
Comparing Methodologies for Service-Orientation using
the Generic System Development Process

Linda Terlouw

Delft University of Technology, Delft, The Netherlands
Ordina, Nieuwegein, The Netherlands

Abstract. Enterprises use Service-Oriented Architecture (SOA) and Service -
Oriented Design (SoD) as a means to achieve better business-IT alignment and a
more flexible IT environment. Definitions of both notions are often not clear or
even contradict. This paper instantiates the Generic System Development Process
(GSDP) for service-orientation and provides a common terminology for compar-
ing the scope of different methodologies. To demonstrate its use we compare
several existing methodologies. Methodologies that focus on (nearly) the whole
service-oriented development process are Papazoglou’s and van den Heuvel’s ser-
vice - oriented design methodology, SOMA and SOAF. More specialized method-
ologies are the goal-driven approach, BCI3D, and Business Elements Analysis.

1 Introduction

Most large enterprises have a complex application landscape. Functional overlap be-
tween applications exists and applications exchange information using different com-
munication mechanisms. Often the relationship between the applications and their sup-
porting business processes is not explicitly described and the interdependence between
applications acts as bottleneck in redesigning business processes to exploit new busi-
ness opportunities.

The concept of Service-Oriented Architecture (SOA) aims at improving this situa-
tion by exposing application functionality in services. These services are accessible in a
uniform way and do not show the underlying technology of the application(s). Service-
Oriented Design (SoD) is concerned with the process of creating these services in a
systematic way. Although many methodologies for SoD are available, only few address
the complete design process and describe the design steps in the necessary depth. Com-
paring these methodologies is quite a challenge because they lack a common view of
SOA, SoD and the steps involved in design. The main contributions of this paper are a
clear terminology of SOA and SoD based on the Generic System Development Process
(GSDP) [1]. Also, we make a brief comparison of several existing methodologies for
service-orientation based on the phases of this process.

We start this article with explaining our view of architecture in section 2. Section 3
describes the GSDP and its instantiation for service-orientation. In section 4 we discuss
several methodologies. Finally, we end with our conclusions in section 5.

Terlouw L. (2008).
Comparing Methodologies for Service-Orientation using the Generic System Development Process.
In Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
101-108
DOI: 10.5220/0001738901010108
Copyright c© SciTePress



2 Architecture

A common misconception in industry as well as in academia is that web services are
the same as SOA. One cannot speak of SOA when developers have created some web
services using modern integration technology. In fact, SOA does not even require web
services. Many definitions of SOA [2–5] mention the notion of architecture, architec-
tural style or paradigm, but lack a clear definition. When we do see a definition of
architecture, it is usually one of the following three: the descriptive definition, the pre-
scriptive definition, and the combination of both.

The descriptive approach defines architecture as high-level models using names like
‘high-level components’ or ‘blue prints’. Zachman uses this approach in his definition
[6]: “Architecture is that set of design artifacts, or descriptive representations, that are
relevant for describing an object, such that it can be produced to requirements as well
as maintained over the period of its useful life”. In the xAF (Extensible Architecture
Framework) [7] architecture is defined as: “the normative restriction of design freedom
because of the notion that design freedom of designers is undesirable large. Practically,
architecture is seen as a consistent and coherent set of design principles that embody
general requirements”. Thus architecture is seen as prescriptive. Also, definitions exist
that combine the descriptive and prescriptive approach. The IEEE 1471 standard [8], for
instance, defines architecture as: “the fundamental organization of a system embodied
in its components, their relationships to each other, and to the environment, and the
principle guiding its design and evolution”.

In this remainder of this article we use the prescriptive definition of architecture. So,
we see SOA as a consistent and coherent set of design principles that need to be taken
into account in the development process of services.

3 The Service-Oriented Development Process

The GSDP, exhibited in figure 1, applies to any system. Two different system notions
exist: the teleological and the ontological system notion [9]. The teleological system no-
tion is about the function and the (external) behavior of a system and the corresponding
type of model is a black-box model. The ontological system notion is about the con-
struction and operation of a system and the corresponding type of model is a white-box
model. Both the black-box model and the white-box model of the GSDP are relevant
to service-orientation; the black-box model for using services and the white-box model
for building (or changing) services.

The object system is the system that needs to be developed for supporting the using
system. The development of the object system consists of three phases: design, engi-
neering, and implementation.

