
DSAW 
A Dynamic and Static Aspect Weaving Platform 

Luis Vinuesa, Francisco Ortin, José M. Félix and Fernando Álvarez 
Computer Science Department, University of Oviedo, Calvo Sotelo s/n – 33007 Oviedo, Spain 

Keywords: Aspect Oriented Programming, static, dynamic, reflection, code instrumentation, performance, flexibility. 

Abstract: Aspect Oriented Software Development is an effective realization of the Separation of Concerns principle. 
A key issue of this paradigm is the moment when components and aspects are weaved together, composing 
the final application. Static weaving tools perform application composition prior to its execution. This 
approach reduces dynamic aspectation of running applications. In response to this limitation, dynamic 
weaving aspect tools perform application composition at runtime. The main benefit of dynamic weaving is 
runtime adaptability; its main drawback is runtime performance. 
Existing research has identified the suitability of hybrid approaches, obtaining the benefits of both methods 
in the same platform. Applying static weaving where possible and dynamic weaving when needed provides 
a balance between runtime performance and dynamic adaptability. This paper presents DSAW, an aspect-
oriented system that supports both dynamic and static weaving homogeneously over the .Net platform. An 
aspect can be used to adapt an application both statically and dynamically, without needing to modify its 
source code. Moreover, DSAW is language and platform neutral, and source code of neither components 
nor aspects is required. 

1 INTRODUCTION 

Aspect Oriented Software Development AOSD 
(Kiczales, 1997) is a concrete approach of the 
Separation of Concerns (SoC) principle. AOSD 
offers a direct support to modularize different 
concerns that cut across the main functionality of 
applications. Separating the application functional 
code from its crosscutting aspects, the application 
source code would not be tangled, being easy to 
debug, maintain and modify (Parnas, 1972). Typical 
examples of cross-cutting concerns are persistence, 
authentication, logging and tracing (Ortin, 2004). 

The process of integrating the aspects into the 
main application code is called weaving and a tool 
called aspect weaver performs it. The weaving 
process can be performed statically or dynamically 
at runtime. 

Most programming environments that offer 
AOSD employ static weavers. Once the final 
application has been weaved, compiled and 
executed, it is not possible to add new aspects, or 
remove existing ones, at runtime. However, there are 
specific scenarios when it is necessary to adapt 
running applications in response to runtime 
emerging requirements (Popovici, 2001), (Zinki, 

1997), (Matthijs, 1997), (Segura–Devillechaise, 
2003). In these cases, dynamic weavers are a 
powerful tool to create runtime adaptable software. 

The main benefit of static weaving is runtime 
performance. Since the combination of components 
and aspects is performed prior to application 
execution, there is little performance cost when 
compared to traditional object-oriented development 
(Böllert, 1999), (Haupt and Mezini, 2004). On the 
other hand, dynamic weaving AOSD tools imply a 
performance penalty. 

Dynamic weaving provides higher flexibility in 
the development of software. While developing 
aspect-oriented applications, the dynamic adaptation 
mechanism is preferable because it facilitates 
incremental weaving and makes application 
debugging easier (Ortin and Cueva, 2002). Upon 
deployment, aspects that do not need to be adapted 
at runtime should be woven statically for 
performance reasons. 

Another limitation of existing runtime weavers is 
a more reduced join-point set, because runtime 
adaptation is more complicated to be implemented 
(Blackstock, 2004). 

Previous work has identified the appropriateness 
of integrating both static and dynamic weaving in 
the same development environment (Blackstock, 

55
Vinuesa L., Ortin F., M. Félix J. and Álvarez F. (2008).
DSAW - A Dynamic and Static Aspect Weaving Platform.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 55-62
DOI: 10.5220/0001872900550062
Copyright c© SciTePress



 

2004), (Böllert, 1999), (Gilani et al, 2007). Benefits 
of both approaches would be obtained in the 
software development process. This approach is the 
result of applying the separation of the weaving-time 
concern to AOSD. This process should be performed 
transparently, reducing the impact of changing this 
concern in the application’s source code. As an 
example of this benefit, the programmer could use 
non-invasive dynamic weaving for agile 
development. Once the application has been tested, 
static weaving, where possible, could be applied to 
obtain a better runtime performance. 

