
Modelling Multi-Agent Systems
with Organizations in Mind

Matthias Wester-Ebbinghaus and Daniel Moldt

University of Hamburg, Department of Informatics
Vogt-Kölln-Straße 30, D-22527 Hamburg, Germany

Abstract. Software systems are subject to increasing complexity and in need of
efficient structuring. Multi-agent system research has come up with approaches
for an organization-oriented comprehension of software systems. However, when
it comes to the collective level of organizational analysis, multi-agent system
technology lacks clear development concepts. To overcome this problem while
preserving the earnings of the agent-oriented approach, this paper propagates
a shift in perspective from the individual agent to the organization as the core
metaphor of software engineering targeting at very large systems. According to
different levels of analysis drawn from organization theory, different types of or-
ganizational units are incorporated into a reference architecture for organization-
oriented software systems.

1 Introduction

Modern software systems are subject to ever increasing size and complexity. Within the
IT community the expectation begins to form that the sheer size and speed of growth
of these systems render most traditional software engineering approaches (relying on
a top-down design, expecting comprehensive knowledge of relevant system-wide pa-
rameters, based on the possibility of applying a central control facility) inept [16]. It is
these software systems in the large that the article at hand is devoted to.

Multi-agent systems as a software engineering paradigm are one candidate to pro-
vide solutions for this kind of systems. Exemplary in [11], Jennings argues that multi-
agent systems are very well suited for the realization of three particularly important
techniques for handling complex software, namelydecomposition, abstraction, and or-
ganization. At the same time however, Jennings calls for asocial level viewon multi-
agent systems in order to deal with the difficulties that agent autonomy and sophistica-
tion in combination pose on the prediction of the overall system behaviour by leading
to a considerable scope of emergence.

In subsequent years until today various approaches have been brought forth that are
in line with this request by taking the perspective on a multi-agent system as anorgani-
zation(an overview of recent and current work can be found in [19]). Noteworthy, the
rationale for adopting an organization-oriented perspective throughout the approaches
mostly refer to the very same features that Hannan and Carroll identify as the main
capacities of organizations in human societies: Organizations aredurable, reliableand

Wester-Ebbinghaus M. and Moldt D. (2008).
Modelling Multi-Agent Systems with Organizations in Mind.
In Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 81-90
DOI: 10.5220/0001737900810090
Copyright c© SciTePress



accountable[10].1 In this respect, organization-oriented approaches to multi-agent sys-
tem engineering seek to combine local agent autonomy with the assurance of global
system characteristics by imposing ”organizational facts” onto the system. Boissier [3]
identifies different organizational dimensions (with structural, functional and interac-
tional dimensions as the most prominent ones) that receive varying emphasis depending
on the particular approach.

However, when relating multi-agent system approaches to organization theory it
becomes obvious that the true potential of the organizational metaphor is not entirely
exploited. Multi-agent system research so far has mainly focussed on the conception
of organizations as contexts for individual agents. As we have analyzed in [19], the
importance of organizations as corporate actors that Scott[18] stresses for more global
(ecological) levels of analysis has been largely neglected.

Consequently, the long term goal of our work is the provisionof a software de-
velopment approach that builds upon and extends the multi-agent system approach in
order to account for the true potential of the organizational metaphor. In this paper we
supplement this goal by proposing an abstract reference architecture for organization-
oriented software systems. Ferber [8] advances the distinction between ACMAS (agent-
centred multi-agent systems) and OCMAS (organization-centred multi-agent systems).
We consider our approach as one further step in this shift of paradigm from agent- to
organization-orientationand term the systems introducedby our approach MOS (multi-
organization systems).

In Section 2 we present our approach of modelling open and controlled system
units. We utilize the introduced universal scheme to propose a reference architecture
for multi-organization systems composed of concrete organizational units in Section 3.
We conclude our results and provide an outlook to future workin Section 4.

