
Software Model Checking for Internet Protocols with
Java PathFinder

Jesús Martı́nez and Cristóbal Jiménez

Departamento de Lenguajes y Ciencias de la Computación
University of Málaga, Spain

Abstract. Java is one of the most popular languages used to build complex and
distributed systems. The existence of high-level libraries and middleware makes
it now easy to develop applications for enterprise information systems. Unfortu-
nately, implementing distributed software is always an error-prone task. Thus,
middleware and application protocols must guarantee different functional and
non-functional properties, which has been the field usually covered by tools based
on formal methods. However, analyzing software is still a huge challenge for
these tools, and only a few can deal with software complexity. One such tool is
the Java Pathfinder model checker (JPF). This paper presents a new approach to
the verification of Java systems which communicate through Internet Sockets.
Our approach assumes that almost all the middleware and network libraries used
in Java rely on the protocols available at the TCP/IP transport layer. Therefore,
we have extendedJPF, now allowing developers to verify not only single multi-
threaded programs but also fully distributed Socket-based software.

1 Introduction

Model checking [1, 2] is a mature technique for dealing with complex problems within
distributed systems. In contrast to some other existing approaches for verifying com-
munication systems, model checking is an automatic process that normally returns a
simple but clear verdict to questions about functional or non-functional properties of
the system being analyzed, such as safety, liveness, performance or probability, among
others. When a property is not satisfied, the model checker presents a trail of execution
steps which lead users directly to thecounterexample.

Analyzing a concurrent/distributed system with model checking requires the cre-
ation of an abstract description (model) of the system with the critical behavior to be
analyzed. We also need to specify a set of verification properties using a property-
oriented language. The model checking algorithm will produce a reachability graph
including all the execution paths for the model in order to check whether these paths
satisfy the properties. It is worth noting that the system model must be closed, and the
behavior of the environment must be provided in order to fully analyze it. In the context
of software applications, this environment consists of the underlying platform on which
the software runs, but also includes the networking mechanisms used to communicate
distributed entities.

Martínez J. and Jiménez C. (2008).
Software Model Checking for Internet Protocols with Java PathFinder.
In Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 91-100
DOI: 10.5220/0001738600910100
Copyright c© SciTePress

import java.io.*;
import java.net.*

public class Client{
public static void main (String [] args){

int serverPort = 6666;
int c;
try {

InetAddress ia= InetAddress.getLocalHost();
Socket sd = new Socket(ia,serverPort);
InputStreamReader in= sd.getInputStream();
while((c = in.read()) != -1)
System.out.print((char)c);
sd.close();

} catch (Exception e) {
e.printStackTrace();

}
}

}

| import java.io.*;
| import java.net.*;
|
| public class BasicServer {
| public static void main (String [] args){
| int port = 6666;
| try {
| ServerSocket ss = new ServerSocket(port);
| while(true) {
| Socket newsd = ss.accept();
| OutputStreamWriter out =
| new OutputStreamWriter (newsd.getOutputStream());
| out.write("Hello World of Sockets!");
| newsd.close();
| }
| }catch(IOException ie) {
| ie.printStackTrace();
| }
| }
| }

Fig. 1. Basic examples using Java Sockets: a Client (left) and a Server (right).

Unfortunately, one of the main disadvantages of model checking has been the tradi-
tional need for in-depth knowledge of formal methods. Normally, software developers
looking for a model checking tool want to consider it a kind ofsmart debugger. How-
ever, verifying software directly with model checking (avoiding the creation of the for-
mal model mentioned previously) is a challenging task. In recent years, there has been a
considerable effort to make this technique available to developers and designers outside
the academic world (p.e. Microsoft’ SLAM [3], Berkeley’s BLAST [4] or NASA’s JPF

[5, 6]).
JPF is the first software model checker for Java. Started in 1999 and now released

as open source, the tool itself is a Java application which acts as an explicit state model
checker for verifying executable Java bytecode programs.JPF explores all potencial
execution paths of a Java program in order to find violations of properties such as dead-
locks or unhandled exceptions. It includes support for partof the Java API (1.6 and
prior versions) [7], making it possible to analyze code without further instrumentation.
Moreover,JPF is easy to configure and extend, it being an appropriate platform to ex-
plore new methods to model check distributed systems.