In this paper we present DSAW, an aspect 
platform that support both static and dynamic 
weaving. DSAW offers the better performance of 
static weaving and the agile interactive development 
of dynamic weaving in a transparent way. Moreover, 
DSAW is language and platform independent and it 
has a set of join-points wider to most dynamic 
weaving tools. 

The rest of this paper is structured as follows. In 
the next section we present a classification of AOSD 
systems based on when the weaving is done and 
describe some requirements on AOSD. We 
introduce the basic architecture of the system 
presented in section 3. Section 4 comments the 
benefits we obtain with our system. Section 5 gives 
an overview of some tools that offer static and 
dynamic weaving and the conclusions are presented 
in Section 6. 

2 ASPECT WEAVING 

A classification of AOSD is based on when the 
weaver is executed. Static tools perform weaving 
prior to application execution. A well-know example 
of static weaving is AspecJ (Kiczales, 2001). There 
are AOSD tools that offer some kind of dynamic 
adaptation of aspects, being PROSE (Popovici et al, 
2001) (Nicoara and Alonso, 2005) and JBoss AOP 
(JBoss, 2008) two well-known examples of this 
approach. 

Most dynamic AOSD systems are not totally 
adaptable at runtime. The majority of them require 
the static specification of which aspects are going to 
be weaved at runtime. Others offer dynamic addition 
of new aspects but they do not support dynamic 
deletion. In addition, the set of join-points they offer 
is significantly smaller than static ones (Blackstock, 
2004) (Vinuesa and Ortin, 2004). 

Although static weaving offers undeniable 
performance benefits, it also involves some 
limitations. If the weaving process is only static, 
AOSD is not especially suitable for rapid 

prototyping development. If we take logging or 
testing aspects as an example, it is needed to weave, 
compile, run and debug the application. Runtime 
contexts should be reproduced and all the 
information generated by the aspects analyzed. If 
some error occurs, the application should be 
modified, re-weaved, re-compiled and re-executed 
(Böllert, 1997), (Eaddy, 2007c). 

In case a dynamic weaver is used, aspects could 
be added in the exact execution point indicated by 
the user, and subsequently removed. Moreover, 
application execution should not be stopped if we 
want to modify an aspect, and debugging is easier 
because of the non-intrusive weaving approach. 

These different scenarios motivate the use of 
static weaving where possible and dynamic weaving 
when needed (Gilani et al, 2007), (Böllert, 1999), 
(Schröder-Preikschat et al., 2006). A tool that 
supports both techniques should define aspects 
independently of when they are weaved. This 
approach will benefit from both static and dynamic 
weaving in the same system. The result is the 
separation of the weaving-time aspect in the AOSD 
process (Gilani et al, 2007). 

Apart from the dynamism an aspect platform 
would benefit from a language-neutrality feature. 
Language independence permit the adaptation of 
applications by aspects developed in a different 
programming language. This promotes component 
and aspect reutilization. Furthermore, if platform 
neutrality is also achieved, aspect-oriented systems 
could be run over any platform. 

Another important characteristic of AOSD 
systems is the adaptation of binary modules, where 
source code is not required to adapt the application. 

Taking into account all these requirements an 
AOSD platform must support to obtain the benefits 
previously described, we have developed the DSAW 
(Dynamic and Static Aspect Weaving) platform. 
This system offers both static and dynamic weaving, 
a wide set of join-points, language and platform 
neutrality, and an executable-level aspect injection. 

3 DSAW 

DSAW is a homogeneous static and dynamic 
weaving aspect-oriented platform. Its main aim is to 
achieve language and weaving-time neutrality. Not 
only is it possible to weave aspects both statically 
and dynamically, but also the same implementation 
of components and aspects is maintained in both 
scenarios. The application need not to be changed if 
we need to make static a dynamic aspect and vice 

ICSOFT 2008 - International Conference on Software and Data Technologies

56



 

versa. This way, it is possible to use aspect-
orientation for rapid prototyping (dynamic weaving) 
and later optimize the released application (static 
weaving) without performing any change to its 
source code. The programmer should finally indicate 
the trade-off between performance and flexibility, 
regarding to the system requirements (Gilani et al, 
2007). 