2 Open System Modelling

The introduction should have made clear that the software systems addressed here are to
be comprehended assystems of systems. To arrive at an illustrative modelling approach
despite the inherent complexity of the systems in focus we adopt the modular view of
each system as aunit that maintains relationships to other system units. As a prelimi-
nary step to dealing with particular types of system units inour organization-oriented
architecture, this section refers to system theory in orderto introduce a general model.

2.1 Basic System Unit

Most of the important entities studied by scientists – nuclear particles, atoms, molecules,
cells, organs, organisms, communities, organizations, societies, solar systems – come
under the category of a system [2]. Consequently, the characterization of a system fol-
lows quite abstract asan assemblage or combination of parts whose relations make
them interdependent.

1 It will not be discussed in this paper that each of these capacities is a double-edged sword and
not all organizations measure up to them.

82



add remove

use / modify

internal system parts

Fig. 1. An Abstract View on System Units.

Based on this abstract characterization, Figure 1 shows a general model of system
units.2

The evolution of the overall system unit solely depends on its internal parts, whether
new parts are added (add), former parts are removed (remove) or current parts are used
and potentially modified (modify / use). The details of these operations and how they
come into being depend on the characteristics of a particular system.

2.2 Recursive Nesting

The basic model of system units of the former subsection emphasizes the similarities of
all types of systems. However, there exist of course substantial differences between par-
ticular systems. Exemplary, Boulding [4] presents a typology of systems that advances
from physical over biological to social systems. Along the way, each successive system
becomes progressively more complex, more loosely coupled,more dependent on infor-
mation flows, more capable of self-maintenance and renewal,more able to grow and
change, and more open to the environment.

Especially the openness to the environment is of particularimportance regarding
the software systems this paper addresses. Systems of systems implicate a network of
relations where each system (to different degrees) relies on the services and resources of
other systems. Interactions with the environment and throughput of external resources
are regarded as crucial for the functioning and self-maintenance of open systems [17,
5]. Nevertheless, open systems have boundaries and spend energies to maintain them.
Consequently, one can identify thetwin properties of open systemsas consisting of two
basic (and opposing) sets of system processes [5]. The termmorphostasisrefers to those
processes that tend to preserve or maintain a system’s givenform, structure, or state. The
termmorphogenesisrefers to processes that elaborate or change the system. While both
are not exclusive to open systems they receive a special emphasis. In adapting to the
external environment, open systems typically become more differentiated in form and
more elaborate in structure.

It is not very helpful to regard the environment of an open system as simply ”ev-
erything else”. It suggests itself to comprehend the environment again as a system (or
multiple systems) and thus to arrive at a recursive understanding of open system models
as for example explicated by Koestler’s concept of aholon[12] and in Beer’s recursive
model ofviable systems[1]. Each open system is characterized as ”Janus-faced” with

2 The model has a coloured Petri nets semantics, cf. [9].

83



add remove

modify

integration

operation

governance

Fig. 2. System Unit with Coloured Internal Parts.

an inner eyeat the internal systems and anouter eyeat the surrounding system (or sys-
tems). Here, our perspective on systems as units leads to an illustrative understanding.
The relation of open systems to their environments is tracedback to the (not necessarily
unique or disjoint) nesting of system units, the embedding of system units inside other
system units.

We use this short summary of system theoretical inspirations to refine our model
of system units. The first step is acolouring of the internal parts of a system unit as
shown in Figure 2.3 The internal parts are now explicitly to be regarded as system units
themselves. The colouring is no partitioning, the different sets of internal units need not
be disjoint. It is more of a conceptual classification according to function.

Theoperational unitsare those parts of the system in focus that undertake the sys-
tem’s primary activities. In a manufacturing setting they would be the production units,
teams of people, and machines that actually do the manufacturing. In a complex pro-
duction organization they would include manufacturing, distribution, and warehousing.
Basically, the operational units are the intrinsic parts ofthe system.