This paper presents a novel approach for verifying Java software which communi-
cates through Internet Sockets. We found thatJPF did not support the Java network-
ing API. Moreover, its typical usage included only one executable program at a time.
Therefore, we have extendedJPF, now allowing developers to verify not only a single
multi-threaded program but also fully distributed Socket-based software following the
Client/Server architecture (with at least two executable programs). Our approach has
included TCP/IP networking support to the model checker, making it possible in the
future to analyze some other middleware which usually rely on these protocols, such as
Java Enterprise applications or Web Services.

The paper is organized as follows. Section 2 introduces the different Java APIs
which implement the Client/Server model. Section 3 is focused on the extensibleJPF

model checker for Java and our proposed solution to deal withClient and Server code.
Finally, Section 4 presents our conclusions and lines of future work.

92

ImplementedIterator

ImplementedSet

ImplementedSelector

ImplementedSelectionKey Selector

AbstractSelectorSelectorProviderAbstractSelectableChannel

SelectionKey

SelectableChannel

AbstractSelectionKey
AbstractInterruptibleChannel

ServerSocketChannel SocketChannel

ByteBuffer

Buffer

0..*

selectedKey
setKey

canceledKey

«interface»

Iterator

«interface»

Set

ServerSocket Socket

Fig. 2. The Java Socket API after including java.nio.

2 The Java Client/Server Model

From its inception, the Java API has supported Berkeley Sockets. The design of its
java.net package was focused on avoiding ill usage which was common with the
original C library. Thus, object oriented programming provided the kind of type safety
not present in the UNIX API. Moreover, Java split the behavior of Sockets for Clients
and Servers into two classes: the Socket and ServerSocket. Perhaps one of the main dif-
ferences between the Java approach and the original C API wasthe decoupling of the
entities responsible for managing connections (the Socketand ServerSocket classes)
and for exchanging data over the network (the Input and Output Streams). Fig. 1 shows
the basic code for TCP Clients and Servers. The left part shows the Client code, where
the Socket constructor includes the classic socket definition and the connection proce-
dures. Data is read from its associated InputStream. The right part in fig. 1 shows an
iterative Server, where the ServerSocket constructor defines and binds the socket to a
port and then creates a connection backlog (equivalent to the listen C primitive).
When a new connection is accepted, the server writes some bytes to its associated Out-
putStream and then returns back to attend a new client. This simple scheme may serve
one client at a time although it is also common to spawn a thread in order to service
clients in parallel.

93

The originaljava.netAPI lacked one of the most used techniques when building
short-lived servers: demultiplexing I/O. This technique avoids spawning a new thread
for each new service, using instead a single execution thread to serve clients simultane-
ously. This functionality was added in version 1.4, which included the newjava.nio
API including the Selector framework (implementing the native OS mechanism for de-
multiplexing I/O). Unfortunately, this framework achieved backward compatibility at
the expense of complicating the class structure existing injava.net. The new API
is partially shown in fig. 2, where some new elements are depicted: Channels (an evo-
lution of Stream objects) and Buffers (representing platform-level buffers which allow
zero-copy data operations).

3 Model Checking Internet Protocols with JPF

Java PathFinder can verify any Java program which does not depend on unsupported
native methods. TheJPF virtual machine cannot execute platform specific or native
code, which imposes a restriction on what standard libraries can be used from within
the application under test. For instance, the current version of JPF does not support
java.awt, java.net,java.nio, and only has limited support forjava.io and
runtime reflection. The huge state storage requirements fora software system also limit
the size of checkable applications. TheJPF developers have estimated a maximum of
10.000 lines of code if no application and property specific abstractions are used [7].

