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Abstract: A technique for extracting coarse-grained parallelism in loops is presented. It is based on splitting a set of 
dependence relations into two sets. The first one is to be used for generating code scanning slices while the 
second one permits us to insert send and receive functions to synchronize the slices execution. Codes of 
send and receive functions based on both OpenMP and POSIX locks functions are presented. A way of 
proper inserting and executing send and receive functions is demonstrated. Using agglomeration and free-
scheduling are discussed for the purpose of improving program performance. Results of experiments are 
presented. 

1 INTRODUCTION 

Extracting coarse-grained parallelism available in 
loops is of great importance to develop shared 
memory parallel programs. To develop such 
programs, the OpenMP standard can be used 
(OpenMP, 2007). OpenMP is an Application 
Program Interface (API), jointly defined by a group 
of major computer hardware and software vendors. 
The API supports C/C++ and Fortran on multiple 
architectures, including UNIX & Windows NT. It 
permits for specifying parallel regions, work 
sharing, both barrier and mutual exclusion 
synchronization. However OpenMP does not 
support directly message passing (send and receive 
functions) among threads.   

In this paper, we show the need for massage 
passing while we develop an OpenMP coarse-
grained parallel program. Then we present how such 
a mechanism can be implemented on the basis of 
both OpenMP and POSIX locks. Agglomeration and 
free-scheduling are discuss to improve program 
performance. Results of experiments are presented.  

In this paper, we deal with affine loop nests 
(Darte 2000). For extracting coarse-grained 
parallelism, we use an exact representation of loop-
carried dependences and consequently an exact 
dependence analysis which detects a dependence if 
and only if it actually exists. To implement our 
algorithms, we use the dependence analysis 
proposed by Pugh and Wonnacott (Pugh 1998).  

2 MOTIVATING EXAMPLE 

Let us consider the following loop. 
 

for( i=1; i<=n; i++) 
 for( j=1; j<=n; j++)  
  a(i,j) = a(i,j-1) + a(i-1,1); 

j

i

 
Figure 1: Dependences in the motivating example. 

Using the Petit tool (Kelly 1997), we can extract 
the following dependence relations for this loop: 
 
R1 = {[i,j] -> [i,j+1] : 1 <= i <= n && 1 <= j < n}, 
R2 = {[i,1] -> [i+1,1] : 1 <= i < n && j=1}. 
 
Figure 1 shows the loop iteration space and 
dependences for n=m=6. To produce a coarse-
grained parallel program, we may proceed as 
follows. Using relation R1, we can generate code 
scanning synchronization-free slices. For this 
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purpose, we can apply any well-known technique, 
for example those presented in (Beletska 2007, 
Bielecki 2008). The following loop, scanning 
synchronization-free slices being described by 
relation R1(see Figure 2), is generated by the Omega 
Calculator codegen function (Kelly 1995). 

 
if(n >=2) 
for(t1 = 1; t1 <= n; t1++) { 
    a(t1,1) = a(t1,0) + a(t1-1,1); 
    if (n >= t1 && t1 >= 1) { 
      for(t2 = 2; t2 <= n; t2++) { 
         a(t1,t2) = a(t1,t2-1) +   
                    a(t1-1,1); 
      } 
} 

 
Figure 2: Synchronization-free slices described by R1. 

To made this code to be semantically the same as 
the working loop, we may insert in it send and 
receive functions responsible for preserving 
dependences represented by R2. To properly insert 
and execute send and receive functions, the values of 
the iteration index vector have to be checked. Let us 
suppose that a pair of associated send and receive 
functions are executed in such a way that the receive 
function will wait until the execution of the 
correspondent send function is completed. Then for 
the motivating example, we may apply the following 
way of inserting and executing send and receive 
functions.  

If the iteration index vector, I, belongs to the set 
SET_RECV = (Domain(R1) union Range(R1)) 
intersection Range(R2), comprising all the 
dependence sources and destinations described by 
R1 that are simultaneously dependence destinations 
described by R2, then a receive function must be 
inserted and executed prior the first loop statement 
that executes at iteration I. Its arguments are 
coordinates of the vector J= R2-1(I).  

