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Abstract: The TestUS framework (Statistical Testing based on use case scenarios) offers unique techniques and tools 
to obtain a TTCN-3 test suite starting from UML 2.0 requirement definitions. Use case diagrams that 
contain functional and non-functional requirements are transformed to a Markov Chain usage model 
(MCUM) in a completely automatic approach. The annotation of outgoing MCUM transitions by 
probabilities in the derived UML2 protocol state machine enables the generation of TTCN-3 test cases 
according to the expected occurrence frequencies of the specified usage pattern. However, compiling the 
derived TTCN-3 test suite can take quite a long time for a realistic SUT (System under Test). Consequently, 
we decided to map the MCUM directly into the executable test suite without generating test cases in 
advance. Test cases and the evaluation of test verdicts are therefore interpreted on-the-fly inside the 
executable TTCN-3 test suite. We proved the concept by testing an existing DECT communication system. 
The compilation time in the order of 20 hours for deriving the test suite was reduced to only 15 minutes and 
we got a TTCN-3 test suite that interprets as many test cases as one likes for the DECT system on-the-fly. 

1 INTRODUCTION 

Model-based development techniques are getting 
more and more attractive in order to master the 
inherent complexity of real-world applications. 
Different models are used for all kind of purposes 
during the system development cycle and handle 
static and dynamic aspects of the future system. 

The latest UML standard (OMG, 2007) will 
strongly influence more and more areas of software 
engineering, covering application domains that are 
also vulnerable for non-functional QoS (quality of 
service) errors, e.g. real-time or performance errors. 
Domain experts are enabled to define concepts 
specific to their domain area and may summarize 
them in specific packages, called profiles in the 
UML notation. 

Model based testing in general is a widespread 
research topic since many years, Broy, Jonsson and 
Katoen (2005) give a good review concerning 
current activities. Examples covering automation 
tools are contained in Tretmans and Brinksma 
(2002). There exist papers on usage models Sayre 
(1999) and Whittaker, Poore, and Trammel (1995), 
which mainly focus on model generation and 
evaluation based on textual descriptions of the usage 
behaviour. In Beyer and Dulz (2005), statistical test 
case generation based on a MCUM that is derived 

from UML sequence diagram scenarios is discussed. 
Beyer and Dulz (2005) and Beyer, Dulz, and 
Hielscher (2006) also explain how to integrate QoS 
and performance issues in the test process. 

In the next section, we will first discuss testing 
techniques in general that have influenced our 
method, i.e. black- box testing with TTCN-3 and the 
statistical usage testing technique. In section 3, our 
model-based test case generation approach is 
described in detail. Next, we present the main results 
of a case study for testing DECT modules and 
finally we summarize with a conclusion and some 
final remarks. 

2 TESTING CONCEPTS 

2.1 TTCN-3 

TTCN-3 is the most recent version of the well 
established test notation language TTCN, 
standardized by the ETSI (2005). It is a universal 
language for test management and test specification, 
valid for any application domain, such as protocol, 
service or module testing. TTCN-3 is suitable for 
different kinds of testing approaches, e.g. 
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conformance, robustness, interoperability, 
regression, system or integration tests. 

Modules are the top-level elements for 
structuring elements and consist of an optional 
import section, an optional definition part and the 
control part. The main functionality of the test suite 
is defined within the test case definition statements, 
where specific responses of the SUT are related to 
TTCN-3 test verdicts. Inside the control part section 
the sequential order of the execute statements and 
the function calls represents the precise test runs of 
an executable test suite. An example for the 
definition of a TTCN-3 test suite is given below. 

module testsuite { 
// import statements 
import all from ModuleX;  
// module definition part 
const boolean x = true; 
testcase case_1 (…) 
function fu_1 (…) 
// module control part 
control { 
execute(case_1(…));   
fu_1(…); 

… 
} 

} 

After compiling the TTCN-3 modules an 
executable or interpretable test suite is provided by 
the TE (TTCN-3 Executable) element in Figure 1. 
Further entities have to be supplied, which are 
necessary to make the abstract concepts concrete and 
executable. By means of the TCI (TTCN-3 Control 
Interface) the test execution can be influenced with 
respect to test management and test logging (TM). 
Test component handling for distributed testing 
(CH) and encoder/decoder functions for different 
representations of TTCN-3 data types (CD) may also 
be provided. 

