
GENERATION OF ERP SYSTEMS FROM REA SPECIFICATIONS

Nicholas Poul Schultz-Møller
Department of Computing, Imperial College London, 180 Queen’s Gate, London, U.K.

Christian Hølmer
Upsido, Kgs. Lyngby, Denmark

Michael R. Hansen
Department of Informatics and Mathematical Modelling, Technical University of Denmark, Kgs. Lyngby, Denmark

Keywords: Enterprise Resource Planning systems, REA, domain specific language, Web-applications.

Abstract: We present an approach to the construction of Enterprise Resource Planning (ERP) Systems, which is based
on the Resources, Events and Agents (REA) ontology. Though this framework deals with processes involving
exchange and flow of resources, the conceptual models have high-level graphical representations describing
what the major entities are rather than how they engage in computations.
We show how to develop a declarative, domain-specific language on the basis of REA, and for this language
we have developed a tool which automatically can generate running web-applications. A main contribution is
a proof-of-concept result showing that business-domain experts can, using a declarative, REA-based domain-
specific language, generate their own applications without worrying about implementation details.
In order to have a well-defined domain-specific language, a formal model of REA has been developed using
the specification language Object-Z. This formalization led to clarifications as well as the introduction of new
concepts. The compiler for our language is written in Objective CAML and as implementation platform we
used Ruby on Rails. The aim of this paper is to give an overview of whole construction of a running application
on the basis of a REA specification.

1 INTRODUCTION

In this paper we present an approach to the construc-
tion of Enterprise Resource Planning (ERP) Systems,
which is based on the Resources, Events and Agents
(REA) ontology (Geerts and McCarthy, 2000; Hruby,
2006; McCarthy, 1982). REA is a domain-specific
conceptual framework which has its use, for example,
in the design of accounting and enterprise information
systems. Though this framework deals with processes
involving exchange and flow of resources, the concep-
tual models have high-level graphical representations
describing what the major entities are rather than how
they engage in computations.

We show how to develop a declarative, domain-
specific language on the basis of the REA ontol-
ogy, and together with a compilation tool, how to
generate running web-applications. Hence, a main
contribution is a proof-of-concept result showing
that business-domain experts can, in principle, us-

ing a REA-based domain-specific language, generate
their own applications without, in principle, worrying
about any implementation details. This has a clear ad-
vantage compared to current technologies where the
domain-specific languages have a much more impera-
tive flavor (e.g. Microsoft Dynamics’ C/AL language
(Studebaker, 2007)).

The REA ontology is not formalized and the in-
formal explanations of REA are in many ways un-
derspecified. In order to have a well-defined domain-
specific language and an associated tool we develop
a formal model of REA using the specification lan-
guage Object-Z (Smith, 2000; Spivey, 2001). This
object-oriented and formal specification language
proved well-suited for our purpose as the underlying
computational model should describe the changing
state of resources in ERP systems. The formalization
process led to clarifications as well as the introduction
of new concepts.

The formal model exhibits in a succinct way fun-

12
Poul Schultz-Møller N., Hølmer C. and R. Hansen M. (2008).
GENERATION OF ERP SYSTEMS FROM REA SPECIFICATIONS.
In Proceedings of the Third International Conference on Software and Data Technologies - ISDM/ABF, pages 12-19
DOI: 10.5220/0001872600120019
Copyright c© SciTePress

Figure 1: From REA model specification to web application.

damental properties of resources, event and agents,
which any implementation of a REA-based system
should satisfy. In order to achieve this, the com-
piler for our language is written in Objective CAML
(Smith, 2006), which is a functional programming
language with object-oriented features. The Object-
Z model of REA could be represented in Objective
CAML in a direct manner, and the functional part of
the programming language proved very useful in con-
nection with handling the properties of the model and
for the compiler construction as such. As implemen-
tation platform we used Ruby on Rails (Thomas and
Hansson, 2006).