The correspondent send function must be 
inserted and executed after the last loop statement 
executing at iteration J= R2-1(I). Its arguments are 
also coordinates of J. That is, we may form a set 
SET_SEND as R2-1(SET_RECV). It comprises all 

the iterations, after which execution, send functions 
must be executed.  

To preserve the presented rules, we may insert 
send and receive functions as the body of if 
condition statements.  
    Using the Omega Calculator, we get the following 
sets for the working example 
 

SET_RECV={[i,1]:2<=i<=n}, 
SET_SEND={[i,1] : 1 <= i <= n-1}. 

 
Below we present the loop being formed taking 

into account the above presented rules. Figure 3 
illustrates for which iterations send and receive 
functions should be executed and what are their 
arguments.  
 

if (n >= 2) { 
par for(t1 = 1; t1 <= n; t1++) { 
    if(2 <= t1 && t1 <= n) 
       recv(t1-1,1); 
    a(t1,1) = a(t1,0) + a(t1-1,1); 
    if(1 <= t1 && t1 < n) 
       send(t1,1); 
    if (n >= t1 && t1 >= 1) { 
      for(t2 = 2; t2 <= n; t2++) { 
         a(t1,t2) = a(t1,t2-1) +   
                    a(t1-1,1); 
      } 
    } 
} 
 

j

i
send(1,1)

recv(1,1)

send(1,2)

recv(1,2)

send(1,3)

recv(1,n-1)

 
Figure 3: Parallel threads with synchronization. 

3 ALGORITHM OF 
GENERATING  
COARSE-GRAINED LOOPS 
WITH SEND AND RECEIVE 
FUNCTIONS 

Below we present an algorithm permitting for proper 
inserting and executing send and receive functions.  

Algorithm. Inserting send and receive functions. 
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Input. 1) set S1 including dependence relations 
originating at least two synchronization-free slices;  
2) set S2 comprising dependence relations to be used 
for the synchronization of the execution of slices 
produced by set S1(set S1 and set S2 together 
comprise all dependence relations extracted for the 
source loop); 3) relations Rel1 and Rel2 representing 
the unions of all the relations being comprised in set 
S1 and set S2, respectively; for sets S1 and S2, the 
following limitation is satisfied: Domain (Rel2) 
union Range (Rel2) ∈ Domain (Rel1) union Range 
(Rel1).  

Output. Coarse-grained parallel code. 

Method. 
1. Using relations in set S1, generate code scanning 
synchronization-free slices applying any well-known 
technique, for example (Beletska 2007, Bielecki 
2008) and extract all sets, Ij, representing the 
iteration space of statement stj, j=1,2,...,q; q is the 
number of the loop body statements. 
2. Calculate set SET_RECVi = (Domain(Rel1) union 
Range(Rel1)) intersection Range(R2i) for each 
relation R2i in S2, i=1,2,...,n; n is the number of 
relations in S2. 
3. Calculate set SET_SEND = Rel2-1(Domain(Rel1) 
union Range(Rel1)) intersection Range(Rel2). 
4. Before each statement, stj, of the code generated 
in step 1 and for each relation R2i, if (SET_RECVi 
intersection Ij) ≠ FALSE insert the following code 
 

if(I ∈ SET_RECVi) 
  recv(R2i

-1(I)); /*I is the 
iteration vector being defined by the 
loops surrounding stj */ 
 
5. After each statement stj of the code generated in 
step 1, if (SET_SEND intersection Ij) ≠ FALSE 
insert the following code: 
 

if(I ∈ SET_SEND)   
  send(I); /*I is the iteration 

vector being defined by the loops 
surrounding stj */ 
 

Let us generate now code for the motivating 
example according to the presented algorithm. 