The TRI (TTCN-3 Runtime Interface) was 
defined to enable the interactions between the SUT 
and the test system via a standardized interface. In 
Figure 1 two parts of the TRI are visible: the 
description of the communication system is 
specified in the SA (SUT Adapter) and the PA 
(Platform Adapter) implements timers and external 
functions based on the underlying operating system. 

 
Figure 1: Building blocks of a TTCN-3 test system. 

2.2 Statistical Usage Testing 

Fault tests focus on finding as much faults as 
possible in order to increase the system quality. 
Statistical tests on the other hand try to estimate the 
reached quality by calculating some statistics and the 
reliability of the SUT. 

One challenge common to all test objectives is 
the search for good test cases. Because exhaustive 
testing is not practicable even for small systems, the 
selection of appropriate test case subsets is the most 
important issue. Statistical usage testing assumes 
that the selection is made by the system users 
themselves, i.e. by the supposed future usage with 
respect to the SUT. A common test model for 
representing and generating valid test cases is the 
Markov Chain Usage Model, which consists of all 
possible usage patterns of the SUT. 

Transition probabilities between states reflect the 
expected usage patterns and are characterized by 
user profiles. How to build and to integrate the 
MCUM approach into a UML based development 
process is explained in the next section. 

3 MODEL-BASED TESTING 

3.1 The TestUS Framework 

The test case generation process, as shown in Figure 
2, starts with a UML use case diagram at the top of 
the diagram. Ovals inside the use cases characterize 
the usage behaviour that is refined by scenario 
descriptions in form of sequence diagrams. 

ON-THE-FLY INTERPRETATION OF TEST CASES IN AN AUTOMATICALLY GENERATED TTCN-3 TEST SUITE

73



 

 
Figure 2: TestUS framework for a model-based TTCN-3 
test suite generation starting from use case scenarios. 

In combination with a user profile the MCUM is 
automatically derived by the procedure explained in 
section 3.3. This model is the base for the automatic 
generating of the TTCN-3 test suite, as explained in 
more details in section 4. After adding additional 
data types and template definitions for the TTCN-3 
test suite compilation, an executable test suite is 
generated. 

The evaluation of test verdicts during the test 
enables the calculation of test statistics, e.g. 
coverage of states and transitions and the reliability 
metric at the end.  

3.2 Scenario-based Requirements 

A development process starts with the requirements 
phase. The task is to identify possible use cases and 
to illustrate the sequence of desired operations in 
some way. This is covered in the UML by static use 

case diagrams and by dynamic diagrams such as 
activity, state chart and interaction diagrams. Most 
common are requirement descriptions in form of 
sequence diagrams. 

In addition to the characterization by means of 
simple message interactions, state invariants are 
included to distinguish certain special situations 
during a user interaction with the system. 

For instance after receiving a Connection_ 
Setup_Confirm message the user knows that he has a 
valid connection to the system, which may be 
reflected in a connected state invariant.  

 
Figure 3: User provided state invariant. 

To denote QoS (quality of service) requirements 
special annotations may be attached to sequence 
diagrams that are conform to the UML SPT Profile 
(schedulability, performance and time). 

3.3 Deriving the MCUM Test Model 

Providing a set of scenario descriptions as output 
from the requirement definitions the test model, i.e. 
the MCUM can be automatically generated. UML 
protocol state machines are adequate for 
representing this kind of model. Each sequence 
diagram contains one lifeline for the SUT; each 
additional lifeline corresponds to a possible user of 
the system. 

Combined fragments in the sequence diagrams 
are used to specify special situations during the user 
interactions and state information can be added to 
define state invariants in the diagrams. The 
following diagrams will illustrate the main 
transformation rules to obtain the protocol state 
machine from a given set of sequence diagrams: 

Figure 4a: Trigger message and the system response 
represented by a sequence diagram. 
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• At first supplementary state invariants are 
added. Apart from user provided state 
invariants, additional state information is 
needed to have at most two messages in 
invariants, additional state information is 
needed to have at most two messages in 
between any two states, i.e. a sending message 
m1 and its corresponding receiving message m2 
reflecting the system response as shown in 
Figure 4a. 

• We denote by ?m1, respectively by !m2 the 
trigger message, respectively the system 
response in the corresponding transition ‘s1 
?m1!m2 s2’ of the generated MCUM as shown 
in Figure 4b below. 