One of the features that have been considered in 
the design of DSAW is the set of join-points to be 
provided. The collection of join-points DSAW offers 
is similar to the one supplied by AspectJ (Kiczales, 
2001). We currently support the following static and 
dynamic join-points: method and constructor 
execution, method and constructor call, field and 
property read and write, field and property write, 
and exception handling. We also provide before, 
after, and around aspects. 

The design of the platform has been performed 
following the .Net standard reference (ECMA, 
2006), without modifying, neither extending, the 
semantics of the platform. This fact guarantees 
complete platform independence, permitting the 
deployment of our system over any .Net 
implementation (such as Mono, SSCLI and 
DotGNU). 

DSAW performs software adaptation at the 
intermediate language (IL) of the virtual machine –
executable files. This means that our weaver does 
not require source code, and it is not language 
dependent either. 

Finally, point-cuts are specified by means of 
XML documents that specify the mapping between 
join-points and advices. The schema of this XML 
documents is an evolution of the one used on the 
Weave.Net platform (Weave.Net, 2008). We have 
modified this original schema to provide wide set of 
point-cut, similar to the one supplied by AspecJ. 

This separation between point-cuts and advices 
improves the reutilization of aspects. In fact, aspects 
can be also treated as components. They may be 
adapted by other aspects, statically or dynamically, 
regardless of its programming language. 

3.1 ReadyAOP 

DSAW is the enhancement of a previous AOSD tool 
called Ready (Really Dynamic) AOP (Vinuesa, 
2007) (Vinuesa and Ortin, 2004). ReadyAOP is a 
language and platform neutral system that offers a 
real separation of aspects at runtime. It is possible to 
add new aspects (and remove existing ones) to a 
running application, even if the aspects were 

developed later than the application. There is no 
static coupling between components and aspects. 

The system was implemented over the standard 
.Net platform specification, obtaining full language 
independence. The weaving process is performed at 
the virtual machine level, without requiring 
applications source code. Its join-point set is similar 
to the one offered by AspectJ. Both ReadyAOP and 
DSAW are freely available at 
http://www.reflection.uniovi.es. 

DSAW extends the core of ReadyAOP to 
provide the programmer a transparent static and 
dynamic weaving, maintaining all the advantages of 
ReadyAOP. This way, it is possible to mix dynamic 
and static aspects in the same application. It is also 
possible to change in any moment of the software 
development process if an aspect must be static or 
dynamic. The programmer manages the trade-off 
between performance and flexibility, following the 
separation of the weaving-time concern. 

3.2 System Architecture 

Our system is composed of three main elements: 1) 
the JoinPoint Injector (JPI) performs both static and 
dynamic weaving; 2) the application server that 
coordinates components with dynamic aspects; and 
3) the aspect framework that consists of a set of 
interfaces to integrate all the elements of the system 
in dynamic weaving scenarios. 

In our system, there are two stages in 
applications life cycle. The first one is prior to 
program execution. Once the application has been 
compiled, the JoinPoint Injector (JPI) manipulates 
the program, weaving static aspects and including 
code to make possible a future dynamic aspect 
weave. 

The second stage of application life cycle is 
about application execution. The running program is 
launched together with its statically-weaved aspects. 
The application server provides the dynamic 
adaptation of the program at runtime. Any aspect, 
making use of the interfaces defined in the aspect 
framework, will be capable of adapting running 
applications. 

The application server is the Mediator 
component of the system (Gamma, 1994). This 
server works as a registry of running applications, 
making them capable of being adapted by the 
aspects. The application server offers the aspects the 
list of running applications, facilitating their 
adaptation at runtime. 

The aspect framework provides a set of 
interfaces that orchestrates all the elements of the 

DSAW - A Dynamic and Static Aspect Weaving Platform

57



 

system at runtime. These interfaces are implemented 
by the applications in order to be able to be adapted 
at runtime. Applications do not implement these 
interfaces explicitly. It is the JPI the responsible for 
adding this implementation at weaving time. 

In DSAW aspects could also be processed by the 
JoinPoint Injector to become fully-functional 
applications in our system –i.e. components. 