Input. 
S1 = {R1},    Rell ={[i,j] -> [i,j+1] : 1 <= i <= n &&       
                                   1 <= j < n}, 
S2= {R2},      Rel2 ={[i,1] -> [i+1,1] : 1 <= i < n  
                                    && j=1}. 
Step 1.  

if (n >= 2) { 
for(t1 = 1; t1 <= n;  t1++) { 

    s(t1,1) ; /* a(t1,1) = a(t1,0) + 
a(t1-1,1); */ 

    if (n >= t1 && t1 >= 1) { 
      for(t2 = 2; t2 <= n; t2++) { 
         s(t1,t2);  /* a(t1,t2) =  
          a(t1,t2-1) + a(t1-1,1); */ 
      } 
    } 
 

I1 = {[t1,1] : t1 >= 1 && t1 <=n },  
I2 = {[t1,t2 : t1 >= 1 && t1 <=n && t2 >= 2 && t2 
<=n} 
 
Steps 2,3.  
SET_RECV1={[i,1]:2<=i <= n},  SET_SEND={[i,1] 
: 1 <= i <= n-1}. 

     
Steps 4,5. 

if (n >= 2) {  
for(t1 = 1; t1 <= n;  t1++) { 
   if(2 <= t1 && t1 <= n) 
      recv(t1-1,1); 
   s(t1,1) ;        // st1 
   if(1 <= t1 && t1 < n) 
       send(t1,1); 
   if (n >= t1 && t1 >= 1) { 
     for(t2 = 2; t2 <= n; t2++) { 
        s(t1,t2);  //st2 
      } 
 } } 

 
For I2, we have SET_RECV2 intersection I2 = 
FALSE, SET_SEND2 intersection I2 = FALSE, 
therefore send and receive functions are not inserted 
for statement st2. 

4 IMPLEMENTATION OF SEND 
AND RECEIVE FUNCTIONS 

In order to implement send and receive functions, 
we use lock functions. A lock function takes a lock 
variable as an argument. Firstly we present send and 
receive functions based on OpenMP lock functions, 
then we demonstrate how they can be implemented 
on the basis of POSIX lock functions.  

4.1 Send and Receive Functions based 
on OpenMP Lock Functions 

For each vector I, belonging to set S_SEND or set 
S_RECV, a structure, s_synch, is created. The 
structure consists of a binary released lock mutex 
and a boolean variable executed initialized with the 
false value. Below we present the code of the send 
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function.  
 

void send(int t1, int t2,...,int tn) 
{ 
 struct s_synch *set_c =             
           &SET_SEND[t1][t2]..[tn];   
  omp_set_lock(&set_c->mutex); 
  set_c->executed = 1; 
  omp_unset_lock(&set_c->mutex); 
} 
 
The arguments of the send function are 

coordinates of vector I, n is the number of 
coordinates of I. Firstly the function gets the 
reference to a correspondent structure. The function 
omp_set_lock acquires the correspondent lock and 
waiting until it becomes available, if necessary. The 
next statement sets the variable executed to true. The 
function omp_unset_lock releases the lock mutex, 
resuming a waiting thread.  

Below is the code of the receive function. 
 

void recv(int t1, int t2,...,int tn) 
{ 

    struct s_comm *set_c =  
             &SET_RECV[t1][t2]...[tn]; 
     while(1) 
     { 
        omp_set_lock(&set_c->mutex); 
        if(!(set_c->executed)) 
            omp_unset_lock( 
                    &set_c->mutex); 
        else { 
            omp_unset_lock(  
                     &set_c->mutex); 
            break; 
        } 
     } 
   } 

 
The arguments of the receive function are 
coordinates of vector I. Firstly the function gets the 
reference to a correspondent structure. In order to 
check the variable executed, the lock has to be set by 
means of the function omp_set_lock. A thread 
executes the while loop as long as the value of the 
variable executed is false (at each iteration, it 
releases the lock and next locks the lock again). 

When the value of the variable executed becomes 
true(a correspondent send function was executed), 
the execution of the receive function is terminated 
allowing a waiting thread to be resumed.  