3.1 Service-Oriented Design

The design phase consists of two steps: function design and construction design. Func-
tion design has a black-box model as result. Construction design has a white-box model

102



Fig. 1. The generic system development process [1].

as result which is called an ontology. The term ontology originates from the field of phi-
losophy having the meaning ‘study of existence’. In our context we define ontology as
follows [9]: the ontology of a system is the understanding of the system’s operation
that is fully independent of the way in which it is or might be implemented. Applying
this to service-orientation we see two phases in SoD: Service-Oriented Function Design
(SoFD) and Service-Oriented Construction Design (SoCD). SoFD deals with determin-
ing and specifying the function of a service. Service identification is in our view the first
step in SoFD. It deals with identifying candidate services in a systematic way. The cen-
tral question is “What services are required in the scope of the SOA?”. The process
of service specification (also the QoS requirements) is part of SoFD as well, since it
specified the external behavior of a service without caring about it internals. Once the
specification is available one can design the construction of a service.

SoCD results in the highest possible white-box model of the service. A service
needs to be constructed in such a way that it conforms to the constructional principles
of the architecture. A common classification of services is that of atomic and composite
services. A composite service depends on the execution of other, lower-level services.
An atomic service does not. For the service consumer there is no notable difference
in which way the service provider constructs its service. Composite services can be
constructed, for instance, by orchestration (BPEL [10], BPML [11]). An orchestration
determines in which order and under what conditions which lower-level services are
called. Orchestration is especially suitable for creating very high-level services that
support multiple steps in a (partly) automated business process. Another way to create
composite services is assembly (SCA [12]). The highest-level construction model of
an atomic service could, for example, be a (high-level) class diagram if the service is
implemented in an object-oriented language.

103



Table 1. Terminology derived from applying the GSDP to service-orientation.

Term Meaning End result
SOA a coherent set of design princi-

ples that need to be taken into
account in development process
of services

all services in scope con-
forming to the same princi-
ples

Service-Oriented Func-
tion Design

deals with the design of the
function of the service

the service specification of
an identified service

Service-Oriented Con-
struction Design

deals with the design of the
highest-level white-box model

the high-level design of the
internals of the service

Service Engineering deals with the decomposition
of the highest-level white-box
model to the lowest-level white-
box model

the full design of the inter-
nals of the service

Service Implementa-
tion

deals with the mappping of the
lowest-level white-box model
to technology, i.e. the deploy-
ment of services

the deployed service

3.2 Service Engineering

Engineering is the process of deriving lower-level white-box models from the high-level
white-box model. Service Engineering (SE) deals with decomposing the highest-level
white-box model to lower-level white-box models. The lowest-level construction model
is also called the implementation model. This model is the source code of the service
itself in case of an atomic service or the source code of the referenced services in case
of a composite service. In practice, most services are not constructed completely in a
top-down way because not only new systems, but also existing systems, are used as
building blocks for services. The design process is therefore iterative: the final result
of every design process is (or should be) a balanced compromise between reasonable
functional requirements and feasible constructional specifications [13].

3.3 Service Implementation

The implementation of the object system is the assignment of technology to the lowest-
level white box model (the implementation model). Dietz and Hoogervorst use technol-
ogy in the broadest possible meaning, e.g. human beings, software systems, electronic
machines. Service Implementation (SI) deals with mapping the implementation model
to computer systems. This is the phase in which the services are deployed. Most en-
terprises have at least two test environments to deploy to after the service has been
developed: a test environment for verification (checking whether the services matches
the design) and one for validation (checking whether the service is useful to poten-
tial service consumers). Both tests can lead to repeated execution of previous steps in
the design process and redeployment to the test environment. Finally, the service is
deployed to the production environment.

104



3.4 Service-Oriented Architecture

The architecture prescribes general functional and constructional requirements (the
principles). As stated in section 2 we define SOA as a consistent and coherent set of de-
sign principles that need to be taken into account in the development process of services.
Marks and Bell [14] provide nine criteria that services must meet: coarse-grained, well-
defined service contracts, discoverable, business aligned, reusable, durable, loosely cou-
pled, composable, and interoperable. More principles for service design exist, but it is
not our goal to present a complete list. Instead, we want to show our way of thinking.
The functional requirements deal with the external function and behavior of a service,
e.g. “A service is coarse-grained” and “A service is business aligned”. The construc-
tional requirements deal with the internal construction and operation of the service, e.g.
“A service is composable” and “A service is loosely coupled”.