The aim of this paper is to give an overview of the
whole construction of a running application on the ba-
sis of a REA specification, and to justify the thesis that
a running application can be automatically generated
from a declarative, REA-based specification. We will
sketch the flavor of the Object-Z model and how it re-
lates to the Objective CAML implementation, to em-
phasize the adequacy of this approach. Furthermore,
we will hint at the use of the implementation platform
Ruby on Rails.

Current ERP systems try to satisfy the majority of
their customers’ requirements and customize the last
15-20% by using various domain specific languages
such as C/AL. These languages are usually impera-
tive and are used for various purposes such as imple-
mentation of windows, dialogs, algorithms, etc. As a
result many resources are spent on customization and
the extensions are tightly coupled to the basic ERP
system. This prohibits the existing systems from ben-
efitting from new advantages in language technolo-
gies and architectural designs.

We suggest another approach for creating cus-
tomized ERP systems. By declaring the customer’s
business processes and then generate the ERP system,
it will be possible to consistently extend the function-
ality as business processes develop. Furthermore, the
approach decouples the design and implementation
from the business processes. This enables transparent
commissioning of new technologies.

This paper, which is based on (Schultz-Møller and
Hølmer, 2007), is organized as follows: In the next
section we give a brief introduction to REA on the
basis of a simple example. Thereafter, in Section 3,
we introduce a formal Object-Z model for REA. In
Section 4 and 5 we describe the domain specific lan-
guage for REA, how it is analyzed and how web-
applications are generated automatically. The overall
idea is illustrated on Figure 1. The last section con-
tains a discussion of our work. In the paper we will
sketch the main ideas only, for further details we refer
to (Schultz-Møller and Hølmer, 2007).

2 AN INTRODUCTION TO REA

The ontology Resources, Events and Agents (REA)
(Geerts and McCarthy, 2000; Hruby, 2006; Mc-
Carthy, 1982) can be used for describing business pro-
cesses, such as the exchange of resources between
economic agents, and the conversion (or transforma-
tions) of resources. REA is an ontological framework
where the models typically are presented graphically
like, for example, in Figure 2.

An example of an exchange process for a fic-
tive company ”Paradice”, that produces and sells ice
cream, is shown on Figure 2. To produce ice cream
it is necessary to purchase cream from a retailer. This
figure describes that the resource Cream is exchanged
in a duality for Capital in the events Cream Delivery
and Cash Disbursement, respectively.

As can be seen from the relationships, the agent
Paradice provides the capital and receives cream. The
inflow and outflow relationships between an event and
a resource describe whether or not value flows into
(an increment event) or out of the enterprise (Par-
adise) (a decrement event). Here the enterprise’s cap-
ital resources decrease their value, while its cream
resources increase their value – simply because the
amount of each resource changes. Thus, Cash Dis-
bursement is a decrement event and Cream Delivery
is an increment event. The figure also contains an op-
tional Discount event modelling that a retailer might

GENERATION OF ERP SYSTEMS FROM REA SPECIFICATIONS

13

Figure 2: Modelling the purchase of cream in REA.

give a discount on a purchase. Notice that it is not
possible to infer from the diagram that the discount
event is optional.

Using REA, one can model a business process
by defining distinct events involving agents and re-
sources. REA has several rules that must apply to
a model for it to be valid, for example: (1) Any re-
source must be part of at least one increment and one
decrement event, and (2) Any increment event must
be in a duality relationship with at least one decre-
ment event and vice versa. Rule (1) ensures that no
resource ”piles up” or is sold but never purchased, and
rule (2) ensures that it is always possible to track what
other resources a specific resource was exchanged for.

The REA ontology does, however, not have a pre-
cise definition in a formal sense. This is a problem
when a system is implemented on the basis of an on-
tology, as the developer may take wrong decisions
which can lead to inconsistent design.

