An Approach for the Specification and the Verification
of Multi-agent Systems Interaction Protocols using
AUML and Event B

Leila Jemni Ben Ayed and Fatma Siala

UTIC: Research Unit of Technologies of Information and Communication ESSTT, 5
Avenue Taha Hussein, P.B.: 56, Bab Menara, 1008 Tunis, Tunisia

Abstract. This paper suggests an approach for the specification and the verifi-
cation of interaction protocols in multi-agent systems. This approach is based on
Agent Unified Modelling Language (AUML) and the Event B method. The inter-
action protocol, are initially modelled using the AUML protocol diagram which
gives graphical and comprehensive models. The resulting model is then trans-
lated into Event B and enriched which required interaction protocols properties.
We obtain a complete requirement specification in Event B which can be verified
using the B powerful support tool like the B4free. In this paper, we focus on the
translation process of AUML protocol diagrams into Event B and by an example
of multi-agent systems interaction protocol, we illustrate our approach.

1 Introduction

Multi-Agent Systems (MAS) is an area of distributed artificial intelligence that empha-
sizes the joint behaviors of agents with some degree of autonomy and the complexity
arising from their interactions. Itis therefore necessary to follow a strict process of mod-
elling, and formal verification. This allows one to model interaction protocols and to
rigorously verify required properties before the implementation. In this paper, we pro-
pose an approach for the specification and the verification of MAS interaction protocols
combining AUML [9] protocol diagrams and Event B [2]. Agent UML extends differ-

ent diagrams of UML in particular state transitions and sequence diagrams in various
ways to model the non-determinism in MAS. AUML with its new diagrams provides
many advantages to Agent systems design, such as simplified training and unified com-
munication between development teams. However, the fact that AUML lacks a precise
semantics is a serious drawback because it does not allow proofs and in consequence,
with AUML, we can not verify required properties of interaction protocols in MAS like
safety, deadlock-inexistence, liveness and fairness properties. On the other hand, for-
mal methods are the mathematical foundation for software. They increase the quality
of applications development and perform the reliability of the applications. Generally,
these techniques are divided into two categories: automatic proving (model checking)
[4] and proof systems.

Several solutions have been proposed for the specification of MAS using formal meth-
ods. Regayeg and al. [11] proposed the use of the Z method [8] and the LTL notations

Jemni Ben Ayed L. and Siala F. (2008).
An Approach for the Specification and the Verification of Multi-agent Systems Interaction Protocols using AUML and Event B.
In Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages

DOI: 10.5220/0001743101900198
Copyright © SciTePress

191

but the problem in this solution is related to the combinataxplosion of the state
number in the modelled system. Mazouzi [1] proposed to mpdgbcol interactions
in MAS with colored petri networks but the proposed pattetosnot deal with dy-
namics of the environment. A recent studies [12] [6] [3], ethcompared the use of
formal and semi formal methods concluded that formal metHed to better preci-
sion than semi formal ones and that semi formal methods pmthore intuitive and
readable documents. An appropriate combination of semidibtechniques and formal
methods can give rise to a practical and rigorous multi-tigégraction protocol devel-
opment method. Our goal, in this context, is to provide a $igation and a verification
technique for multi-agent systems interaction protocelagiAUML protocol diagram
which give readable models and an appropriate formal metioch allows verifica-
tion of required properties. This is why we propose in ourrapph a combination of
AUML protocol diagram and Event B. Hence, a semi-formal dfpeation in AUML
could be verified. In the proposed approach, the MAS interagrotocols are initially
modeled graphically with AUML protocol diagrams. After thehe resulting graphical
readable model is translated into Event B in incrementakligament. This resulting
model is enriched by relevant properties (safety, deadioekistence, liveness, strong
fairness, etc) which will be proved using the B4free tool [Bhe verification of these
properties ensures the correctness and the validatioe aibcribed MAS. The interest
of such transformation is to allow the possibility to penfoproof of this model using
the B4free tool. The proposed translation gives a formaks#in for the AUML proto-
col diagrams using the Event B semantic.