Fortunately,JPF was designed as an open tool with extension capabilities. These
extensions allow users to adapt the model checking process to their specific applications
and properties. The main mechanisms available inJPFfor extensions are:

– Listeners. The SearchListener and VMListener interfaces may be implemented to
modify the basic behavior of the model checking algorithm. Avariant of the Ob-
server design pattern [8] allows listeners to subscribe to different events (bytecode
execution, forward or backward steps,...).

– Configurable choice generators. The ChoiceGenerator classis the extension point
responsible for implementing non-determinism policies toexplore the state space
in terms of thread states or data values. After executing a system transition,JPF

prepares a ChoiceGenerator object which will be called to select the next transition
to run. A ThreadChoiceGenerator will schedule threads to run, whereas other user-
defined generators are focused on defining a finite data interval to explore.

– The Model Java Interface (MJI). Even if it is only a Java application (i.e. solely
consists of Java classes),JPF can be viewed as a Java Virtual Machine in itself.
The consequence is that (*.class) bytecodes are processed in two different ways in
a JVM runningJPF: i) as ordinary Java classes managed and executed by the host
JVM (standard Java library classes,JPF implementation classes) or ii) asmodelled
classes managed and processed (verified) byJPF.

Fig. 3 depictsJPF interfaces and their relationship with the host Java virtual ma-
chine. In the bottom layer we find the Java Native Interface (JNI) used by the virtual
machine to execute native libraries on top of the platform operating system. The Java
layer contains theJPFapplication that runs on top of the virtual machine and uses the

94

Fig. 3. Layers inJPFand their relationship with the Java virtual machine (from the JPFwebsite
[7]).

library classes available in the classpath (p.e. provided by rt.jar). The top layer is
called the Model layer, and represents classes used by the verification target (the real
application being analyzed). TheMJI mechanism intercepts class method invocations
and decides if they will be replaced instead by modelled classes. Therefore,JPF will
execute these classes, which usually behave in a particularway to guide the model
checking process. This mechanism is particularly useful toobtain a closed environment
or to abstract specific behavior which is not needed for a specific analysis (in order to
reduce the so-called state explosion problem).

3.1 Network Emulation in JPF

Following theMJI extension approach, our work has focused on creating appropriate
modelled classes to abstractjava.net andjava.nio classes. Therefore, Socket
and ServerSocket classes will be replaced at execution timeby our own versions, which
will run insideJPFin atomic mode and will use our abstract version of the network. Our
strategy assumes that thisfake network entity will substitute the real distributed environ-
ment for a multithreaded one, where protocol message exchanges will be replaced by
thread synchonization mechanisms within the abstract network, allowingJPFto model
check the protocols in this new way. Note that original programs must be transformed
into threads before this approach can be used (as shown in thefollowing subsection).

Fig. 4 represents our modelled class hierarchy, where original classes (shaded boxes)
have been replaced by their corresponding modelled versions, which also require some
additional support. Fig. 5 depicts the completeUML diagram for these supporting classes.
The AbstractNetwork class is the mechanism responsible forabstracting the connection
procedure along with its mainteinance. It also allows peersto send and receive mes-
sages by locating each other in the network through a PortMapper class. This is a data
structure that stores so-called Slots, which model different concepts of a Socket con-
nection for each port used. Therefore, Slot is the base classfor specialized entities, each
of which represents a well-defined role in the communication. There are Slots for ab-
stractingjava.net Sockets and ServerSockets (derived from SlotNet),java.nio

95

ServerSocketChannel SocketChannel

ServerSocket Socket

SlotOutputStream

SlotServerSocket

SlotSocket

ConnectOutputStream ConnectInputStream

SlotInputStream

InetSocketAddress

InetAddress

-server

-dss

-ssc

-ss

-sc

-sock

-ds

-cos -cis

-dos -dis

Fig. 4. MJI model for the Socket API.