3.3 Static Weaving and JoinPoint 
Injection 

Before to its execution, the application to be adapted 
is processed by the JPI. The JPI receives the 
application, aspects to be statically weaved, and the 
XML document mapping join-points to advices. The 
JPI generates a new program that includes the main 
functionality plus the aspects that have been 
statically weaved. 

The JPI also instruments the application with 
code that allows its dynamic adaptation by aspects at 
runtime. Concretely, what is added is a Meta-Object 
Protocol (MOP) that offers dynamic computational 
reflection (Ortin, 2002). A MOP is a technique that 
permits the dynamic adaptation of running 
applications. This behavior is called computational 
reflection. 

This MOP modifies virtual machine semantics 
such as the message passing mechanism or field 
access. This way, it will be possible to adapt running 
applications with dynamic aspects. Finally, the JPI 
adds other functionalities of the platform such as 
application registration at startup, intra-application 
introspection, and application deregistration at exit 
(Figure 1). 

Application
.exe

Aspects
.dll

PointCuts
.xml

AspectsApplication

Adapted Application (.exe)

code for dynamic adaptation

+

 
Figure 1: Static weaving and JoinPoint injection. 

The JPI performs the following operation: 

1. The JPI takes the compiled application, its static 
aspects, and the XML file that specifies the 
join-point / advice mapping. 

2. Analyzing the IL code, the JPI detects the 
application join-point shadows -the mapping 
between join-points and the points in the 
program text where the compiler actually 
operates- (Masuhara and Kiczales, 2003)  . 

3. When a join-point shadow is selected by any 
point-cut described in the XML document, a 
call to the selected advice is included into the 
program’s IL code. 

4. Besides the code added to the application 
described in the previous point, a reflective 
MOP is included in each join-point shadow. 
This MOP will make the application capable of 
being adapted at runtime by new runtime 
aspects. In order to obtain a better runtime 
performance this MOP injection could be 
avoided in certain join-point shadows –this is 
described in the XML file. This is part of the 
trade-off between performance and runtime 
adaptability. 

5. The JPI adds new code to make the application 
register in the application server at startup. It is 
also included a deregistration routine at exit, 
and the publication of .Net reflective 
information to permit runtime aspects inspect 
application’s structure. 

6. The final application is generated. 

3.4 Application Execution 

The application, once processed by the JPI, has been 
weaved together with its static aspects. These 
aspects are included in the application until its 
execution is over. If new static aspects should be 
added, or any existing one removed, the JPI must re-
process the application. 

However, if the application needs to be adapted 
at runtime, our system will facilitate the dynamic 
addition or deletion of aspects. Notice that this 
behavior is obtained after the instrumentation of the 
application by the JPI. 

ICSOFT 2008 - International Conference on Software and Data Technologies

58



 

AspectsApplication

Adapted Application (.exe)

code for dynamic adaptation

+ Server

Aspect

1)App. registers itself
at startup (GUID)

2,6)Aspect sends
PointCuts and 
GUID of the App. 
to adapt

3,7)JoinPoint activation

4)Execution reaches
an activated JoinPoint

5)Aspect accesses
application to adapt it

8) App. Execution finished

8) App. Execution finished

 
Figure 2: Dynamic adaptation. 

These are the steps followed at runtime to 
dynamically adapt an application with dynamic 
aspects (Figure 2): 

1. At startup the application is registered into the 
application server with a GUID. This GUID was 
generated by the JPI during code 
instrumentation and is used to identify the 
application in the system. 

2. Once the application is running, an aspect may 
be used to dynamically adapt it. If so, the aspect 
calls the application server via .Net remoting. 
The information passed is a reference to the 
aspect, a point-cut XML document, and the 
GUID of the application to be adapted.  

3. The application server parses the XML 
document finding the point-cuts required by the 
aspect. These point-cuts are activated in the 
application join-points by means of the MOP 
added in the JoinPoint injection phase. This 
activation implies the precise call to the aspect 
at runtime, making use of all the framework 
services. The result of this process is a dynamic 
weaving. 