Figure 4b: Trigger message and the system response        
represented in a transition of the MCUM. 

• In any other case, each single message, i.e. a 
trigger message without a direct system 
response or a spontaneous system response 
without a previous trigger message, should be 
enclosed by two states. Whereas sequence 
diagrams represent a partial order semantic by 
default, the exchange of messages is now 
strictly ordered. 

Figure 4c: MCUM resulting from concatenating two 
message sequences. 

• If M(s) is a MCUM for the sequence s=s11..s1n, 
M(t) is a MCUM for the sequence t=s21..s2m and 
s1n=s21, we generate for the concatenation 
expression ‘s t’ as shown in Figure 4c. 

 
For all combined fragments, a composite state is 
generated and a new state machine is added to the 
MCUM for the included sequence.  In more detail 
the following transformations are considered: 

 
• For the conditional fragment (Figure 5a) that 

represents two alternative user interactions with 

the system we generate the corresponding 
MCUM composite state in Figure 5b. In 
addition, three new supplementary state 
invariants are automatically generated inside 
the composite state in order to separate trigger 
messages and the system’s response.  

Figure 5a: Sequence diagram containing an alt fragment. 

Figure 5b: MCUM composite state for an alt fragment. 

In general, if M(s) is a MCUM derived 
from the sequence s=s11..s1n and M(t) is a 
MCUM derived from the sequence t=s21..s2m 
we will generate a  MCUM composite state for 
the conditional fragment as shown in Figure 6. 

Figure 6: MCUM composite state resulting from an alt 
fragment concatenating two message sequences. 
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This transformation enables the generation 
of test cases that either contain trigger messages 
and corresponding system responses from s or 
from t. If we add transition probabilities from 
the user profile to the outgoing transitions of 
state s0 it is possible to test alternative user 
behaviour that also reflects the expected usage 
statistics and not only the correct order of 
possible user interactions with the SUT. 

• For the loop fragment that iterates over the sub 
chain M(s) containing the sequence s=s11..s1n 
we generate the composite state represented in 
Figure 7. 

Figure 7: MCUM composite state resulting from a loop 
fragment concatenating a message sequence. 

In this situation, we can generate test cases 
that contain the sequence s arbitrarily often 
(including also the Zero case). In general, we 
are also able to create a MCUM composite state 
from loop fragments that contain upper and 
lower boundaries to express finite loop 
conditions. 

• If M(s) is a MCUM derived from the sequence 
s=s11..s1n and M(t) is a MCUM derived from the 
sequence t=s21..s2m we generate the MCUM 
composite state shown in Figure 8 for the 
parallel fragment  s par t. 

Figure 8: MCUM composite state resulting from a par 
fragment concatenating two message sequences. 

Here, events of M(s) and M(t) may be 
arbitrarily interleaved. The main condition is 
that the test case has to reflect the correct order 

of events inside the parallel executable 
sequences s and t. 

• Beside the presented combined fragments alt, 
loop and par we have also considered opt for 
options, neg for invalid behaviour, assert for 
assertions, break for break conditions, strict for 
strict sequencing, critical for critical sections 
and included the necessary MCUM 
transformation rules in the TestUS framework. 

• After having generated the structure of the 
MCUM it is necessary to attach user profile 
probability information to the MCUM 
transitions in order to model a test characteristic 
that is as close as possible to the future usage 
behaviour of the SUT. In Walton and Poore 
(2000), Musa (1993) and Gutjahr (1997) proper 
strategies to derive valid probabilities for the 
user profiles are discussed. 

• In the last step of the transformation process all 
final states of the generated MCUM segments 
are merged to one final state. In addition, a new 
initial state is included and connected to the 
initial states of otherwise isolated MCUM 
segments. Finally, equally named user provided 
state invariants are combined and 
corresponding incoming (outgoing) transitions 
are united. The result is an automatic generated 
MCUM as starting point for generating the 
TTCN-3 test suite. 

• As an example, the MCUM for testing the 
DECT system in the case study of section 5 
resulted from about 230 usage scenarios and 
consists of about 900 states with over 3400 
transitions. 

4 TEST SUITE GENERATION 

4.1 Arguments for Avoiding the 
Generation of Test Cases 

A test case is any valid path in the MCUM 
consisting of single test steps that starts from the 
initial state and reaches the final state resulting 
either in a PASS or a FAIL test verdict. 

