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Abstract. The state-of-the art in statistical machine translation is based on a
log-linear combination of different models. In this approach, the coefficients of
the combination are computed by using the MERT algorithm with a validation
data set. This algorithm presents high computational costs. As an alternative, we
propose a novel technique based on Support Vector Machines to calculate these
coefficients using a loss function to be minimized. We report the experiments on
a Italian-English translation task showing encouraging results.

1 Introduction

Machine Translation (MT) is a research field of great importance in the European Com-
munity, where language plurality implies both a very important cultural richness and
not negligible obstacle towards building a unified Europe. Because of this, a growing
interest on MT has been shown both by politicians and research groups, which become
more and more specialised in this field. In addition, Statistical Machine Translation
(SMT) systems have proved in the last years to be an important alternative to rule-
based MT systems, even outperforming commercial MT systems in the tasks they have
been trained on. Moreover, the development effort behind a rule-based MT system and
an SMT system is dramatically different, the latter being able to adapt to new language
pairs with little or no human effort, whenever suitable corpora are available.

SMT is a pattern-recognition approach to MT. The grounds of modern SMT were
established in [1], where the problem of MT was defined as following: given a sentence
f from a certain source language, an adequate senéetihet maximises the posterior
probability is to be found.

é = argmaxPr(e)Pr(fle) . 1)

At the origins of SMT, only word-based translation modElg f|e) and target lan-
guage model$’r(e) were used, but since their introduction in SMT by Och and Ney
[2], log-linear models have been a standard way to combine sub-models in MT systems.
A log-linear model implies the following decision rule:

é= argmax{Zwiei(f,e)} , 2)
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whered; are features of the hypothesisand w; are weights associated with those
features.

Selecting appropriate weights is essential in order to obtain good translation per-
formance. In [3] the Minimum Error Rate Training (MERT) wasroduced. The MERT
technique allows to find the values of the weights that minéa given error rate mea-
sure. This has become much more standard than optimizirgptiditional probability
of the training data given the model (i.e., a maximum like&d criterion), as was com-
mon previously. In [3] was also stated that system perfomadnbest when parameters
are optimized using the same objective function that willibed for evaluation; BLEU
[4], which computes the precision of unigrams, bigramsyrénns and 4-gramswith
respect to a reference translation, remains common for fnatboses and is often re-
tained for parameter optimization even when alternatiauation measures [5, 6] are
used.

The MERT technique relies on data sets in which source lagggantences are
paired with (sets of) reference translations. This tecligpplies an iterative and (lo-
cally) convergent strategy to find a set of weights whichrojges the BLEU score;
a n-best list of translations provided by the decoder isatgd for this purpose after
each translation step. At each iteration of the MERT prooedine whole corpus is
translated, and this process continues until convergareached.

The main disadvantage of the MERT procedure consists ingts time complex-
ity. Such time complexity is due to the above mentioned fieeanature of the MERT
procedure.

1.1 Support Vector Machines

Support Vector Machines (SVMs) are a learning method intced by Vapnik in [7]
and [8]. SVMs are a set of related supervised learning mathedd for classification
and regression. They belong to a family of generalized tinkssifiers. A special prop-
erty of SVMs is that they simultaneously minimize the enwgaiticlassification error and
maximize the geometric margin, hence they are also knownaaénmum margin clas-
sifiers.

SVMs are well-founded in terms of computational learningaty and very open to
theoretical understanding and analysis. In [9] a genextidia of the multiclass SVM
learning [10, 11] was introduced. Such a formulation ineslifeatures extracted jointly
from inputs and outputs. The naive approach of treating s#titture as a separate
class is often unfeasible, since it leads to a multiclasblpro with a very large number
of classes. This problem is overcome by specifying diseramt functions that exploit
the structure and dependencies within the outputs.