4. When the dynamically weaved application 
execution reaches an activated join-point, the 
system calls the aspects that have been 
previously weaved with the application. Aspects 
should implement the specific interfaces 
described in the application framework 
(Vinuesa and Ortin, 2004) to make this happen. 
This way, the application will send the aspect 
information regarding the join-point and the 
own application (including a reference to the 
application). The aspect has now the 
opportunity to adapt the application behavior at 
runtime. 

5. The aspect may use the reference to the 
application to access the latter by means of the 
publication of .Net reflective services added by 

the JPI. The operations offered by these 
reflective services are inspection of the 
application structure, field values modification, 
and method invocation. 

6. A runtime weaved aspect could have the 
necessity of changing the point-cuts at runtime. 
This operation is also offered by the application 
server. The aspect should send a new XML 
document specifying the new set of point-cuts. 
The application server will then analyze this 
XML file, activating new join-points and 
deactivating old join-points in the running 
application. 

7. If a dynamic aspect does not want to adapt the 
application any more, it notifies so to the 
application server. The application server 
deactivates the application join-points 
previously turned on by the aspect. Therefore, 
the aspect will not receive future notifications. 

8. When the application execution finishes, the 
code added by the JPI notifies all the registered 
aspects and the application server that the 
application has exited. 

The application server acts as a mediator 
between aspects and applications. This mediation is 
only performed when join-points are activated or 
deactivated. Once these operations have been 
performed, the application and the aspect interact 
directly one with the other. The application calls the 
aspect when an activated join-point is reached. The 
aspect may inspect the application when a join-point 
notification is received. 

With this design, applications do not need to 
know the aspects that might be weaved at runtime. 
At the same time, aspects can be applied to any 
application, or even aspects, without any static 
dependency. This behavior reduces coupling and 
promotes aspect and component reutilization. 

We have used .Net remoting to communicate the 
application server, the aspects and the applications. 
.Net remoting is a standard service over the .Net 
platform and is channel independent. It could be 
even used in distributed environments. 

3.5 Aspect Conflict Resolution 

DSAW provides the weaving of multiple aspects in 
the same application join-point. This feature 
involves the establishment of aspect coordination 
strategies. The programmer could use this 
coordination mechanism to control the order and 
priority of aspect execution. 

DSAW - A Dynamic and Static Aspect Weaving Platform

59



 

The coordination mechanism offered by DSAW 
is based on the classification of aspect in static and 
dynamic, plus the utilization of aspect priorities. 

Since dynamic aspects are aimed at adapting 
applications to runtime emerging requirements, we 
have granted dynamic aspects a higher precedence 
than the static ones.  

Static aspects are weaved following a priority 
strategy that the application developer could change 
while the application is being developed. Therefore, 
the execution of static aspects registered in the same 
join-point will depend on their priority level. The JPI 
is the responsible for adding this coordination 
behavior while the application is being statically 
weaved. 

In the case of dynamic aspects, DSAW gives 
precedence to dynamic aspects. However, conflicts 
between dynamic aspects are solved following the 
same priority-based strategy than the static ones. 
The main difference is that this resolution of 
dynamic aspects is performed by the application 
server, whereas static conflicts are solved by the JPI. 
Apart from that, dynamic aspects may modify their 
priority at runtime, depending of their specific 
requirements. 

3.6 Runtime Performance 

The main drawback of dynamic weaving is runtime 
performance (Böllert, 1999) (Haupt and Mezini, 
2004). A statically-weaved aspect-oriented program 
may be almost as efficient as it was developed 
without an AOSD approach (Böllert, 1999). 
However, the process of adapting an application at 
runtime, as well as the use of reflection, induces a 
certain overhead at the execution of an application 
(Popovici et al., 2003). 

In our previously developed ReadyAOP system, 
runtime performance penalties are produced by two 
key features: 1) the MOP injected by the JPI to 
dynamically enable or disable join-points, and 2) the 
communication between different modules of our 
system. 

The first feature implies a dynamic check of join-
point activation. It is also performed some 
verifications that manipulate the state of the stack, 
implying a performance cost. The average 
performance cost of this primitive is 70%. 

The second penalization of runtime performance 
is derived from the communication between aspects, 
applications, and the application server. We have 
used .Net remoting for this purpose. The 
performance cost is linear with respect to the amount 
of information exchanged. This inter-process 

communication implies the highest performance cost 
at runtime. This is the reason why DSAW is an 
improvement of ReadyAOP. One of the benefits of 
static weaving is the performance benefit obtained. 