Channels (derived from SlotChannel) and Streams (derived from SlotStream). The lat-
ter encapsulate the buffers used within transport protocols. Thus, Clients and Servers
may synchronize their data exchanges through mutexes available in the Slots. This class
hierarchy captures the typical behavior of a network which offers a reliable message de-
livery service, where entities are identified by their addresses and ports. At the moment,
we have finished the support for TCP connection-oriented sockets, although UDP and
Multicast are now in progress. It is worth noting that our approach provides a flexible
way to use model checking for Internet applications, thus opening up the possibility of
analyzing more complex Java middleware withJPFin the future. In fact, Java Enterprise
applications or Web Services usually rely on the Socket API available, these application
being a future target for our analysis.

3.2 The Unify Toolset

The Unify toolset allows verification of Client and Server Java programs withJPF. It
is composed of three main components: a transformation tool(UnifyProcess), a GUI
called SocketUnify and an executable class analyzed byJPF(UnifyLoader). UnifyPro-
cess is a command-line Java application which accepts at least two executable programs
(*.class) along with their original arguments. For each class, UnifyProcess uses the
BCEL framework [9] to manipulate it at the bytecode level. The result is a set of Class-
Wrappers classes encapsulating the original ones and also implementing the Runnable
interface. Then, the UnifyLoader application will instantiate every ClassWrapper on it
as a thread, it now being possible forJPF to verify programs which were independent
before. The BCEL approach used to instrument the original software has demonstrated
to be more efficient than other more obvious approaches such as using Java reflection to
instantiate original classes within UnifyLoader, which generates more states withJPF.

96

PortMapper
<<singleton>>

AbstractNetwork

Slot

SlotChannel

ReadQueue

SlotNet SlotStream

-reads

-spy

Backlog

-backlog

-holes

0..*

-ss

-env

Message

SlotSocketChannel SlotServerSocketChannel SlotServerSocket SlotSocket SlotOutputStream SlotInputStream

Fig. 5. The Abstract Network class hierarchy.

The Unify toolset also includes a graphical front-end shownin fig. 6. This GUI
simplifies the selection of Client and Server classes, and helps the user to define options
to guide the creation of ClassWrappers and the execution of UnifyLoader withJPF. The
figure shows in the foreground a dialog box where users may select theJPFand Unify
binary folders, along with a set of useful parameters such asthe kind of analysis (quick
or normal), the abstract network configuration, memory usage or different ways to show
results, among others. Regarding verification modes in Unify, a quick verification mode
assumes that a server is always available for connections inthe port which clients will
use, a situation which avoids the exploration of some execution paths and saves time
and resources in the verification. However, this mode may result in false positives (OK
verdicts) even when a server is not bound to the same port where clients are trying to
connect. The normal verification mode takes care of this situation in JPF and notifies
the corresponding error.

3.3 Details and Results

Our work has modelled twenty-two classes fromjava.net (covering 15% of the
package),java.io (13%), java.nio (20%), java.nio.channel (39%) and
java.nio.channel.spi (100%). All methods from these classes were modified,
except the ones in ByteBuffer related with conversions to other formats (they were not
a priority in this work). We have tested ourJPF extension with different Java source
code for Clients and Servers, where the limitations encountered were usually more

97

Fig. 6. The Unify GUI front-end.

Table 1.Experiment results using theJPFextension for basic Internet applications.

Experiment Visited StatesMax. Depth Instructions Time Memory
EchoC S 726 25 393515 0:00:018MB
EchoC S Selector 1153 30 870930 0:00:029MB
KnockKnock-Protocol4220 203 6917403 0:00:0823MB

JPF-related issues (e.g. some Java classes did not have their correspondingMJI ver-
sion in the model checker).JPFverifies Socket code smoothly in terms of time and re-
sources (states). For instance, table 1 shows some results obtained after verifying three
Client/Server systems implementing variations of a request/response protocol (basically
as shown in fig. 1): EchoC S, EchoC S Selector and KnockKnock-Protocol. The first
one uses an iterative server, whereas the second one uses demultiplexed I/O with a Se-
lector, which is internally more complex and also more expensive to analyze. The latter
is the example protocol implemented in the Java Tutorial [10]. All these experiments
have been carried out using a PC Intel Core 2 Duo with 2,4 GHz and 2GB of memory.