Other works proposed the use of semi-formal and formal niethicthe design of inter-
action protocols in MAS. Fadil and al [6] proposed a solutmmbining AUML with

B AMN (Abstract Machine Notation). Our work, which combinAsML and Event
B, is near to the one of [6]. However, we propose translatidesrfor the concepts of
AUML into the notation of the Event B which is more adaptedtitiae B AMN to the
specification of MAS which are reactive systems. Also, thegesemantic equivalence
between messages and interactions in AUML protocol diagradhevents in Event B
which does not exists with operations in B AMN because opmratmay be called by
the environment.

In this paper, we present the proposed approach which cestAdML and Event
B. We focus on the translation process and we define a listrodmerules translating
AUML protocol diagrams into Event B. By an example of a Coatsiet protocol [10],
we illustrate our approach.

2 The Proposed Approach

In this section, we present a specification and a verificagigoroach combining the
semi-formal language AUML and the formal method Event B. €hmbination con-
sists on transforming semi-formal AUML specifications ieent B which is verifiable
by using the B4free tool [5].

As it is shown with the activity diagram of UML (figure 1), ouproach is com-
posed mainly on three steps. In the first step, the system ielmd graphically with
AUML protocol diagram and the properties expected to be kbeéby the system are

192

Multiagent system
diseribed informally

Step 1 Gpccil‘icallun with the AUML protocol cIiagralD

Step 2 @onalrm‘(iun of the B machine static p'.ir:)

(il

Construction of the B machine dynamic pilﬂ)

L

@II up the system with additional inwn‘i:mlD

Step 3 6('rlicatiun of the system propertieD
é Validated and verified
system

Fig. 1. The proposed specification and verification approach.

described informally. In the second step, the obtained AUktidel is translated into
Event B specification using translation rules which will regented in this section
2. Finally, in the third step, the properties are checkedhftbe obtained global sys-
tem specification using the Event B tool, the B4free. Due ticsdimitation, we will
present only some of the proposed rules which will be ilatstd through an example
of a contract Net protocol [10]. In the following, we detdikt different steps and we
illustrate them over the contract-Net protocol as an exarfif].

2.1 Step 1: Specification with AUML Protocol Diagram

This step presents the specification of the MAS protocolsgu8lUML [9]. The figure
2.a shows the Contract Net protocol diagram.

2.2 Step 2: Translation of AUML Protocol Diagram into Event B

Our main contribution concerns this step which is dividet ithree sub-steps (figure
1): The construction of the B machine static part, the caiesiovn of the B machine

dynamic part and the enrichment of the the system with aaiditiproperties (liveliness
and safety invariants) that will be verified in the third stepthe following we present

rules and apply them to the example. We will enumerate thpgsed translation rules
to simplify the presentation.

Rule 1. This rule is applied to generate the B machine static part:

1. We add three sets: AGENTS, MESSAGES and STATES_E toth&S$Eilise. The
meaning of each set is defined in the table 1.

2. We add three types of variables:changed_msg, hand_name_event andett to
the VARIABLES clause. Thexzchanged_msg variable describes the exchanged

193

Table 1. The meaning of each set.

Sets

Meaning

AGENTS

Corresponds to all names of agents roles.

MESSAGES Corresponds to all messages used by the protocol.
STATES_E Corresponds to different states (events) of thtesy.