SV Mstruet4 [9] is a SVM algorithm for predicting multivariate or struced out-
puts. It performs supervised learning by approximating apiey

H:X—->Y, (3)

% A n-grams is a sequence ofconsecutive words.
* http://svmlight.joachims.org/svratruct.html



using labeled training examplés, y1), . . ., (zn, y»). However, unlike regular SVMs
which consider only uni-variate predictions like in cldigsition, SV M5t can pre-
dict complex objects like trees, sequences, or sets. Exangplproblems with complex
outputs are natural language parsing, sequence alignm@noiein homology detec-
tion, and Markov models for part-of-speech tagging. THEM $t"4<t algorithm can
also be used for linear-time training of binary and mulsl&sVMs under the linear
kernel [12].

The 1-slack cutting-plane algorithm implementedsivi M 5¢7#<t V3.00 uses a new
but equivalent formulation of the structural SVM quadrgitogram which allows a
cutting-plane algorithm that has time complexity lineathia number of training exam-
ples. Then-slack algorithm ofSV M $tru<t 2 50 is described in [13, 9]. Thgl M struct
implementation is based on ti$g” M9t quadratic optimizer [14].

SV M#truet can be thought of as an API for implementing different kinflsam-
plex prediction algorithms, e.g. Multiclass classificati®], Label sequence learning
[9], Natural language parsing [9] and Protein Sequencentignt [15].

1.2 Motivation

The aim of this work is to replace the slow iterative MERT prdare by a new non-
iterative algorithm based on th#/ M st algorithm. The proposed algorithm is able
to perform the log-linear model parameter optimizatiorhvatlinear time complexity.

2 Structured SVMsfor Log-linear Model Parameter Optimization

This paper introduces a new proposal to perform the optitoizaf parameters of a
log-linear translation model using tt$8/ M $tr4<t algorithm.
A log-linear model implies the following decision rule:

é= argmax{z wib;(f, e)} , (4)

whered; are features of the hypothesisand w; are weights associated with those
features. The problem consists on selecting the apprepréextor of weightsy so an
objective function is optimized. SVMs are used to acconhpliss optimization.

The vectow has a crucial influence on the quality of the translationghérfollow-
ing, we aim to learrw from a set7 of training examples:

T:((f17€1)7(f27€2)7"'7(fn7€n))7 )

where(f;, e;) are sentence pairs.

This training set is assumed to be generated independamtlyiceentically dis-
tributed according to some unknown distributi®{ £, E). A MT algorithm can be
seen as a function:

he(f) = argmax{w - ¥(f,e)} (6)

ecE



which maps a given source senternfc® a target sentenee Our goal is to find a pa-
rameter vectow so that the predicted translatidg (/) matches the correct translation
on new test data as well as possible. In particular, we wafimdcthe values ofv that
minimizes the expected loss (also called risk) for the deigibutionP(F, E):

R () = / Ale, ho(f))dP(F, E) @)

whereA(e, ¢’) is a user defined (non-negative) loss function that quastifisv 'bad’ it
is to predicte’ whene is the correct translation. For example, one may chabgee’)
to be equal to 1 minus the BLEU score fdr

Following the principle of (Structural) Empirical Risk Mmization [16], finding a
value ofw that predicts well on new data can be achieved by minimiziegempirical
loss (i.e the training error) on the training et

n

Rr(he) = Alei, ho(f:)) - (8)

i=1

This minimization lead to the computational problem of fimglithe value ofw
which minimizesRr (h,,). This vectorw is the vector of optimized weights for the
log-linear combination of models.

The problem of finding the value af that minimizes the empirical log37 (k) of
the translation algorithm was formulated as a minimizagowblem [9]:

N Y o \
a - ] . B &5 = )
rg}g{zllwll +n;—1fz} stVi: §2>0

Vi, Ve € E : w-0¥;(e) > Ale;,e) — & (9)

Wheredtpi(e) = W(ei, fl) N W(e, fl)

The objective is the conventional regularized risk usedMiMS. The constraints in
Equation 9 state that the scave ¥(e;, f;) of the correct translatios; must be greater
than the scorev - ¥ (e, f;) of any other alternative translatien

This formulation includes a loss functiafi(e;, ¢) that scales the desired difference
in score. Intuitively, the larger the loss of an alternatiemslatiore, the further should
the score be away for that of the correct translatignrg; is a slack variable shared
among constraints from the same example, since in generaldhstraint system is
not feasible. In [17] is proved that this formulation minizes training loss, while the
SVM-style regularization with the nor@ in the objective provides protection against
over-fitting for high-dimensionab. The paramete€ allows the user to control the
trade-off between training error and regularization.