4.2 Send and Receive Functions based 
on POSIX Lock Functions 

The disadvantage of the OpenMP lock functions is 
that waiting is active, causing wasting processor 

cycles. The send and receive functions, implemented 
with POSIX Threads (Posix 2004), do not posses 
such a disadvantage. 

A condition variable in POSIX allows threads to 
wait until some event is occurred without wasting 
CPU cycles. Several threads may wait on the same 
condition variable until some other thread signals 
this condition variable (sending a notification). 
Then, one of the threads waiting on this condition 
variable wakes up. It is possible also to wake up all 
threads waiting on a condition variable by using a 
broadcast method on this variable.  

It is worth to note that a condition variable does 
not provide locking. Thus, a lock is used along with 
a condition variable, to provide necessary locking 
when accessing this condition variable. 

The code of the send function is as follows.  
 

void send(int t1, int t2,...,int tn)  
{  
 struct s_comm *set_c = 

&SET_SEND[t1][t2]...[tn];  
 pthread_mutex_lock(&set_c->mutex);  
 set_c->executed = 1;  
     pthread_cond_broadcast( 

                         &set_c->cond);    
 pthread_mutex_unlock( 
                     &set_c->mutex); 
 
} 

 
Firstly, the function pthread_mutex_lock 

acquires the lock on the mutex variable. If the mutex 
variable is already locked by another thread, the call 
of this function will block the calling thread until the 
mutex variable is unlocked. Then the variable 
executed is set to true, signaling that the iteration 
defined by vector I=(t1,t2,…,tn)  has been executed. 
The POSIX function pthread_cond_brodcast  
signals all waiting threads on the condition variable 
cond and causes their awaking up. Finally, the 
function pthread_mutex_unlock unlocks the mutex 
variable. Below the code of the receive function is 
presented.  

 

void recv(int t1, int t2,...,int tn)  
{  
 struct s_comm *set_c =  
       &SET_RECV[t1][t2]...[tn];  
 pthread_mutex_lock(&set_c->mutex); 
 if(!(set_c->executed))  
   pthread_cond_wait( 
       &set_c->cond, &set_c->mutex); 
 pthread_mutex_unlock( 
                     &set_c->mutex); 
} 
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Firstly the lock is locked. Then the variable 
executed is checked. If its value is false, the thread, 
calling the receive function, is put to sleep. The 
function pthread_cond_wait blocks the calling 
thread until the specified condition, cond, is 
signaled. This function is called while the mutex 
variable is locked, and it will automatically release 
the mutex variable while it waits. After the signal is 
received and the tread is awakened, the mutex 
variable will be automatically locked for use by the 
tread. Finally the thread releases the lock calling the 
function pthread_mutex_unlock. If the variable 
executed was set to true, the thread only releases the 
mutex variable and continues computing. 

5 SLICES AGGLOMERATION 
AND ORDER OF ITERATIONS 
SCANNING 

To reduce the volume of synchronization among 
threads, it is worth to agglomerate several slices into 
one macro-slice to be executed by an OpenMP 
thread. This permits for eliminating synchronization 
among slices within a macro-slice. For this purporse, 
we can combine several slices into one macro-slice. 
Let us suppose that applying agglomeration we 
produced N macro-slices. Then we add an additional 
parallel loop to scan those N macro-slices. The 
remaining inner loops with new lower and upper 
bounds lb, ub(their values depend on N) are 
executed serialy and scan iterations of a particular 
macro-slice.  

To avoid inner synchronization in a macro-slice, 
additional constraints in if statements must be added 
(step 4, 5 in the algorithm presented in Section 3). 
We have to check for each vector I whether 
iterations R2i

-1(I) and  R2(I) belong to the iterations 
of a macro-slice. If this is not true, synchronization 
is required.  