Initiator
\ J

CFP

l Participant
4

Not_nnderstood

Refuze

Propoze

Reject_proposal

» Accept_proposal

%&_LIH end cfp fime

Inform

Failure

&

MODEL

MinetProtocol
SETS
AGENTS = {initiatlr,participant};
MESSABES={cfp, propose, refuse, n_understood,
reject, accept, 1infrm, failure}
STATES E={evt_cfp,evt d_prn, evt prn, evt_p,
evt_r,evt_n, evt_d_ra, evt_ra, evt_d_if, evt_if,
evt_i,evt_f,evt_d_evt, evt_a, evt_b.evt_c,
evt_t,evt_fin, evt_hegin};
VARTABL ES
exchanged_msq, hand_cfp, hand_d_prn, hand_prn,
hand_p, hand_d_ra, hand_ra, hand d_if,hand if,
hand_1,hand_d_e, hand_a, hand_b, hand_c, hand_*t, ett
INVARTANT
exchanged_msg € AGENTS<> (MESSAGES<*AGENTS)
A hand_cfpéM A hand_d_prn € M A hand prn € N
A hand p € M A hand_d ra € M ~ hand_ra € M
A hand d_if € N A hand_if € M A hand 1 € N A~
hend d e € M A hand a2 € M A hand b € M A
hand c € M A hand_t € M ~ ett £ STATES E
INITIAL TSATION
exchanged mag:=E ||
hand_cfp:=0|hand_d_prn:=0|hand_prn:=0
|hand_p:=0| hand_d_ra:=0| hand_ra:=0|
hand_d_if:=0]| hand if:=0| hand i:=0]
hand_d_e:=0| hand_a:=0| hand_b:=0|
hand_c:=0| hand t:=0|ett:=evt begin

(b)

Fig. 2. The translation of the static part.

messages between agents. This variable takes the form plies(sender, message,
receiver), where the sender and the receiver correspome toames of the agents
roles. For each system state, identified by the event namgenerate a new vari-
ablehand_name_event. This variable takes the value 0 when the event does not
happen and the value 1 in the other case. It is specified inubedgf the event.
The system states involved throughout the set STATES_Esepted by the vari-

ableett.

3. We define the variables types in the INVARIANT clause.
4. We Initialize the variablexchanged_msg to an empty set, each variabland_
name_cvent to 0 and the variablett to evet_begin in the INITIALISATION

clause.

For the example in the figure 2.a, we obtain by applying the tula specification

as shown in figure 2.b.

The following rules concern the construction of the B maehitynamic part by
translating the simple messages, the complex messages sfahe protocol and of
the time. All these will be written in the EVENTS clause.

— Rule 2.Simple message translation: Each message in the set MESS&G@Hded
as an event. The guard of this event is the system state $eayieal by the variable
ett) and its action adds to the variablechanged_msg, the new message and

194

Specification 2 Specification 3

event_cfp= Detec_propose_r_n =

SELECT ett=evt_hegin SELECT

THEN hand_cfp=1 A hand_d_prn=0~ ett=evt_cfp
exchanged_msg: =exchanged_msg U THEN
{initiator— {cfp—participant}} || ANY ec WHERE ee< {propose, refuse, n_vnderstood}
etti= evt_cip THEN

END msgdi=ee

hand_d_prn:=1|
etti= evt_d_prn|
hand: =3

END ;

event propose_refuse_nunderstood =

SELECT

hand_d_pran=1 A hand_prn=0Aett=evt_d_prn
THEN

exchanged_msg:=exchanged_msg U
{participantr {nsg3—rinitiator}}|
hand_prn:=1 | ett:=evt_prn

END ;

Fig. 3. A simple and a complex messages translation.

changes the value of the system state. By applying the rule 2btain the speci-
fication 2 (figure 3).

— Rule 3. An event just necessarily following another event: For eaagdnt which
must follow another event, we add in its guard the conditidniciv verifies that
the precedent event had happened. For example, the pantigipsponse to the
initiator with the messages not_understood, refuse orge®pnly if the initiator
send the message CFP to the participant. So, we add to theeeven cfp the
guard and_cfp = 1).

— Rule 4. Complex message translation: This rule models XOR mesdgpes If
XOR message is applied to a set of messages M1,..., Mn, wethaed in the
resulting Event B model, two events. The first event is usedife detection of
one of these messages by using a new variabland another variableisg3
takes its value. In the second event, the variahkg3 is added to the variable
exchanged_msg. By applying the rule 4, we obtain the specification 3 (figure 3

— The protocol Translation: In this section we focus on the events related to the
protocol states that are changing depending on the regedrisending messages
[7] or on the light of the deadline for replies related to thensition. In the first
case,when a reply is without a deadline, we assume thatdeqml passes through
four statesend, active, error andwait.