Example problems in REA are: (1) It is unclear
how to distinguish two resources of the same type
from each other as distinguishable resources have no
notion of identity and (2) It is not possible to dis-
tinguish events that must occur in a business process
and events which are optional (as the Discount event).
These and other problems which have been con-
sidered and solved in (Schultz-Møller and Hølmer,
2007). We will elaborate on that in the next section.

3 AN OBJECT-Z MODEL

In this section we will sketch a formal model for
REA. For the full detail we refer to (Schultz-Møller
and Hølmer, 2007). The object-oriented specification

language Object-Z (Smith, 2000; Spivey, 2001) was
chosen for the formalization as business processes to
a large extend concern the changing states and ex-
changes of resources. The model is divided in two
parts: A meta-model defining the concepts of the REA
ontology and their properties, and a runtime model
defining the dynamic behavior of applications based
on REA-model specifications.

We will not give a special introduction to Object-
Z, but we give brief informal explanations to the
shown specifications.

3.1 The REA Meta-Model

In the Meta-Model we define an Object-Z class for
each entity in the REA ontology, and we formalize
the rules all instances of these classes must obey. We
first define free types in the meta-model for names and
field types:

NAME ::= nil | charseq〈〈seq1 CHAR〉〉
FTYPE ::= sType | iType | fType | bType

where NAME is either undefined (nil or a sequence
of characters, and FTYPE, a field type, is one of the
following string, integer, float and Boolean. Fields
are used for augmenting the entities – e.g. an address
field on a Retailer agent entity. Furthermore, fields
are modelled as partial functions from names to field
types:

FIELDS == NAME 7→ FTYPE

The entities in the meta-model share many prop-
erties and these are specified in the BasicEntity class:

ICSOFT 2008 - International Conference on Software and Data Technologies

14

BasicEntity

name : NAME,fields : FIELDS

INIT
name = nil,fields = ∅

InitData
∆(name,fields)
name? : NAME,fields? : FIELDS

name = nil ∧ name? 6= nil

name′ = name? ∧ fields′ = fields?

The precondition of InitData ensures that an entity
can only set data once (and in that respect works as
a constructor in an object-oriented language) and that
each entity is named.

A class for resources is defined by extending Ba-
sicEntity:

Resource
� (name,fields,atomic, InitData)
BasicEntity

atomic : B,key : NAME

atomic⇔ key ∈ (domfields)

INIT
atomic = false,key = nil

...

where the variable atomic specifies whether a real
world resource object is distinguishable from another
of the same type. If so, there must be a way to identify
a resource uniquely in the Enterprise Information Sys-
tem. This solution to the problem of distinguishing
two resources from each other was chosen to adapt
the key concept from databases.

A class for agents is defined as follows:

Agent
� (name,fields, InitData)
BasicEntity

For the definition of the Event class we introduce
two additional free types STOCKFLOW (the relation-
ship between an event and a resource) and MULTI-
PLICITY (the number of occurrences of an event in a
process):

STOCKFLOW ::= none | flow
| produce | use | consume

MULTIPLICITY ::= 〈〈N0〉〉 | infty

Observe that inflow and outflow have been general-
ized to flow, as the direction can be inferred from the
provide/receive relationship. E.g., an agent providing
in an event is an outflow of a resource under posses-
sion of that agent.

A class for events is defined in Figure 3, where we,
for example, observe that an exchange event can have
flow only as stock flow type. Several Events consti-

Event
� (name,fields,provider,receiver,stockFlowType,

resource,minOccurs,maxOccurs, InitData,

IsExchange, IsConversion)

BasicEntity

provider,receiver : Entity∪Agent
stockFlowType : STOCKFLOW
resource : Entity∪Resource
minOccurs,maxOccurs : MULTIPLICITY

¬(maxOccurs = 0) ∧ minOccurs 6= infty

maxOccurs ∈ N⇒ minOccurs≤ maxOccurs

INIT
provider,receiver = Entity.INIT
stockFlowType = none
resource = Entity.INIT
minOccurs,maxOccurs = 0

...