In the previous approach from Beyer, Dulz and 
Hielscher (2006), abstract test cases were generated 
from the derived MCUM in an intermediate step. To 
achieve this objective the XMI representation of the 
UML protocol state machine for the MCUM was 
processed by means of XSLT (Extensible Stylesheet 
Language Transformation) technology. 

We have chosen TTCN-3 from ETSI (2005) 
because we determined a good tool support by a 
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broad applicability and standardized interfaces both 
to the SUT as well as to the test management part. 
The transformation of abstract UML test cases to 
concrete TTCN-3 test cases was done automatically. 
The only manual part was to add missing data 
definitions and to provide an interface 
implementation for handling the communication 
with the SUT. 

Figure 9: Duration of the transformation and compilation 
steps to generate a TTCN-3 test suite for a DECT system.  

The main disadvantage of the previous approach 
is the need to generate test cases first in order to 
derive an executable test suite, as shown in Figure 9. 
The duration for generating and transforming a test 
case from a given MCUM is in the order of six 
minutes related to realistic applications. At the first 
glance this generation overhead seems not to be very 
serious. 

On closer examination and especially looking at 
the big variance between one up to 24 hours for 
compiling an executable test suite for the DECT 
system we identified two major reasons for the 
inefficient TTCN-3 compilation:  
• unfolding finite loop fragments with upper 

and/or lower boundaries for not violating the 
Markovian assumptions of the MCUM theory 

• serialisation of interleaved events inside 
composite states that are generate from parallel 
fragments will lead to a factorial growth of the 
length of test cases. 

We also checked the intermediate code of the 
Telelogic Tau G2 TTCN-3 compiler used in our 
project with respect to the TTCN-3 interleave 

construct and noticed that the compiler maps it to a 
sequence of alt (choice) statements.  

In addition, another drawback arises from the 
static definition of the test behaviour after having 
compiled the executable TTCN-3 test suite. After 
finishing the test and estimating the quality of the 
SUT additional tests may be performed to further 
improve the reliability estimation. This is due to the 
fact that the accuracy of the confidence interval for 
the reliability depends on the number of executed 
test cases. In this situation new test cases have to be 
generated and another compilation phase has to be 
performed. The duration for this task may be in the 
order of hours, depending on the size of the 
randomly generated test cases and the resulting 
TTCN-3 test suite definition. 

To avoid these disadvantages and to be more 
flexible concerning the test execution we decided to 
cancel the test case generation step and immediately 
mapped the MCUM protocol state machine into the 
TTCN-3. 

4.2 The Executable Markov Chain 
Usage Model is the Test Suite 

An executable TTCN-3 test suite consists of a set of 
concurrent test components, which perform the test 
run. There exists always one MTC (Master Test 
Component), created implicitly when a test suite 
starts. PTCs (Parallel Test Components) are 
generated dynamically on demand. In the TestUS 
framework the generated test configuration consists 
of the following parts: 
• Every actor in the sequence diagrams is 

represented by one PTC that executes the 
specific behaviour. PTCs are generated and 
started by the MTC at the beginning of an 
interpreted test case. 

• Synchronization is a major task of the MTC. 
Synchronization messages are inserted in each 
of the following situations: 
- at the beginning of a test case right after the 

creation of a PTCs, a sync message is sent 
from every PTC to the MTC, signalling to 
be ready for start 

- after gathering these messages, the test 
component that is responsible for doing the 
next test step is sent a sync_ack  message 
by the MTC  

- syncall messages are used to inform the 
MTC that a PTC has received a response 
from the SUT which is piggy-back encoded 
inside a sync message. 

• Eventually, the MTC is responsible for logging 
every test step’s verdict, i.e. the positive or 
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negative result of a test step by using the piggy-
back information from the PTCs. 

 
Let us explain the main concept in a small 

example that illustrates the TTCN-3 interpretation of 
the simple MCUM in Figure 10. 

 
Figure 10: MCUM to demonstrate the communication 
between a PTC and the MTC in a TTCN-3 test executable. 

As explained in the previous subsection no 
explicit test case generation is needed. Instead, each 
transition of the MCUM is considered to be a single 
test step. Parameters of the transition, i.e. trigger 
message, expected result and the associated 
probability are automatically mapped into a 
behaviour defining function that allows the 
interpretation of the test step on-the-fly during the 
test execution.  

