j-1) + a(i-1,1)/1.1
 endfor
endfor

for i=1 to n do
 a(i, 1) = a(1, i)
 for j=1 to n do
 a(i,j) = a(i,j+1)/1.001
 endfor
endfor

for i=1 to n do
 for j=1 to n do
 if(i==2 and j==1) then
 a(i,j) = a(i-1,j)
 endif
 a(i,j) = a(i,j-1)/1.1 + a(i-2,j+1)/1.1
 endfor
endfor

/*send message to another macro-
slice */

 send(i,1);

if(1 <= j && j < n && 1 <= i &&
i <= n){ /* if R1(I ∈ domain
R1*/
 add J=[i,j+1] to S_tmp;
/* J=[ip,jp]= R2(I) */

if(j==1 && 1<=i && i<n &&
lb<=i+1 && i+1>=ub) /*if
R2(I) ∈domain R2
and I∈ Iterations of macro-slice
*/
 add J=[i+1,j] to S_tmp;
/* J=[ip,jp]= R2(I) */

 }
 S’ = S_tmp; }

6 EXPERIMENTS

To evaluate the performance of programs being
formed by the proposed approach, we have tested
three loops (see Table 1). OpenMP parallel coarse-
grained codes were produced by us on the basis of
presented approach. The POSIX library (POSIX
threads C+ access library2.2.1-2) was included in

OpenMP sources to permit us to use send and
receive functions based on POSIX lock functions.
We have carried experiments on the machine Intel
Xeon 1.6 Ghz, 8 processors (2 x 4-core CPU, cache
4 MB), 2 GB RAM, Ubuntu Linux.

The results are presented in Table 2, where time
is presented in seconds, S and E denote speed-up
and efficiency, respectively. The second column in
Table 2 indicates whether agglomeration was used
(+) or not(-), F means that free scheduling was used,
N is the number of macro-slices.

For Loop 1 and Loop 2, we examined how
agglomeration impacts speed-up and efficiency.
Loop 3 originates only two slices, hence
agglomeration was not considered.

 Experiments with Loop 1 and Loop 2
demonstrate that i) increasing the volume of
calculations executing by a thread(increasing n)
increases S and E; ii) the positive impact of
agglomeration on S and E grows with increasing the
number of processors; iii) free scheduling is
important for the number of processors greater than
2. However it is not obvious what is the value of N
that optimizes program performance. As N grows,
the waiting time to start the macro-slice execution
decreases while the volume of synchronization
increases.

ICSOFT 2008 - International Conference on Software and Data Technologies

150

Table 2: Results of experiments (POSIXfunctions).

 Aggl. CPU 1 2 4 8

Loop n seq. for synch time S E time S E time S E

Loop1

- 1500 0,0441 0,0462 0,0296 1,490 0,745 0,0231 1,281 0,320 0,0288 1,028 0,128

2000 0,0782 0,0814 0,0475 1,646 0,823 0,0346 2,263 0,566 0,0390 2,005 0,251

2500 0,1222 0,1271 0,0713 1,714 0,857 0,0461 2,651 0,663 0,0680 1,797 0,225

Loop1

+ / F
N =
200

1500 0,0441 0,0470 0,0299 1,475 0,737 0,0213 2,070 0,518 0,0272 1,621 0,203

2000 0,0782 0,0861 0,0479 1,633 0,816 0,0350 2,234 0,559 0,0312 2,506 0,313

2500 0,1222 0,1300 0,0721 1,695 0,847 0,0487 2,509 0,627 0,0461 2,651 0,331

Loop2

+
N =
16

1500 0,0446 0,0452 0,0308 1,449 0,724 0,0251 1,777 0,444 0,0247 1,806 0,226

2000 0,0793 0,0801 0,0516 1,537 0,768 0,0314 2,525 0,631 0,0318 2,494 0,312

2500 0,1238 0,1249 0,0720 1,719 0,860 0,0458 2,703 0,676 0,0382 3,241 0,405

Loop 3

- 1500 0,0578 0,0580 0,0391 1,478 0,739 - - - - - -

2000 0,0843 0,0844 0,0527 1,600 0,800 - - - - - -

2500 0,1148 0,1153 0,0648 1,772 0,886 - - - - - -

Table 3: Influence of the number of macro-slices on program performance (POSIX functions).

CPU 1 2 4 8

N seq. for synch time S E time S E time S E

32 0,0819 0,0908 0,0507 1,615 0,808 0,0428 1,914 0,478 0,0370 2,214 0,277

64 0,0819 0,0912 0,0498 1,645 0,823 0,0356 2,301 0,575 0,0346 2,367 0,296

128 0,0819 0,0878 0,0514 1,593 0,797 0,0324 2,528 0,632 0,0307 2,668 0,333

256 0,0819 0,0876 0,0538 1,522 0,761 0,0342 2,395 0,599 0,0364 2,250 0,281

Table 4: POSIX and OpenMP functions.