Are all of these principles consistent? In our view they are not. For instance, if a
service is completely business aligned to the business process of one service consumer,
it is probably not reusable and vice versa. Enterprises, however, need a consistent set of
principles in order to make design decisions in a systematic way. Therefore, an enter-
prise has to formulate explicitly whether and under what conditions one principle has
priority over another one.

Table 1 summarizes the terminology explained in this section.

4 Comparing Methodologies

Table 2 depicts the scopes of several methodologies for service-orientation. We have
divided them into general methodologies and specialized methodologies.

4.1 General Methodologies

Methodologies that cover the largest part of the service development process are the
methodology of Papazoglou and van den Heuvel [15], the IBM methodology SOMA
[16], and SOAF [17]. Papazoglou and van den Heuvel distinguish between the phases,
that they call, planning, analysis and design, construction and testing, provisioning,
deployment, execution and monitoring. This methodology is in our view the most com-
prehensive approach at this moment in time. Not only does it deal with SoFD, SoCD,
and SE, but also with SI (in the deployment phase). It provides guidelines on how to
perform these steps.

SOMA distinguishes between the three major activities, that the authors call, identi-
fication, specification, and realization. The methodology does not make a clear distinc-
tion between the function and construction of the service. It does not deal with SI. Since
only a high-level description of SOMA is publicly available, we cannot say anything
about the depth in which the design activities are described.

SOAF addresses the phases, that the authors call, information elicitation, service
identification, service definition, and service realization. It clearly described what steps
to take and what the relationship between the different steps are. However, it focuses
mainly on what steps to take and not on how to take these steps. It is described at a
higher level of detail than the methodology from Papazoglou en van den Heuvel.

105



Table 2. Classification of SOA methodologies.

Methodology SoFD SoCD SE SI
BCI3D x
Business Element Approach x
Goal Driven Approach x
SOAF x x x x
SoD and Development Methodology x x x x
SOMA x x x
SMART x x

4.2 Specialized Methodologies

Also, more specialized methodologies exist. In the area of service identification (part
of SoFD) there are the goal-driven approach [18], BCI3D [19] and Business Elements
Analysis [20]. The goal-driven approach finds its basis in the world of component based
development and derives services from business goals. The services are depicted in a
goal-service graph and service are allocated to enterprise components. These enterprise
components are identified by clustering highly interdependent (coupled) use cases.

BCI3D also has a background in component based development. It identifies busi-
ness components on the basis of a formal organizational model, called the enterprise
ontology [1]. An algorithm is used to cluster business process steps from the business
process model and object class from the information model forming a business compo-
nents. The calls between these business components are regarded as the highest level
services an organizations requires.

Like the last two methodologies Business Elements Analysis has its roots in compo-
nent based development. It defines Resource Business Elements (RBE’s), which group
the (information) resources and Service Business Elements (SBE’s), which consist of
the highest-level immediate steps. An RBE consists of a focus resource, which is inde-
pendent (e.g. Customer) and its auxiliary resources (e.g. Address), which always belong
to a certain focus resource. A Delivery Business Element (DBE) is a grouping of Service
and Resource Business Elements that together deliver a business solution to a business
problem, and which provides services to requesters.

SMART [21] is a methodology described in detail on how to construct identified ser-
vices from legacy systems (SoCD and SE). SMART takes into account that in practice
it is often not easy to construct services from legacy systems. Since almost no organiza-
tion has the luxury to build up its entire IT-environment from scratch, it is important to
realize the risk involved in migrating to SOA. According to the SMART methodology
an organization needs to thoroughly assess the capabilities of its legacy systems and
carefully analyze the risk of migrating. A migration plan describes the necessary steps
to take for the migration.