The function name is directly derived from the 
names of the source and target states. The TTCN-3 
keyword runs on is used to denote which PTC has to 
executed the function. Alternative reactions of the 
SUT are defined in the alt statement right after the 
pair of brackets []. The resulting sync message that 
is sent from the PTC to the MTC either contains the 
expected result or a fail information. 

Function state1to2 below represents the MCUM 
transition in Figure 10 from the PTC’s point of view 
that has to handle the User1 interactions with the 
SUT. 

 
function state1to2 (…) runs on User1_type { 

    alt { 
        [] User1_type2sut.recevie(Message1) { 
            // correct message received 
            pc2mtc.send(sync(“User1:Message1”)); 
            }  
        [] User1_type2sut.receive {  
            // wrong message received 
            pc2mtc.send(sync(“fail”)); 
            } 
        [] receive_timer.timeout {  
            // timeout because no message received 
            pc2mtc.send(sync(“fail”)); 
        } 
    } 
} 

 
Below, the TTCN-3 control actions for the MTC 

to interpret the simple test case of the MCUM are 
shown. After the module definition part that contains 
the definition of function state1to2 abstracted by 

“…” the first control action starts the PTC of User1. 
If the expected result is received from the PTC the 
MTC logs this event and the verdict pass is given. 
Otherwise the test results in the verdict fail and the 
errorState is reached. 

 
testcase test(…) runs on mtc_type system system_type { 

    … 
User1_type.start(state1to2()); 

 alt { 
      []mtc2ptc.receive(syncall) from User1 ->                

value PTCResult{ 
      if (PTCResult.report == “User1:Message1 ”) { 
                   //correct received by the PTC  
                    log("User1:Message1”); 
                    setverdict(pass); 
                    goto finalState; 
                } 
 if (PTCResult.report == “fail”) { 

    //wrong/no message message received by PTC  
     setverdict(fail); 
                     goto errorState; 
               } 
            } 
      []mtc2ptc.receive { 
                // non-expected message received by PTC 
     setverdict(fail); 
                 goto errorState; 
                } 
        } 
    label errorState; 
    …  
    stop;  
    label finalState; //end of the test case 
} 
 
If there exists more than one possibility to leave 

a given state of the MCUM the MTC has to choose 
randomly the next transition based on the probability 
information of the leaving transitions that has to sum 
up to 1 for each state. 

After logging the test verdict the MTC will 
select the next test case on-the-fly by continuing 
with the start state of the MCUM. At the end of the 
test typical statistics are calculated and presented to 
the test user, e.g. number of test cases, number of 
visited states and transitions, mean length of a test 
case and the reliability of the SUT. 

5 DECT CASE STUDY 

To validate the TestUS approach we have chosen the 
case study from Biegel (2006) in order to compare 
the results. In Biegel (2006), the main test goal was 
to demonstrate the correct intercommunication 
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behaviour of DECT protocol modules via the DHCI 
(DECT Host Controller Interface). 
 

The configuration of the SUT is shown in Figure 
11. The DECT system consists of two base stations 
(FP: fixed part) and four portable parts (PP: portable 
part) that may be subscribed either to the first or the 
second FP.  During the test the PPs are allowed to 
change the FP in order to emulate roaming mobile 
users while talking in a voice conference. 

 
Figure 11: TTCN-3 test suite for testing the DECT system. 

Users of the PPs and FPs are specified by actors 
in UML use case and interaction diagrams. The 
users send messages to the system in order to 
represent typical usage patterns of the DECT 
system. An interface layer (TTCN-3 runtime 
interface) was implemented to relay the messages to 
the corresponding DECT module. 

The plug-in for starting the TTCN-3 
transformation process in the Eclipse framework is 
shown in Figure 12 below. 

 
Figure 12: TTCN-3 transformation plug-in for Eclipse. 

Here the user has the choice to select between 
 
• SD to MCUM for generating the MCUM test 

model from a set of UML 2.0 interaction 
diagrams 

• SD to TTCN that represents the former step to 
create a TTCN-3 test suite from a set of test 

cases that are generated by means of the 
MCUM 

• MCUM to TTCN, which represents the new 
TestUS approach and allows the direct 
transformation of the MCUM to an executable 
TTCN-3 test suite. 