While applications are being developed, DSAW 
offers a dynamic-weaving approach to facilitate the 
creation of AOSD applications. This facilitates the 
incremental development and the application of the 
agile “fix-and-continue” debugging scheme (Ortin 
and Cueva, 2002) (Dmitriev, 2002). Prior to the 
deployment of the application, aspects that do not 
require dynamic weaving could be statically injected 
to the final application. This way, runtime 
performance of the whole application will be notably 
improved. This is the main benefit obtained from 
separating the weaving-time concern in our system. 

4 SYSTEM BENEFITS 

The AOSD platform presented in this paper provides 
the following benefits: 

 Both static and dynamic weaving is supported 
in a homogeneous way. Aspects could be 
injected in an application statically or at runtime 
without any modification. 

 Separation of the weaving-time concern. The 
homogeneity described in the previous point 
provides the translation between static and 
dynamic weaving without changing the source 
code of the application, neither the aspects. 

 Combination of dynamic and static adaptation. 
Not only it is possible to statically and 
dynamically aspectize applications, but it is also 
viable to combine both approaches in the same 
program. 

 Really dynamic aspect weaving. Applications 
need not to know anything of future aspects to 
be weaved. Moreover, aspects could be added to 
or removed from any running application. 

 Language neutrality. DSAW works at the 
intermediate language (IL) of the .Net platform. 
Components and aspects could be implemented 
in any programming language. 

 IL instrumentation. The weaving process is 
performed by means of IL instrumentation, once 
applications and aspects have been compiled. 
This feature is important when we need to adapt 
components developed by third parties and its 
source code is not provided. 

 Platform neutrality. The use of the .Net platform 
makes DSAW capable of being executed over 
any standard .Net implementation. 

ICSOFT 2008 - International Conference on Software and Data Technologies

60



 

 Wide join-point set. Our system offers an ample 
set of join-points, similar to the one offered by 
AspectJ. These join-points are provided for both 
dynamic and static weaving. 

 Aspect and components reutilization. The non-
invasive weaving technique followed and IL-
level instrumentation promotes aspect (and 
component) reutilization. This is an effect of the 
null coupling between aspects and components. 

 Aspects aspectation. Aspects could be 
considered as components in DSAW. This 
involves the aspect adaptation by other aspects.    

5 RELATED WORK 

There exist many static weaving AOSD tools, and 
there are also some dynamic ones. However, there 
are few that offer both approaches. 

Wicca is one example of a dynamic and static 
aspect-oriented system (Eaddy, 2007a). Wicca has 
been developed over the .Net platform making use 
of the Phoenix framework –a back-end compiler 
infrastructure (Phoenix, 2008). Wicca performs 
static weaving by means of code instrumentation. 
However, dynamic weaving is achieved using the 
debugging API of the CLR. The dynamic weaving is 
released in an alpha version, and it does not support 
dynamic aspect deletion. The static and the dynamic 
weaver are not equivalents. This means that static 
weaving is more expressive than the dynamic one 
(Eaddy, 2007b). Moreover, Wicca makes use of the 
debugging API specific of a single implementation 
of .Net (the CLR), losing the platform neutrality. 
Runtime performance is poor because applications 
should be executing in debugging mode, enabling 
the edit-and-continue support of the CLR (Eaddy, 
2007b). 

AOP.NET, also known as NAop, is another 
dynamic and static weaving proposal –no 
implementation has been released (Blackstock, 
2004). Its design follows a proxy-based component 
decoration. This proxy is used in both static and 
dynamic scenarios. The weaver uses a proxy class 
instead of any class in a component. The proxy is 
capable of adapting the behavior of its decorated 
class. Depending on the point-cuts, the proxy 
delegates its functionality on the original class or it 
calls the registered aspects. The static weaver 
performs this process prior to the application 
execution; the dynamic weaver does it at runtime. 