IsExchange
stockFlowType = flow

IsConversion
stockFlowType ∈ {use,consume,produce}

Figure 3: The Object-Z class Event.

tute a process as sketched in Figure 4, with the most
interesting invariant being [a], which states that one
of the agents, called the enterprise-agent, must be re-
ceiver or provider in all events. The enterprise-agent
is a new central concept that represents the enterprise
described in a model. As will be apparent below, our
system can automatically infer1 which agent in a con-
sistent model is the enterprise-agent.

All instances in a REA model are collected in the
MetaModel class shown in Figure 5. The formulas [b]
and [c] state that all agents and resources must be part
of at least one event. Formula [d] expresses that the

1Very unrealistic business models can be constructed
which prohibit automatic inference. In these cases the user
is prompted for selection of one agent.

GENERATION OF ERP SYSTEMS FROM REA SPECIFICATIONS

15

Process
� (name,dualities, INIT, InitData)

name : NAME,dualities : FEvent

∃e1 : dualities • e1.IsExchange⇒ [a]
(∀e2 : dualities • e1.provider = e2.provider ∨
e1.provider = e2.receiver) ∨
(∀e2 : dualities • e1.receiver = e2.provider ∨
e1.receiver = e2.receiver)

...

INIT
name = nil,dualities = ∅

...

Figure 4: The Object-Z class Process.

enterprise-agent must be either provider or receiver in
any exchange events. It is, therefore, possible to infer
the enterprise-agent in a REA model. Formula [e] is
central to the model presented in (Schultz-Møller and
Hølmer, 2007). In the meta-model a flow of resources
is interpreted as resources that either leave or enter the
enterprise – not as a flow of value. Thus, any resource
must both leave the enterprise and enter the system in
a decrement and an increment event, respectively.

3.2 The Runtime Model

The runtime model addresses the dynamic aspects of
a REA-model specification. We will not present de-
tails here – for that we refer to (Schultz-Møller and
Hølmer, 2007). We will just mention two aspects:

• An execution of a REA-model specification is
a (possibly infinite) sequence of states, where a
state (among other things) records the available
resources in the system. The runtime model de-
fines all legal executions of a system, where, for
example, a decrement event can happen in the cur-
rent state only if there are sufficient available re-
sources for that event.

• An agent is a person or organization, but e.g. a
person may act as different agents in different
events, e.g. as an employee in one event and as
a customer in another. To cope with this, a con-
cept legal entity is introduced, where a legal en-
tity (person or organization) is associated a set of
agents that the legal entity can act as in a given
event.

MetaModel
� (enterpriseAgent,resources,processes,

agents,events, InitData,

SpecifyEnterpriseAgent, IsValid)

enterpriseAgent : Entity∪Agent
resources : FResource,agents : FAgent
events : FEvent,processes : FProcess
...

{p : Process | p ∈ processes • p.dualities}
partitionsevents

∀a : agents; ∃e : events •
e.receiver = a ∨ e.provider = a [b]

∀r : resources; ∃e : events • e.resource = r
[c]

∀e : events • e.IsExchange⇒ [d]
(e.receiver = enterpriseAgent xor
e.provider = enterpriseAgent)

∀r : resources; ∃e1,e2 : events • [e]
(e1.resource = r ∧

(e1.stockFlowType = consume ∨
(e1.stockFlowType = flow ∧
e1.provider = enterpriseAgent))) ∧

(e2.resource = r ∧
(e2.stockFlowType = produce ∨
(e2.stockFlowType = flow ∧
e1.receiver = enterpriseAgent)))

...

INIT
enterpriseAgent = Entity.INIT
resources = ∅,agents = ∅
events = ∅,processes = ∅
...

...

Figure 5: The Object-Z class MetaModel.

4 A DOMAIN SPECIFIC
LANGUAGE

A domain specific language for specifying REA mod-
els has been designed so that business domain ex-
perts can express business processes. The concepts
of Meta-Model are directly reflected in the language.
We just give part of an example here. Consider Fig-
ure 6, which gives the specification corresponding to
Figure 2.