Rule 5.We add a new set in the B machine (STATES_P), which Correspionall
states protocol during the communicatiSTAT ES_P = {end, active, error,
wait}). The protocol states are represented by a variabtéocol. This variable
takes different values depending of the messages typdsdsl&n initiation or ne-
gotiation message, we add the specificatigntocol := active. If itis an informa-
tion, refuse, cancel or agree message, we add the speoffigatitocol := end.

If it is an error or not_understood message, we add the spatiifihprotocol :=
error. If it is a complex message, we add the specification 4 as shrotine figure

4. The first event takes the varialpleotocol to the state wait and after that for each

195

Fule Fe Specification 4
event_1 = event_propose_refuse_nunderstood =
SELECT SELEGT
hand_1=0 A ett=ewt_begin hand_d_prn=1 A~ hand_pro=0Aett=evt_d_prn
THEN THEN
exchanged_msg: =exchanged _msg exchanged_msg: =exchanged_msg U
{agentl—{messagel—agent2}} | {participant— {msg3—initiator}} |
hand_l:=1| protocol:=wait | hand_prn:=1|protocol:=wait|ett:=evt prn
etti=evt 1| END
END ; _
event 2 = e;]e;;ﬁgrnpnse
SELEGT hand_prn=1 A hand_p=0 A ett=evi_prni

hand_1=1A hand_2=0~ ett=ewvt 1A

h d, £ th= — tiat
exchanged_msg(agent) ={messageZ—>agentl} %ange _msg(participant) ={proposer>initiator}
THEN

protocol:=active || hand p:=1]

prntnc?l: =active|hand_p:=1|ett:= evt_2 etl.:: = evt p
event 3 = !
SELECT event_refuse =
hand_1=1A hand_3=0~ ett=evt _prn SELECT
Amsg_echanges (agent2) ={message3—ragentl} hand_pra=1 A hand p=0 A ett=ewt_prn ~

Aexchanged_msg(participant)={refuse—initiator}
protocol:=end| hand 3:=1| ett:= evt_3

EMD protocoli=end | hand_p:=l|ett:= evt_r
END;

event_n_understood =

SELECT

hand_prn=1 ~ hand_p=0 A ett=evi_prni
exchanged_msg (participant)={n_understood—initiator}
THEN

protocol:=error|ett:=evt n|hand p:r=1
END

Fig. 4. Translation of the protocol state supporting a complex agss

Specification 3 Specification 6

0FF= =

SELECT SELECT

protocol=active A (tinez out ting) protocol=end A tine< out_tine
THEN THEN

protocol: =znd| protocel:=active|

gth:=evt fin etti=evt _begin

END END

Fig. 5. Events associated to the protocol states with a deadline.

message, we create a new event which makes the vaygiafdecol in a different
state and the variablet in a new statéevt_name_event).
Rule 6. In the second case, when we have a message with a respoaggetael
events are added: OFF and ON. When no event can be triggbeedystem is
blocked. That is theleadlock problem. Specially, that situation holds when the
protocol is active andi{me >= out_time). To solve this problem, we have added
a new event OFF, which puts the protocokted under these conditions as illus-
trated in specifications 5 (figure 5). To ensure the resumptfgrotocol, we add
the event ON as illustrated in specifications 6 (figure 5).

— The Time Translation:
The B machine models are sequential systems and it is noibp®$s dispose of
the time along with another activity. In the Contract-Neitprcol, the message CFP
waits a response with a deadline. The rule 7 is introducediefthe time in Event
B.