N

1 CPU, s 2 CPU, s 4 CPU, s 8 CPU, s

Seq. OpenMP POSIX WS OpenMP POSIX WS OpenMP POSIX WS OpenMP POSIX

WS

512
0,0819 0,0894 0,0866 0,0837 0,0587 0,0516 0,0496 0,0392 0,0381 0,0378 0,0375 0,036 0,0359

(6,8%;3,5%) (18,3%;4%) (3,7%;0,8%) (4,5%;0,3%)

256
0,0819 0,0888 0,0853 0,0852 0,0568 0,0501 0,0499 0,0345 0,0309 0,0306 0,0386 0,036 0,0317

(4,2%;3,5%) (13,8%; 0,4%) (12,7%; 1,0%) (21,8%; 13,6%)

128
0,0819 0,0875 0,0866 0,0856 0,0576 0,0521 0,0512 0,0356 0,0318 0,0316 0,0365 0,0319 0,032

(2,2%; 1,2%) (12,5%; 1,8%) (12,7%; 0,6%) (14,1%; 0%)

32
0,0819 0,1001 0,0965 0,0845 0,0585 0,056 0,0509 0,0431 0,0401 0,0371 0,0372 0,0343 0,0311

(18,5%; 14,2%) (14,9%; 10%) (16,2%;8,1%) (19,6%;10,3%)

The size of a macro-slice impacts also program
locality – a very important factor defining program
performance. Table 3 presents how the number of
macro-slices (Loop 1, free-scheduling with
agglomeration), N, impacts S and E. For each
number of processors, there exists a particular value
of N optimizing program performance.

Table 4 presents differences in execution times
of programs being written with OpenMP and POSIX
lock functions for Loop 1, n=2048. The columns
named as WS present program execution times when

send and receive functions are removed from code.
In the brackets, the percentage of the program
execution time is inserted that characterizes
synchronization time on the basis of OpenMP and
POSIX functions, respectively. The data in Table 4
demonstrates that POSIX functions permit for better
program performance in comparison with OpenMP
functions.

USING MESSAGE PASSING FOR DEVELOPING COARSE-GRAINED APPLICATIONS IN OPENMP

151

7 RELATED WORK

Unimodular loop transformations (Banerjee 1990),
permitting the outermost loop in a nest of loops to be
parallelized, find synchronization-free parallelism.
However when there exist dependences between
slices, that approach fails to extract coarse-grained
parallelism.

The affine transformation framework
(polyhedral approach), considered in many papers,
for example, in papers (Darte 2000, Feautrier 1994,
Lim 1999) unifies a large number of previously
proposed loop transformations. It permits for
producing affine time and space partitioning and
correspondent parallel codes. For the motivating
example, there does not exist any affine space
partitioning permitting for extracting coarse-grained
parallelism; we are able to find only time
partitioning to extract fine-grained parallelism.

Our contribution consists in demonstrating how
to generate coarse-grained code on the basis of two
sets of dependence relations, the first of them
permits for extracting synchronization-free slices
(our previous results: Beletska 2007, Bielecki 2008)
while the second one is used for inserting send and
receive functions. The proposed approach extracts
coarse-grained parallelism when in a loop there does
not exist synchronization-free slices.

8 CONCLUSIONS AND FUTURE
WORK

We introduced the approach to extract coarse-
grained parallelism in loops. Send and receive
functions are used to synchronize the slices
execution. Our future research direction is to derive
techniques permitting for automatic splitting a set of
dependence relations into two sets such that the first
one is to be used for generating code scanning slices
while the second one is to insert send and receive
functions.

REFERENCES

OpenMP Application Program Interface 2007. In
http://www.openmp.org

Darte A., Robert Y., Vivien F., 2000. Scheduling and
Automatic Parallelization, Birkhäuser Boston.

Pugh W., Wonnacott D., 1998. Constraint-based array
dependence analysis. In ACM Trans. on Programming
Languages and Systems.

Beletska A., Bielecki W., San Pietro P., 2007 Extracting
Coarse-Grained Parallelism in Program Loops with
the Slicing Framework. In Proceedings of
ISPDC’2008.

Bielecki W., Beletska A., Pałkowski M., San Pietro P.,
2008. Finding synchronization-free parallelism
represented with trees of dependent operations. In
Proceedings of ICA3PP'2008.

Kelly W., Maslov V., Pugh W., Rosser E., Shpeisman T.,
Wonnacott, D., 1995. The omega library interface
guide. Technical Report CS-TR-3445, University of
Maryland.

The POSIX 1003.1-2001, 2004. Standard of an
application programming interface (API) for writing
multithreaded applications. In http://
www.unix.org/version3/ieee_std.html

Banerjee U., 1990. Unimodular transformations of double
loops. In Proceedings of the Third Workshop on
Languages and Compilers for Parallel Computing, pp.
192-219.

Feautrier P., 1994. Toward automatic distribution. Journal
of Parallel Processing Letters 4, pp. 233-244.

Lim W., Cheong G.I., Lam M.S., 1999. An affine
partitioning algorithm to maximize parallelism and
minimize communication. In Proceedings of the 13th
ACM SIGARCH International Conference on
Supercomputing.

Kelly W., Pugh W., Rosser E. and Shpeisman T., 1996.
Transitive Closure of Infinite Graphs and its
Applications. International Journal of Parallel
Programming, v. 24, n. 6, pp. 579-598.

Allen, R, Kennedy, K. 2001. Optimizing Compilers for
Modern Architectures, pages 790, Morgan Kaufmann.

ICSOFT 2008 - International Conference on Software and Data Technologies

152