The general training algorithm [9] can be seen in Figure 1s &lgorithm requires
the implementation of the feature mapping functiofy, ¢), the loss functiom(e;, e)
and the maximization given in tr&" line of the algorithm in order to be adapted to a
specific task.

Following sections explain how to adapt tB& M st"«<t algorithm to perform the
log-linear model parameter optimization.



1: Input: (Xx1,¥1),---, (Xn,¥n), C, €
2: S;—0foralli=1,...,n

3: repeat
4: fori=1,...,ndo
5: set up cost function

SVMP®: H(y) = (1 - (604(y), w)) Alyi,y)
SVMS*: H(y) = (1—(0%:(y), w)) VA y)
SVMP™: H(y) = Alyi,y) — (00i(y), w)
SVME™: H(y) = /Alysy) — (0%:(y), w)
where w =}, Zy’esj g 505 (y").

6: compute ¥ = arg maxyey H(y)

ié compute & = max{0, maxyes, H(y)}

8: if H(y) > & + € then

9: Si — S;u{y}

10: g < optimize dual over S, S = U;S;.
11: end if

12:  end for

13: until no S; has changed during iteration

Fig. 1. General training algorithm for structured SVMs.

2.1 FeatureMapping

The feature mapping function is a combined feature reptatien of the inputs and
outputs. In our case, the mapping function takes a pair aftibptput sentences and
returns a vector with the scores of each of the models in tpdim@ar combination for
this pair of sentences.

2.2 LossFunction

The MERT algorithm performs an optimization of the log-bmgarameters in order
to obtain the translation which maximizes the BLEU [4] sc@pecifically, the BLEU
score measures the precision of unigrams, bigrams, trigrand 4-grams between two
sentences. Since the BLEU measure is a score instead of@rrae, the following
loss function is used:

Ae;,e) = 1 — BLEU (e ¢€) . (10)

As said in this section, the training algorithm (Figure 1jimizes the training loss,
so BLEU will be maximized.

Other measures, as for example, TER (Translation Edit R&{e)r WER (Word
Error Rate), can be used as well.

2.3 Maximization

While the modeling of the feature mapping and the loss fonds more or less straight-
forward, solving the maximization problem typically retps exploiting the structure
of the output values.



In our case, the maximization is stated as follows:

é = argmaxH (e) . (11)
ecE
Among all possible target sentendéswe have to be able to choose that one which
maximizesH (e). The set of all possible target sentences is infinite so weoappated
this maximization by using-best lists.

3 Implementation Details

This section describes the implementation details of thipgsed optimization algo-
rithm. In our implementation, publicly-available well-twn software in the field of
SMT has been used.

To calculate the feature functiah(e, f), the score of each model in the log-linear
combination for the pair of sentences has to be computedaltolate these scores we
have used an extension of the THOT toolkit [18], which is dkibdor SMT to train
phrase-based models. The above mentioned extension oM@ Toolkit allows to
obtain the alignment for a pair of sentences which maximikzesprobability given by
the log-linear model. It uses the current vector of weigh{See section 2) to calculate
this alignment and returns the score of each model for thirsopgentences given this
alignment.

Regarding the maximization problem described in secti@ndven a source sen-
tencee; we have used the MOSES toolkit [19] to calculate-hest list of translations
according to the current vector of weighisThen these-best hypothesis are re-scored
according toH (e), and the one with the maximum score is returned as the rebjare
get sentence.

The THOT toolkit and the MOSES toolkit use slightly diffete¢ranslation tables.
Specifically, the MOSES toolkit allows to work with one or ra@core components for
each phrase pair while the THOT toolkit only allows to workiwbne. By this reason,
it is necessary to keep two translation tables, one for theSE® toolkit where the
score for each component appears separately and one foH®& Toolkit where all
the components are gathered in only one value.

4 Experiments

We have carried out an experimentation in order to verifydfiectiveness of our pro-
posal. In our experiments we have compared the performdroetio the MERT pro-
cedure and our proposed technique. All the experimentsiheee carried out with the
FUB corpus.