Program performance will depend not only on 
the volume of synchronization but also on how we 
scan iterations of macro-slices. Figure 4 represents 
two different ways to scan iterations of macro-slices. 
On the left-hand side, iterations are scanned in 
lexicographic order, for example, for the first macro- 
slice the order of the iteration execution is (1,1), 
(1,2),...., (2,1), (2,2),.... On the right-hand side, 
iterations are executed according to the free-
scheduling policy (Darte 2000) that supposes that in 
each step we execute those iterations whose input 
data is already completed, i.e., in each step the 
iterations between a pair of skewing neighborhood 

lines are executed (the order of their execution can 
be arbitrary because they all have completed data). 
There is barrier synchronization in the end of each 
step. For example, for the first macro-slice the 
following order of the iterations execution is valid: 
step1: (1,1), step2: (2,1) , (1,2), step3: (3,1), (2,2), 
(1,3) and so on. It is obvious that applying the free-
scheduling policy improves the program 
performance because it reduces the waiting time. For 
example, applying lexicographic scanning, the 
second macro-slice can start its execution after the 
execution of 13 iterations(see Figure 4) while 
applying the free-scheduling policy, we can start the 
execution of the second macro-slice after the 
execution of 4 iterations only.  

In paper (Bielecki 2008), we proposed how to 
generate code scanning iterations according to the 
free-scheduling policy. For scanning macro-slices, 
we should add a tuple to a set holding iterations to 
be executed at the next step (Bielecki 2008), only if 
an iteration R2i(I) belongs to the iterations of a 
macro-slice.  

Below, we present the pseudo-code that scans 
iterations of macro-slices for our working example 
according to the free-schedule policy. This code is 
generated on the basis of the approach presented by 
us in paper (Bielecki 2008), and the described above 
way to insert send and receive functions. The 
additional constraints permitting for avoiding inner 
synchronization are bolded in the pseudocode below. 

par for w = 1 to N { 
// calculate upper and lower 
//bounds, ub and lb as follows 

 // pack = ((o_ub-1)+1)/N,  
 //lb = pack *(w-1)+o_lb; 
 // ub = (w==N) ? n : pack *w; 
 // where o_lb, o_ub are the lower 
//and upper bounds of the outermost 
//loop generated in step 1 of the 
//algorithm presented in Section 3 
  S’ = Ø; 
  for t=lb to ub {    
      I = [t,1] 
      Add I to S’;    
  } 
  while(S’ != Ø) { 

S_tmp= Ø; 
foreach(vector I=[i,j] in S’) {  
  if(j==1 && 2 <= i && i <= n && 

!(i-1>=lb && i-1 <= ub)) /* 
receive message from another 
macro-slice */ 

   recv(i-1,1); 
  s1(I); 
  if(j==1 && 1 <= i && i < n && 

( !(i+1>=lb && i+1 <= ub) ) )  

USING MESSAGE PASSING  FOR DEVELOPING COARSE-GRAINED  APPLICATIONS IN OPENMP 

149



 
Figure 4: Illustrating slices agglomeration and the order of iterations scanning. 

Table 1: Loops for experiments. 

Loop 1 Loop 2 Loop3 

for i=1 to n do 
 for j=1 to n do 
    a(i,j) = a(i,j-1) + a(i-1,1)/1.1 
  endfor 
endfor 

for i=1 to n do 
 a(i, 1) = a(1, i) 
 for j=1 to n do 
  a(i,j) = a(i,j+1)/1.001  
 endfor 
endfor 

for i=1 to n do 
 for  j=1 to n do 
   if(i==2 and j==1) then 
    a(i,j) = a(i-1,j)  
   endif 
   a(i,j) = a(i,j-1)/1.1 + a(i-2,j+1)/1.1 
  endfor 
endfor 

 

/*send message to another macro-
slice */ 

   send(i,1); 
 
if(1 <= j && j < n && 1 <= i && 
i <= n){   /* if R1(I ∈ domain 
R1*/ 
   add J=[i,j+1] to S_tmp;      
/* J=[ip,jp]= R2(I) */ 
 
if(j==1 && 1<=i && i<n && 
lb<=i+1 && i+1>=ub) /*if 
R2(I) ∈domain R2               
and I∈ Iterations of macro-slice 
*/ 
   add J=[i+1,j] to S_tmp;      
/* J=[ip,jp]= R2(I) */ 