The LOOM.NET project provides dynamic and 
static weaving over the same core implementation, 
using the .Net platform (Schult, 2003). Rapier 

LOOM.NET is the dynamic weaver. Point-cuts in 
aspects are expressed by means of .Net’s custom 
attributes. At load-time, the application is weaved 
together with its aspects. Applications and aspects 
should be linked, prior to their execution. It is 
currently being developed a static weaver, called 
Gripper-LOOM.NET, which is in alpha version 
(Köhne et al, 2005) (Schult, 2008). The syntax of the 
point-cut language description is not the same in 
both weavers. This makes it difficult to convert 
static aspects into dynamic ones. The dynamic 
weaver requires the source code of applications and 
provides a reduced set of join-points (Schult, 2003) 
(Köhne et al, 2005); it does not support dynamic 
aspect deletion either (Frei et al, 2004). 

6 CONCLUSIONS 

AOSD is an effective approach to obtain the benefits 
of the Separation of Concerns principle. In this 
paradigm, final applications are built from the main 
functionally of the application plus cross-cutting 
aspects.  

There are many tools that support AOSD. Some 
of them offer application weaving prior to its 
execution, while others provide this adaptation at 
runtime. Although the static approach is suitable in 
most cases, dynamic adaptation may also be 
required when the application should respond to 
runtime emerging contexts and requirements. Static 
weaving supports efficient AOSD, whereas dynamic 
weaving involves runtime application adaptation. 

This paper describes the architecture of DSAW, 
a dynamic and static weaving platform that provides 
language and platform neutrality, and the separation 
of the weaving-time concern. 

DSAW has been designed over the .Net 
platform, benefiting from its features. Both weavers 
are built by means of IL code instrumentation. This 
makes DSAW language neutral, permits the 
adaptation of legacy applications, and promotes 
aspects and components reutilization. 

Both dynamic and static weavers supply the 
same rich set of join-points. An aspect may be 
weaved statically or dynamically without changing 
its source code, not the component’s one. This 
facilities the fix-and-continue development at first 
stages of software development, and the later 
efficient static weave when the application is about 
to be released. That is, DSAW completely separates 
the weaving-time concern. The programmer may 
modify the flexibility / performance trade-off during 
the development life cycle. 

DSAW - A Dynamic and Static Aspect Weaving Platform

61



 

Finally, it is possible to create applications with 
aspects that have been statically weaved, together 
with aspects that are later added at runtime. The 
conflict resolution mechanism is based on making 
dynamic aspects have precedence over static ones. 
Resolution between aspects of the same kind follows 
a priority-base strategy. 

REFERENCES 

Blackstock, M. Aspect Weaving with C# and .NET. 2004. 
www.cs.ubc.ca/ michael/ publications/ AOPNET5.pdf   

Böllert, K. On Weaving Aspects. 1999. Proceedings of the 
Workshop on Object-Oriented Technology, p.301-302. 

Dmitriev, M., 2002. Applications of the Hotswap 
Technology to Advance Profiling. In ECOOP 2002 
International Conference.  

Eaddy, M., 2007a. Wicca 2.0: Dynamic Weaving using 
the .Net 2.0 Debugging API. In AOSD 2007.  

Eaddy, M., 2007b. Wicca. [Online] 
http://www1.cs.columbia.edu/~eaddy/wicca/ [accessed 
January, 15, 2008]. 

Eaddy, M., Aho, A., Hu, W., McDonald, P., Burger, J. 
2007c. Debugging Aspect-Composed Programs. 
Software Composition, 2007. Portugal. 

ECMA, 2006. Standard ECMA-335: Common Language 
Infrastructure (CLI). [Online] Available from 
http://www.ecma-international.org/publications/ 
standards/Ecma-335.htm [accessed December 2007]. 

Gamma, E., Helm, R., Johnson, R., Vlissides, J. 1994.  
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley 

Frei, A., Grawehr, P. & Alonso, G., 2004. A Dynamic 
AOP-Engine for .NET. Technical Report 445, 
Department of Computer Science, ETH Zürich. 

Gilani, W., Scheler, F., Lohmann, D., Spinczyk, O., 
Schröder-Preikschat, W. 2007. Unification of Static 
and Dynamic AOP for Evolution in Embedded 
Software Systems. 2007. 6th International Symposium 
on Software Composition Braga,Portugal. 