Regarding the kind of properties available in our extension, we may check at the
moment:

– Deadlocks in the system (e.g. two peers waiting on a blockingread operation).

– Bad uses of the Socket API (usually throwing a Java Exception).

– Socket closures with data still pending in the input buffer.

98

It is worth noting that this extension is fully compatible with existing verification
methods and other optimizations inJPF, such as partial order reduction, abstract match-
ing, race detectors or observers, among others.

4 Conclusions and Future Work

There are many model checking tools available to perform different analyses for dis-
tributed and concurrent systems. Unfortunately, users normally have to deal with the
representation of their systems in the input language of thetool or tools selected, which
is a typical source of new errors (or inconsistencies). In contrast, software model check-
ers constitute a smart solution for developers demanding aneasy-to-use automatic ver-
ification tool. However, complex or specific domain problemsmay need additional ad-
justment and changes in the tools, following the objective of keeping these issues hidden
from the user.

This paper has introduced a set ofJPF extensions to deal with a domain-specific
problem: the verification of Internet Protocols. The extensions include a way to analyze
Clients and Servers provided directly in bytecode form, where no further instrumenta-
tion is required by users. The Java Model Interface has provided us with all the features
necessary to create an API modelling a network abstraction.Our class hierarchy is
able to verify processes which communicate through TCP, butit is scalable enough to
deal with other transport protocols. Thus, it is now being improved for non-connection-
oriented ones such as UDP and Multicast Sockets.

It is worth noting that our proposal is the first step towards the verification of
more complex distributed middleware. Our main objective isthe analysis of programs
which rely heavily on middleware or high-level libraries such as J2EE or Web Services,
where the basic communication tasks are hidden although they still belong to the basic
Client/Server model.

Our future work is focused on introducing more flexible ways to define and embed
properties for Internet software inJPF, along with techniques to optimize the verifi-
cation process in terms of resources and time consumption. We also plan to combine
our proposal with emerging methodologies such as Model Driven Engineering (MDE)
[11], as shown in [12], whereMDE andUML concepts were applied in order to simplify
the design of network services for the Internet by proposinga UML2 Communication
Profile. This would make it more straightforward to use the automatic code genera-
tion facilities available in modern modelling tools in order to obtain Socket-based Java
source code to be analyzed withJPF.

References

1. Clarke, E., Emerson, E.A., Sistla, A.: Automatic verification of finite-state concurrent sys-
tems using temporal logic specifications. ACM Trans. on Programming Languages and Sys-
tems8 (1986) 244–263

2. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
3. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Proceedings of CAV01. Volume 2102 of

Lecture Notes in Computer Science. (2001)

99

4. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with BLAST. In:
SPIN Workshop on Model Checking Software. Volume 2648 of Lecture Notes in Computer
Science. (2003) 235–239

5. Havelund, K., Pressburger, T.: Model Checking Java Programs using Java Path Finder. In:
Software Tools for Technology Transfer. Volume 2. (2000) 366–381

6. Havelund, K., Visser, W.: Program model checking as a new trend. In: Software Tools for
Technology Transfer (STTT). Volume 4. (2002) 8–20

7. NASA: The Java PathFinder open source project. Availableat
http://javapathfinder.sourceforge.net/ (2008)

8. Gamma, E., Helm, H., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley Pub Co.
(1995)

9. Apache Software Foundation: The Bytecode Engineering Library. Available at
http://jakarta.apache.org/bcel/ (2008)

10. Sun Microsystems: The Java Tutorial: all about Sockets. Available at
http://java.sun.com/docs/books/tutorial/networking/sockets/index.html (2008)

11. Kent, S.: Model Driven Engineering. In: Proceedings of IFM 2002. LNCS 2335, Springer-
Verlag (2002) 286–298

12. Martı́nez, J., Merino, P., Salmeron, A.: Applying MDE Methodologies to Design Commu-
nication Protocols for Distributed Systems. In: First International Conference on Complex,
Intelligent and Software Intensive Systems, IEEE ComputerSociety (2007) 185–190

100