ICSOFT 2008 - International Conference on Software and Data Technologies

16

string currency, description, address, unit, expireDate
agent Paradise, Retailer [address]
resource Capital [currency], Cream [description, expireDate, unit]
process BuyCream { CashDisbursement: 1 flow Capital(Paradice -> Retailer)

CreamDelivery: 1 flow Cream (Retailer -> Paradice)
Discount: 0..1 flow Capital(Retailer -> Paradice)

}

Figure 6: Specification corresponding to Figure 2.

The types of fields are declared in the first line.
Two agents, Paradice and Retailer, are declared in the
second line and two resources, Capital and Cream
with their fields, are declared in line 3. Then the
process, BuyCream, is declared. It consists of three
events. The declaration of the first event, CashDis-
bursement, can be read as: ”CashDisbursement must
occur exactly once in a BuyCream process and is a
flow of Capital from Paradice to a Retailer.” This ex-
ample also shows an optional Discount event, where
the multiplicity is 0..1. The full specification has
six other processes: OwnerShip, MachineOwner-
Ship, BuyElectricity, AquireLabour, MakeIcecream
and SellIcecream. These are omitted here for brevity
as they have a similar structure.

4.1 Language Implementation

The language is implemented using Objective Caml
(Smith, 2006; May, 2006), which is a programming
language supporting functional as well as object-
oriented programming. This makes it particularly
suitable for constructing a programming model on the
basis of a REA specification – the classes in the pro-
gram are related to the specification and the classes in
the Object-Z meta-model in a very direct manner.

The implementation is divided into two parts.
First, the specification is analyzed to check whether it
satisfied all properties of the meta-model. The func-
tional part of Objective Caml proved very useful for
this purpose as, for example, the properties in the
meta-model, e.g. [b], [c], [d] and [e] in Figure 5, are
programmed in a straightforward way. If the speci-
fication is consistent, then an XML representation is
generated. In the second part, which is addressed in
the next section, a web-application is generated on the
basis of that XML representation.

5 AUTOMATED GENERATION
OF APPLICATIONS

Having a consistent REA model, given now as an
XML document, we can generate an application au-
tomatically. We have chosen to implement the appli-

cation in the web-framework, Ruby on Rails (Thomas
et al., 2004; Thomas and Hansson, 2006), which let
us focus on developing the features of the application
instead of Model-View-Control plumbing.

The generation of the implementation has three
major steps:

• generation of a database schema,

• generation of classes for the specified entities, and

• generation of a runtime storage system.

The main idea is that each of the REA entities:
resources, events, agents, resource types, legal en-
tities and processes have a table with relations cor-
responding to those from the runtime model. We
use the technique of Single Table Inheritance, so that
when the database structure is generated all fields
for the REA entities will be added to the table (e.g.
field description, field serial number). This gives us
the flexibility of having just one database table for all
specified types of the individual entities, but still let-
ting them have individual properties. Especially when
loading and saving it is useful to be able to treat them
the same way. Note however that a different approach
is needed for real-life ERP systems in order for the
system to scale. Figure 7 gives an overview of the
database.

We also generate a Ruby class for each
of the Single Table Inheritance types (e.g.
CreamDeliveryEvent a subclass of Event),
which will refer to the entries in a database table
with the same entity name (CreamDeliveryEvent in
events table).

The generated entities constitute a running web-
application and Figure 8 shows the web-interface gen-
erated from the Paradice example of which a part of
the specification is shown in Figure 6.

A user can register an event, e.g. a purchase of
cream, by simply clicking on the relevant business
process, click on the event and enter the details as
shown on Figure 8. If the resources are available in
the current state of the database and the entered data
are correct (e.g. type check of input fields) then the
event is registered and the database will change state
as described in the runtime model given in Object-Z.

The implementations of these events are derived

GENERATION OF ERP SYSTEMS FROM REA SPECIFICATIONS

17

Figure 7: Database overview.