 
Use case and interaction diagrams that express 

the requirement definitions of the DECT system 
contain about 230 sequence diagrams. XSLT 
stylesheets are used to transform these diagrams to a 
UML protocol state machine consisting of around 
900 states and over 3400 transitions that represents 
the MCUM as an executable test model.  

Statistical selection of transitions between states 
of the MCUM is leading to many – in the case of 
unbounded loop fragments to infinitely - different 
test cases. The test suite reflects the expected 
frequencies of the usage of particular parts of the 
system that is explicitly given by means of the user 
profile shown in Figure 2. 

In addition to the actors of the requirement 
definitions the MTC user is appended. It controls the 
test run by signalling to the PTCs that are acting in 
place of the DECT FP and PP users when they have 
to send their messages to the SUT and by logging 
the test verdicts. Also, TTCN-3 ports have to be 
defined for the message interchange between the 
components.  

The usage behaviour is specified by TTCN-3 test 
cases and functions which are executed on the 
components. While all previous tasks were done 
automatically in the tool chain the data types of the 
messages that are exchanged with the SUT had to be 
specified manually. For this, the standard data 
presentation language ASN.1 of the Telelogic Tau 
G2 was used to encode and decode the particular 
DECT protocol data units into the PER (Packed 
Encoding Rules) format. Furthermore templates for 
sending and receiving messages had to be defined. 
By matching template names to the signatures of the 
DECT messages that are used in the scenarios this 
mapping was done automatically during the test. 

The actual communication with the DECT 
modules was implemented in the C programming 
language using the TTCN-3 TRI (Runtime 
Interface). It manages the mapping of the ports in 
the TTCN-3 domain to the (virtual) COM ports 
which were accessed through a DHCI specific 
library. Besides the setup and mapping of the ports 
the TRI was responsible for the task of sending and 
receiving messages. 

 
In our previous approach from Beyer, Dulz and 

Hielscher (2006), the duration for generating and 
transforming a test case from the generated MCUM 

TTCN-3 choice option in the menu bar 
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as show in Figure 9 is in the order of six minutes 
related to the DECT case study. The TTCN-3 test 
suite consisted of over 200 test cases, which means 
that about 20 hours are needed to derive the TTCN-3 
source code. After additional 24 hours to compile 
the executable test suite by means of Telelogic Tau 
G2 the actual test could be started and revealed 
around ten failures of different types, e.g. the 
reception of a wrong message type, wrong parameter 
values and even a non-functional violation of a 
given time constraint. 

 
In the TestUS approach no overhead for 

generating, transforming and translating test cases in 
order to produce the TTCN-3 test suite is necessary. 
Instead, the transformation of the MCUM to the 
TTCN-3 source code for the DECT case study can 
be done within 5 seconds using a Java tool that was 
developed to do this task and which can be selected 
via the Eclipse plug-in shown in Figure 12. The 
compilation of the executable test suite is done by 
Telelogic Tau G2 within additional 15 minutes. 
Now, as long as one likes test cases can be 
performed and interpreted on-the-fly in real-time 
without any further modifications of the TTCN-3 
test suite. 

6 CONCLUSIONS 

The advantage of the new approach implemented in 
the TestUS framework is obvious: 

 
• The main effort at the beginning of the test 

process is to construct a MCUM in order to 
reflect the correct usage behaviour between the 
SUT and all possible actors. 

• Based on a UML 2.0 software engineering 
process, which starts from use case diagrams 
that contain interaction diagrams to refine the 
user interactions an automatic derivation of the 
MCUM protocol state machine representation is 
achieved by a proper tool chain. 

• There is no need to calculate TTCN-3 test cases 
in advance. Therefore, it is possible to avoid the 
unfolding of finite loop fragments with upper 
and/or lower boundaries and the serialization of 
interleaved events that are responsible for a 
factorial growth of the length of the test cases. 

• Once the MCUM is transformed to a TTCN-3 
test suite, test cases and the evaluation of test 
verdicts are interpreted on-the-fly in the 
executable test suite. 
 

We proved the new concept by means of a 
realistic case study for testing a DECT 
communication system. The previous generation and 
compilation time for the dedicated DECT test suite 
summing up in the order of 44 hours was reduced to 
only 15 minutes and we got a TTCN-3 test suite at 
the end that interprets as many test cases as one likes 
for the DECT system on-the-fly and in real-time. 
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