196

Rule 7.If we have a message with a response delay, we introducentkeriEvent

B by adding aclock defined by an eventick and whose role is to advance the
time represented by a varialilene. The solution is to interleave operations update
clocks with system events occurrence by using a new variablem.
The Timeout Translation:

For each messagi/i with a response delay, we add to the resulting model three
statesstate Ai, state Bi andstateC'i (figure 6) where i= 1..n. The system is initially

in the statestate A7 and passes to the statteite Bi when the response (event) holds
using the event AtoB. It passes to the st&tgeC'i when the event does not happen
and the delay is elapsed using the event AtoC. AtoA holds wieraystem remains

in the statestate Ai (no receipt of the following response and the time value has
not reached the delay).
Three states are added in a set STATESSTATES T =dtateAi, stateBi, stateCi)
represented by a variableate_i. This rule add also an event to detect one of events
by using a boolean variable e which takes a random value of a boolgghn(ie if
the event occurs or not).

Modelling of Parallelism: To model parallelism between time evolution and event
occurrence (system behavior) in Event B, we propose to tisdeaving. A variable
system is used. Once the hand is given to the clocks{iftern = 2) and once is
given to the system (ifystem = 1).
The Livelock: We also propose a solution to avoid the livelock. If theresigesal
events that are true at the same time, i.e that their guaedsiag, then one of them
will be selected on a non-deterministic way. To avoid thisigem, we introduce a
new variablehand initialized to zero and increases with each occurrence @&va n
event. Indeed, no guard will be infinitely true since thattihad will be changed.

Fill Up the System with Additional Properties (Liveliness and Safety Invari-
ants)

Tick = Atod = Atob =
SELECT SELECT SELECT
systen=2A ett=evt cfp state=statedr systen=0A state=statedr system=0A
THEN ett=evt cfpA tine<out time | ett=evi_cfp A time=out_time
time:=time+l| system:=l| 4 v e=FALSE A w_e=FALSE
END; THEN THEN
systen:=2 systen:=3| state :=stateC
END; END;
detec_evt =
SELECT
SYS;JEI e MDEEEEGT
M?NY tf $E=500 state=statedA system=0A
v gi=tf ett=evt_cfps time<out_times
END || v_e=TRUEA hand_cfp=1
system:=0 THEN
END; hand_cfp:=2|state:=stateE|
system: =4
END;

Fig. 6. Modelling message with delay in Event B.

197

In this step, we enrich the model with invariants describrieguired properties (safety
and liveliness). The P1, P2 and P3 invariants are relateddsponse delay.

The P1 invariant expresses that ifsf;stem = 2), then necessarily the system re-
mains in the same stafetateA): ((system = 2) = (state = stateA)).

TheP2 invariant expresses that if the system is in the stdtge B, then necessarily
the delay has not yet faile@(system = 2) = (time < out_time)).

TheP3 invariant expresses that if the system is in the statéeC, then necessarily
the deadline has arrivefi(system = 2) = (time = out_time)).

The P4 invariant concerns the invariant associated to the complex message ty
XOR as shown in specification 15 (figure 7).

Invariant P4 Specification 13

(v (magl,msgl). (stt=evt 1) A (hand_1=1) (¥ (msql, msg2).

A magl € MESSAGES A naegl € MESSAGES A (({{ett=evt p)V (eth=svt)V (ett=evt n))
{agent2 {msglragentl}) € msg_echanges A (hand=4) A (hand prn=1)

A {aqent2- insg2—ragentl}) € msq_echanges A magl € MESSAGES A msg2 € MESSAGES
Ansgle{messagel, nessagel}) A (agentZ{msglrragentl}) € msg echanges
={ noqlé{nessagel, nessagel}))] A(agentl-{naglragentl}) € maq_echanges

M magle{propose, refuse, n_understood})
= nsglé{propose, refuse, n_understood})))

Fig. 7. The XOR message translation.

TheP5 invariant concerns the consistency of all events. As an exampteeifit_
detec_propose_r_n happens implies thawvent_cfp had happened(hand_d_prn =
1) = (hand_cfp = 2)). Where the variabléand_d_prn is associated to the event
event_d_prn that is used for the detection of one of the three messagepdsge,
refuse, not_understood).