4.1 TheFUB Corpus

The FUB corpus [20], is a bilingual Italian—English corpughaa restricted semantic
domain. The application is the translation of queries, estgiand complaints that a
tourist may make at the front desk of a hotel, for exampleinasfor a booked room,
requesting a service of the hotel, etc. The statistics oftlpus are shown in Table 1.



Table 1. FUB corpus statistics.

Trai ni ng |Devel opnent Test
Language Italian|EnglishItalian] EnglisHItalian|Englis
#Sentences 2900 138 300
#Words 51902 62335 2609 3119 6121 7243
Vocabulary size 2480 1671 534 443 715 547
#Out of vocabulary — 55 31 129 84
Perplexity (trigram) — 19.9 10.6 19.4 10.2

4.2 Results

The experimentation consists on training a MT model with H@SES toolkit using
the Training set. Then the Development set is used to opitthie parameters of the
trained log-linear model. The MERT procedure and our atbariare used to perform
the optimization. Finally the translation results of ea¢lthem with the Test set are
compared.

As first step, a log-linear model is trained using the MOSEfkit This log-linear
combination is composed of eight models: the distortionr@ering) model, the target
language model, the translation model which is also contboséve sub-models and
the word penalty model.

As said in Section 3, the THOT toolkit works with translatitatles with only one
score for each phrase pair. So a new translation table has bwili. The score of a
phrase pair in that table is the weighted average (the MO Sl weights are used)
of the five scores in the MOSES translation table for that gigir. Once the transla-
tion scores have been gathered, a log-linear combinatifmuofodels is obtained. The
new table with the gathered scores is used to perform then@atiion of parameters.

To optimize the parameters the MERT procedure is used wstkdéfault options
values. It uses &00-best list of translations.

Our proposal uses the extension of the THOT toolkit to penftiie feature map-
ping. The maximization described in Section 2.3 is carrigtlusing10-best lists of
translations. The 10-best translations list is re-scosdgithe following equation:

H(e) = A(e;,e) — (0%;(e) - w) . (12)

This H (e) function corresponds to the margin re-scaligg/(M/{™) on Figure 1
[9].

SV Mstruet allows to modify a great amount of parameters relative toSkivs
optimization process. Different combinations of valuesaie parameters have been
tested to choose those values with better performance.

Table 2 shows the BLEU scores for the different models afsrdiating the Test
set. Baseline corresponds with the log-linear model befoyeparameter optimization,
MERT corresponds with the model after being optimized ushegMERT procedure
and SVMs corresponds with a model which parameters had h@énined using our
proposal.

The results on Table 2 show that our proposal is able to oiatpethe MERT pro-
cedure. But, if we optimize the parameters using the MERTEgdare and the original



Table 2. BLEU score results summary.

BaselineMERT|SVMs
64.46 | 64.93|65.38

table (the one with eight scores per phrase pair), the BLEesrises t@5.89. In
this case, the MERT procedure is able to optimize the weifgrteach of the sub-
models in the translation model independently. So, theivelaignificance of each of
this sub-models can vary. Our proposal optimizes the weibthte gathered translation
model, so the relative importance of each of the sub-modelsod change respect to
the non-optimized model.

5 Conclusions

This work have introduced a new method to optimize the pararsef a log-linear
translation model using SVMs. Our proposal is based onStWel/st"*<t algorithm
which is an SVM optimization algorithm for multivariate otrgctured outputs. The
obtained results are very promising: using only0abest translations list, we outper-
form the MERT procedure when using equal number of companarthe log-linear
combination.

As future work, our main goal is to compare our proposal wittemdard imple-
mentation of the MERT procedure in terms of time complexityachieve such a goal
it is necessary to integrate the functionalities of the THRIDSES andS'V M struct
toolkits, so the efficiency of the algorithm will be dramatiy increased. In addition,
we also plan to accomplish experiments with larger corprase other measures as
WER or TER as loss function, to use word graphs instead ofstliss to perform the
maximization and finally to find the best way to go through ttiEetences between the
THOT toolkit and the MOSES toolkit.
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