Figure 8: Screenshot of a generated application.

from the specification of the runtime model; but we
will not give further details here.

Extensions to the Automatic Approach. All enter-
prises are ever changing and the possibility of extend-
ing a running application would be beneficial. The
problem with this is that all the recorded data must
stay intact and the current business processes must
therefore not be changed. The simplest solution was
therefore only to allow addition of new business pro-

cesses and prohibit changes in the current entities in
the application. In this way enterprises can adapt to
changes in their business by marking old entities as
outdated and replace them with new.

6 SUMMARY

We have justified the thesis of this paper, i.e. that
business applications can be developed from a do-
main specific language based on the REA ontol-
ogy. The justification is based on a prototype sys-
tem which can generate web-based applications from
REA specifications. So far the fundamental entities
of the REA ontology, Resources, Events and Agents,
have been considered and formalized, but we see no
principal difficulties in extending the system to the
full ontology. The prototype system is for proof-
of-concept only. Currently it is not possible to ex-
press constraints on the temporal ordering of events.
E.g. a system designer might want to specify that
a Cash Disbursement should only take place after a
Cream Delivery. However, this can also be solved in
a declarative way by defining a partial ordering on
events. In the specification this could be expressed
as process BuyCream {...}[CashDisbursement
≺ CreamDelivery], where e1 ≺ e2 means that e2
causally depends on e1.

In order to get a fully functional ERP system many
other aspects need to be addressed, for example work-
flow, access control, the possibility of creating custom
reports etc. Integrating these aspects into the frame-
work is future work.

Our method is the following: first a formal model

ICSOFT 2008 - International Conference on Software and Data Technologies

18

of REA is expressed in Object-Z. This clarified many
vague points about REA, and forms the basis for the
definition of a domain specific language for declaring
business processes and its implementation. The im-
plementation consists of an analyzer and a compiler,
both written in Objective Caml. Objective Caml is
a functional programming language with object ori-
ented features, and with this language we can express
the Object-Z model for REA (classes, operations and
rules) in a straightforward way. The analyzer per-
forms the consistency checks as stated in the formal
model, and the compiler generates a web-based appli-
cation satisfying the rules of REA. As implementation
framework Ruby on Rails was used.

ACKNOWLEDGEMENTS

We are grateful for comments and suggestions from
Ken Friis Larsen.

This work is partially funded by ARTIST2 (IST-
004527), MoDES (Danish Research Council 2106-
05-0022) and the Danish National Advanced Technol-
ogy Foundation under project DaNES.

REFERENCES

Geerts, G. L. and McCarthy, W. E. (2000). The ontological
foundation of rea enterprise information systems.

Hruby, P. (2006). Model-Driven Design Using Business
Patterns. Springer.

May, J. H. (2006). Introduction to the Objective Caml Pro-
gramming Language.

McCarthy, W. E. (1982). The rea accounting model: A gen-
eralized framework for accounting systems in a shared
data environment. The Accounting Review, (3).

Schultz-Møller, N. P. and Hølmer, C. (2007). Bachelor The-
sis: Tool Support for Business Processes – REAML,
The REA Language and Metamodel.

Smith, G. (2000). The Object-Z Specification Language.
Kluwer Academic Publishers, University of Queens-
land, Australia.

Smith, J. B. (2006). Practical Ocaml. APress.

Spivey, J. M. (2001). The Z Notation, A Reference Man-
ual. Prentice Hall International (UK) Ltd, 2nd edition
edition.

Studebaker, D. (2007). Programming Microsoft Dynamics
NAV. Packt Publishing.

Thomas, D., Fowler, C., and Hunt, A. (2004). Programming
Ruby. Pragmatic Bookshelf, 2nd edition edition.

Thomas, D. and Hansson, D. H. (2006). Agile Web Devel-
opment with Rails. Pragmatic Bookshelf, 2nd edition
edition.

GENERATION OF ERP SYSTEMS FROM REA SPECIFICATIONS

19