   } 
     S’ = S_tmp;  } 

6 EXPERIMENTS 

To evaluate the performance of programs being 
formed by the proposed approach, we have tested 
three loops (see Table 1). OpenMP parallel coarse-
grained codes were produced by us on the basis of 
presented approach. The POSIX library (POSIX 
threads C+ access library2.2.1-2) was included in 

OpenMP sources to permit us to use send and 
receive functions based on POSIX lock functions. 
We have carried experiments on the machine Intel 
Xeon 1.6 Ghz, 8 processors (2 x 4-core CPU, cache 
4 MB), 2 GB RAM, Ubuntu Linux.  

The results are presented in Table 2, where time 
is presented in seconds, S and E denote speed-up 
and efficiency, respectively. The second column in 
Table 2 indicates whether agglomeration was used 
(+) or not(-), F means that free scheduling was used, 
N is the number of macro-slices.  

For Loop 1 and Loop 2, we examined how 
agglomeration impacts speed-up and efficiency. 
Loop 3 originates only two slices, hence 
agglomeration was not considered.  

 Experiments with Loop 1 and Loop 2 
demonstrate that i) increasing the volume of 
calculations executing by a thread(increasing n) 
increases S and E; ii) the positive impact of 
agglomeration on S and E grows with increasing the 
number of processors; iii) free scheduling is 
important for the number of processors greater than 
2. However it is not obvious what is the value of N 
that optimizes program performance. As N grows, 
the waiting time to start the macro-slice execution 
decreases while the volume of synchronization 
increases.  
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Table 2: Results of experiments (POSIXfunctions). 

 Aggl. CPU 1 2 4 8 

Loop n seq.  for synch time S E time S E time S E 

Loop1 

- 1500 0,0441 0,0462 0,0296 1,490 0,745 0,0231 1,281 0,320 0,0288 1,028 0,128 

2000 0,0782 0,0814 0,0475 1,646 0,823 0,0346 2,263 0,566 0,0390 2,005 0,251 

2500 0,1222 0,1271 0,0713 1,714 0,857 0,0461 2,651 0,663 0,0680 1,797 0,225 

Loop1 

+ / F 
N = 
200 

1500 0,0441 0,0470 0,0299 1,475 0,737 0,0213 2,070 0,518 0,0272 1,621 0,203 

2000 0,0782 0,0861 0,0479 1,633 0,816 0,0350 2,234 0,559 0,0312 2,506 0,313 

2500 0,1222 0,1300 0,0721 1,695 0,847 0,0487 2,509 0,627 0,0461 2,651 0,331 

Loop2 

+ 
N = 
16 

1500 0,0446 0,0452 0,0308 1,449 0,724 0,0251 1,777 0,444 0,0247 1,806 0,226 

2000 0,0793 0,0801 0,0516 1,537 0,768 0,0314 2,525 0,631 0,0318 2,494 0,312 

2500 0,1238 0,1249 0,0720 1,719 0,860 0,0458 2,703 0,676 0,0382 3,241 0,405 

Loop 3 

- 1500 0,0578 0,0580 0,0391 1,478 0,739 - - - - - - 

2000 0,0843 0,0844 0,0527 1,600 0,800 - - - - - - 

2500 0,1148 0,1153 0,0648 1,772 0,886 - - - - - - 

Table 3: Influence of the number of macro-slices on program performance (POSIX functions). 

CPU 1 2 4 8 

N seq.  for synch time S E time S E time S E 

32 0,0819 0,0908 0,0507 1,615 0,808 0,0428 1,914 0,478 0,0370 2,214 0,277 

64 0,0819 0,0912 0,0498 1,645 0,823 0,0356 2,301 0,575 0,0346 2,367 0,296 

128 0,0819 0,0878 0,0514 1,593 0,797 0,0324 2,528 0,632 0,0307 2,668 0,333 

256 0,0819 0,0876 0,0538 1,522 0,761 0,0342 2,395 0,599 0,0364 2,250 0,281 

Table 4: POSIX and OpenMP functions. 