106



5 Conclusions

At this moment in time, most SoD methodologies do not make a clear distinction be-
tween the notions of SOA and SoD. The main contribution of this paper is a clear termi-
nology of these notions based on the Generic System Development Process. We intro-
duced the following phases in the development process for services: Service-Oriented
Function Design, Service-Oriented Construction Design, Service Engineering, and Ser-
vice Implementation. Using this high-level classification of phases one can determine
the scope of different SoD methodologies. We have provided a brief comparison of sev-
eral existing methologies. Some methodologies cover (almost) the whole development
process. These methodologies tend to focus on what steps to take and not on the ap-
proaches used to execute the steps. We do need to note that since IBM’s SOMA method-
ology is not publically available, we based our analysis on available articles which may
not cover its full contents. Some of the specialized methodologies provide an in-depth
contribution to specific steps of the development process. In our view, however, there is
still a large need for more in-depth research on specific parts of the development pro-
cess. In our further research we will focus on the specification of services, which is part
of the Service-Oriented Function Design phase.

References

1. Dietz, J., Hoogervorst, J.: Enterprise ontology and enterprise architecture, how to let them
evolve into effective complementary notions. GEAO Journal of Enterprise Architecture 2
(2007)

2. OASIS: Reference model for service oriented architecture, committee draft 1.0.
(2006) http://www.oasis-open.org/committees/download.php/16587/
wd-soa-rm-cd1ED.pdf.

3. OMG: Service oriented architecture sig (2006) http://soa.omg.org/.
4. The Open Group: Service oriented architecture (2006) http://www.opengroup.org/

projects/soa/.
5. W3C: Web service architecture (2006) http://www.w3.org/TR/ws-arch/.
6. The Zachman Institute for Framework Advancement: Enterprise architecture: A framework

(2007) http://www.zifa.com/framework.pdf.
7. Dietz, J.: The extensible architecture framework (2004) http://www.lac2004.nl/

docs/fvbg2hdsb83/Track8/J.%20Dietz.pdf.
8. Maier, M.W., Emery, D., Hilliard, R.: Software architecture: Introducing ieee standard 1471.

Computer 34 (2001) 107–109
9. Dietz, J.: Enterprise Ontology, Theory and Methodology. Springer, Berlin Heidelberg, Ger-

many (2006)
10. OASIS: Web services business process execution language version 2.0 (2007) http://

docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
11. Thiagarajan, R.K., Srivastava, A.K., Pujari, A.K., Bulusu, V.K.: Bpml: A process modeling

language for dynamic business models. In: WECWIS ’02: Proceedings of the Fourth IEEE
International Workshop on Advanced Issues of E-Commerce and Web-Based Information
Systems (WECWIS’02), Washington, DC, USA, IEEE Computer Society (2002) 239

12. Open SOA: Service component architecture (2007) http://www.osoa.org/
display/Main/Service+Component+Architecture+Specifications.

107



13. Albani, A., Dietz, J.: Enterprise ontology based design of inter-enterprise information sys-
tems. Technical report, Delft University of Technology (2007)

14. Marks, E., Bell, M.: Service-Oriented Architecture, A planning and implementation guide
for business and technology. John Wiley & Sons, Inc., Hoboken, New Jersey (2006)

15. Papazoglou, M., van den Heuvel, W.J.: Service-oriented design and development methodol-
ogy. International Journal of Web Engineering and Technology 2006 2 (2006) 412–442

16. Arsanjani, A., Allam, A.: Service-oriented modeling and architecture for realization of an
soa. In: SCC ’06: Proceedings of the IEEE International Conference on Services Computing,
Washington, DC, USA, IEEE Computer Society (2006) 521

17. Erradi, A., Anand, S., Kulkarni, N.N.: Soaf: An architectural framework for service defini-
tion and realization. In: IEEE SCC, IEEE Computer Society (2006) 151–158

18. Levi, K., Arsanjani, A.: A goal-driven approach to enterprise component identification and
specification. Communications of the ACM 45 (2002) 45–52

19. Albani, A., Dietz, J.: The benefit of enterprise ontology in identifying business components.
In: WCC ’06: Proceedings of the IFIP World Computer Congress, Santiago de Chile, Chile
(2006)

20. McGovern, J., Sims, O., Jain, A., Little, M.: Enterprise Service Oriented Architectures:
Concepts, Challenges, Recommendations. Springer-Verlag New York, Inc., Secaucus, NJ,
USA (2006)

21. Lewis, G., Morris, E., Smith, D.: Analyzing the reuse potential of migrating legacy compo-
nents to a service-oriented architecture. In: CSMR ’06: Proceedings of the Conference on
Software Maintenance and Reengineering, Washington, DC, USA, IEEE Computer Society
(2006) 15–23

108