The P6 invariant concerns the states of the protocol without a response dslay
sociated to the figure 4 and expresses that whenever thersigsiie a considered state,
the protocol takes a certain value. For example, if the gystein CFP state then the
protocol is active((ett = evt_cfp) = (protocol = active)).

2.3 Step 3: The Verification of System Properties

This step ensures that the specification B is correct andkciecdesired properties
by verifying that the invariants are preserved by events Thlese are what we call
proof obligations and are automatically generated by tegrof the B4free tool. We
have used the B4free to verify our final Event B model of the t@arn-Net protocol
resulting from the translation process. All proof obligats have been totally proved
automatically.

198

3 Conclusions and Perspectives

In this paper, we have proposed a specification and a verdficapproach using AUML

and Event B. The system is at first modeled with AUML protodalgtlams which is

understandable; the resulting model is translated intoEtent B notation to verify

required properties. This allows one to verify AUML modeldnyalyzing derived Event
B specifications and to prove that the modeled protocol sl safety and liveliness
constraints. We have proposed translation rules for AUMitqrol diagrams into Event
B and we have shown these rules by an example: the Contragirdtecol. Our future

work will focus of the automatization of this approach. Weldevelop a tool which

allows us to model graphically the protocols and to veriitiproperties.

References

1. Abrial, J.R.: The B book : Assigning Programs to Meanin@ambridge University Press
(1996)

2. Abrial, J-R.: Extending B without changing it (for devping distributed systems). Proceed-
ings of the 1st Conference on the B method. November (199%)194.

3. Ben Younes, A., Jemni Ben Ayed, L.: Using UML Activity Diegns and Event B for Dis-
tributed and Parallel Applications. In the 31st Annual IEEEernational Computer Software
and Applications Conference (COMPSAC 2007), Volume 1. |IEEdfnputer Society 2007,
Beijing China (2007) 163-170

4. Bérard, B., Bidoit, M., Finkel, A.: Systems and softwaezification model checking tech-
nigues and tools. Springer (2001)

5. Clearsy, "B4free", Available at http://www.b4free.cop®04.

6. Fadil, H., Koning, J-L.: Vers une specification formelésgrotocols d’interaction des systems
multi-agents en B. 6e Conférence Francophone de MOdé@lisati SIMulation, MOSIM'06.
Rabat, Maroc (2006)

7. FIPA communicative act library specification, standard dn.e
http://lwww.fipa.org/specs/fipa00037/SC00037J.pdf

8. Mazouzi, H.: Ingénierie des protocoles d'interactiores dystémes distribués aux systemes
multi-agents. These Université Paris IX. Dauphine (2001)

9. Odell, J., Parunak, V-D., Bauer, B.: Representing ag@etaction protocols in UML. Con-
férence AAAI Agents. Barcelone (2000)

10. Odell, J., Van Dyke Parunak, H., Bauer, B.: Extending UldLagents, in G. Wag- ner, Y.
Lesperance and E. Yu (eds). Proceedings of the Agent-@ddnformation Systems Work-
shop at the 17th National conference on Artificial Intelfige, ICue Publishing, Austin, Texas
(2000)

11. Regayeg, A., Hadj Kacem, A., Jmaiel, M.: Specificatiod werification of multi-agent ap-
plications using temporal z. In Intelligent Agent TechrgydConf. (IAT'04), IEEE Computer
Society, (2004) 260-266
Regayeg, A., Hadj Kacem, A., Jmaiel, M.: Specification andfieation of multi-agent appli-
cations using Temporal z. The IEEE computer Society, (2004)

12. Weber, M.: Combining Statecharts and Z for the Design afetg-Critical Control Sys-
tems. 3rd International Symposium of Formal Methods Eu(&iME’'96). LNCS 1051, Europe
(1996) 307-326