N 

1 CPU, s 2 CPU, s 4 CPU, s 8 CPU, s 

Seq. OpenMP POSIX WS OpenMP POSIX WS OpenMP POSIX WS OpenMP POSIX 
 

WS 

512 
0,0819 0,0894 0,0866 0,0837 0,0587 0,0516 0,0496 0,0392 0,0381 0,0378 0,0375 0,036 0,0359 

(6,8%;3,5%) (18,3%;4%) (3,7%;0,8%) (4,5%;0,3%) 

256 
0,0819 0,0888 0,0853 0,0852 0,0568 0,0501 0,0499 0,0345 0,0309 0,0306 0,0386 0,036 0,0317 

(4,2%;3,5%) (13,8%; 0,4%) (12,7%; 1,0%) (21,8%; 13,6%) 

128 
0,0819 0,0875 0,0866 0,0856 0,0576 0,0521 0,0512 0,0356 0,0318 0,0316 0,0365 0,0319 0,032 

(2,2%; 1,2%) (12,5%; 1,8%) (12,7%; 0,6%) (14,1%; 0%) 

32 
0,0819 0,1001 0,0965 0,0845 0,0585 0,056 0,0509 0,0431 0,0401 0,0371 0,0372 0,0343 0,0311 

(18,5%; 14,2%) (14,9%; 10%) (16,2%;8,1%) (19,6%;10,3%) 

 

The size of a macro-slice impacts also program 
locality – a very important factor defining program 
performance. Table 3 presents how the number of 
macro-slices (Loop 1, free-scheduling with 
agglomeration), N, impacts S and E. For each 
number of processors, there exists a particular value 
of N optimizing program performance.  

Table 4 presents differences in execution times 
of programs being written with OpenMP and POSIX 
lock functions for Loop 1, n=2048. The columns 
named as WS present program execution times when 

send and receive functions are removed from code. 
In the brackets, the percentage of the program 
execution time is inserted that characterizes 
synchronization time on the basis of OpenMP and 
POSIX functions, respectively. The data in Table 4 
demonstrates that POSIX functions permit for better 
program performance in comparison with OpenMP 
functions.  
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7 RELATED WORK 

Unimodular loop transformations (Banerjee 1990), 
permitting the outermost loop in a nest of loops to be 
parallelized, find synchronization-free parallelism. 
However when there exist dependences between 
slices, that approach fails to extract coarse-grained 
parallelism. 

The affine transformation framework 
(polyhedral approach), considered in many papers, 
for example, in papers (Darte 2000, Feautrier 1994, 
Lim 1999) unifies a large number of previously 
proposed loop transformations. It permits for 
producing affine time and space partitioning and 
correspondent parallel codes. For the motivating 
example, there does not exist any affine space 
partitioning permitting for extracting coarse-grained 
parallelism; we are able to find only time 
partitioning to extract fine-grained parallelism.  

Our contribution consists in demonstrating how 
to generate coarse-grained code on the basis of two 
sets of dependence relations, the first of them 
permits for extracting synchronization-free slices 
(our previous results: Beletska 2007, Bielecki 2008) 
while the second one is used for inserting   send and 
receive functions. The proposed approach extracts 
coarse-grained parallelism when in a loop there does 
not exist synchronization-free slices.  

8 CONCLUSIONS AND FUTURE 
WORK 

We introduced the approach to extract coarse-
grained parallelism in loops. Send and receive 
functions are used to synchronize the slices 
execution. Our future research direction is to derive 
techniques permitting for automatic splitting a set of 
dependence relations into two sets such that the first 
one is to be used for generating code  scanning slices 
while the second one is to insert send and receive 
functions. 
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