Haupt, M. & Mezini, M., 2004. Micro-Measurements for 
Dynamic Aspect-Oriented Systems Proc. of 
Net.ObjectDays 2004 (NODe), LNCS 3263. 

JBoss AOP homepage, 2008. [Online] 
http://labs.jboss.com/jbossaop/ [February 28, 2008] 

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, 
J. & Griswold, W., 2001. An Overview of AspectJ. 
Proceedings of the ECOOP 2001. 

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., 
Lopes, C.V., Loingtier, J.M. & Irwin, J., 1997. Aspect 
Oriented Programming. Proceedings of ECOOP 1997, 
vol. 1241 of LNCS.  

Köhne, K., Schult, W. & Polze, A., 2005. Design by 
contract in .NET Using Aspect Oriented 
Programming. 

Masuhara, H., Kiczales, G., 2003. A Compilation and 
Optimization Model for Aspect-Oriented Programs. 
Compiler Construction (CC2003), LNCS 2622. 

Matthijs, F., Joosen, W., Vanhaute, B., Robben, B. & 
Verbaten, P., 1997. Aspects should not die. In: 
ECOOP Workshop on Aspect-Oriented Programming. 

Nicoara, A. & Alonso, G., 2005. Dynamic AOP with 
PROSE. Proceedings of ASMEA 2005 in conjunction 
with CAiSE 2005, Porto, Portugal. 

Ortin, F., Cueva, J. 2002. Implementing a real 
computational–environment jump in order to develop 
a runtime–adaptable reflective platform. ACM 
SIGPLAN Notices, Volume 37, Issue 8. 

Ortin, F., Lopez, B., Perez-Schofield, J.B.G. 2004. 
Separating Adaptable Persistence Attributes through 
Computational Reflection. IEEE Software, Volume 21, 
Issue 6. 

Parnas, D, 1972. On the Criteria to be Used in 
Decomposing Systems into Modules. Communications 
of the ACM, Vol. 15, No. 12. 

Phoenix, 2008. (Online). research.microsoft.com/phoenix 
(accessed February, 28, 2008) 

Popovici, A., Gross, T. & Alonso, G., 2001. Dynamic 
Homogenous AOP with PROSE. Technical Report, 
Dept. of Computer Science, ETH Zürich. 

Popovici, A., Alonso, G. & Gross, T., 2003. Just in Time 
Aspects: Efficient Dynamic Weaving for Java. AOSD 
2003 Proceedings. 

Schult, W., Trögger, P., 2003. Loom.NET – an Aspect 
Weaving Tool. Workshop on Aspect-Oriented 
Programming, ECOOP'03, Darmstadt. 

Schult, W., 2008. Documentation Gripper-LOOM.Net. 
[Online] http://www.gripper-loom.net [accessed 
January, 15, 2008]. 

Schröder-Preikschat, W., Lohmann, D., Gilani, W., Schele 
& F., Spinczyk, O., 2006. Static and dynamic weaving 
in System Software with AspectC++. In HICSS '06 
Mini-Track on Adaptive and Evolvable Software 
Systems, IEEE, January. 

Segura-Devillechaise, M., Menaud, J., Muller, G.& 
Lawall, J., 2003. Web Cache Prefetching as an Aspect: 
Towards a Dynamic-Weaving Based Solution. AOSD 
2003 Proceedings, pp: 110-119. 

Vinuesa, L. & Ortín, F., 2004. A Dynamic Aspect Weaver 
over the .NET Platform. Metainformatics 
International Symposium, MIS 2003. LNCS 3002. 

Vinuesa, L, 2007. Separación Dinámica de Aspectos 
independiente del Lenguaje y Plataforma mediante el 
uso de Reflexión Computacional. Ph. D. Dissertation. 
University of Oviedo. 

Weave.Net, 2008. Weave.NET homepage 
http://www.dsg.cs.tcd.ie/index.php?category_id=193. 
[Accessed on February, 25, 2008]. 

Zinky, J., Bakken D. & Schantz, R., 1997. Architectural 
Support for Quality of Service for CORBA Objects. 
Theory and Practice of Object Systems (TAPOS). 

ICSOFT 2008 - International Conference on Software and Data Technologies

62