Theintegrational unitssee to it that the singular operational units are integratedinto
a joint system in the first place. They define the means by whichthe operational units
may participate in the system and regulate their activities. One example is the nervous
system of the human organism that connects the muscles and organs (being operational
units). In another setting, they embody hierarchical planning and performance control
systems of an enterprise.

Governance unitsare responsible for certain system processes and structures being
in place, to ensure the adherence to system laws, and to maintain mechanisms for con-
trol and coercion. One example is the brain of the human organism that oversees the
complex of muscles and organs and tries to optimze them. It also establishes a connec-
tion to the environment through its senses. It plans, projects and develops an identity.

3 The transitions connecting to the outer circle are just short forms that include all three cases
for the inner circles respectively. To obtain a well-formedPetri net model the short forms have
to be resolved, resulting in a total of nine transitions for Figure 2.

84



Another example is the board of directors of an enterprise that sets the goals and strate-
gies, determines the budget and establishes connections tocore business partners.

A clear separation between the different types of internal system units is not always
possible just as it is not always clear where to locate morphostasis and morphogenesis.
For example, in one system the purpose of the governance units might be to just preserve
and maintain a set of largely fixed system laws. In another case, the government units
might be a continuous source of major renewal.

Generally speaking, the distinction serves to carry out separation of concerns in two
ways. Firstly, the administrative units are distinguishedfrom the operational units that
they embed. Secondly, technical embedding (via the integrational units) is distinguished
from strategical embedding (via the governance units).

2.3 Structure in Threes

The overall behaviour of a system unit manifests in various system processes that shape
and evolve the system. In order to study these processes exhaustively, we identify no
less than 27 case distinctions that stem from three orthogonal dimensions with three
values respectively.

– Operation:The three basic operations that a system process may relate to areadd,
remove, anduse/modify.

– Direction: System processes may impact the system from three conceptual direc-
tions. The operational units (enabled by the integrationalunits) impact the system
from below. The maintenance units impact the systemat the same level. Finally,
surrounding system units may impact the system in focusfrom above.

– Affected internal system unit:Each system process may involve all three kinds of
system units,operation, integration, andgovernance.

The details of each case and whether it is of relevance at all depend on a particu-
lar system. Consequently, there is no point in addressing each individual case for our
general model of system units. Instead, we provide coarsened models for the three di-
rections that summarize multiple cases of the other two dimensions.

Figures 3 - 5 show the influences on the system from below, at the same level,
and from above through the integration of operational units, controlling activities by
governance units and peripheral connections to surrounding system units respectively.

To obtain a modelling for each of the 27 cases the first step is to refine the transitions
that connect to the outer circle of the system unit in focus. In addition, the three cases
shown here are somewhat ”pure” cases. In particular systemsthey are typically merged.

3 Reference Architecture

The refined model of open system units still does not offer a meaningful architectural
model for IT systems. It lacks differentiation for particular perspectives. The central
concern of this section (and the overall paper at hand) is to advance a proposal for
software architectures in the large based on the universal scheme of open system units
and their embedding inside each other.

85



offer frame

integration

operation

governance

arise vanish

Fig. 3. Open System Unit: Integration Processes.

create remove

govern

integration

operation

governance

Fig. 4. Open System Unit: Governance Processes.

The modelling of complex systems requires different levelsof abstraction. The con-
tents at each level should be described in a way that offers a largely complete and
homogenous picture of the selected perspective for this level of abstraction. From this
premise we derive our architectural proposal for multi-organization systems.

3.1 Overview

In focussing on the organization as the core unit of the architecture, three necessary
levels of examination directly follow: The organization itself, its internals and its envi-
ronment. The architecture shall include multiple organizations and each of these may
have different (conceptual) environments. It follows the necessity of a fourth architec-
tural level as a system closure for the integration of all environments.

Interestingly, this identification of four levels resulting from rather technical consid-
erations is confirmed by organization theory according to Scott [18]. The internals of
an organization correspond to thesocio-psychological levelof organization theoretical
analysis where the behaviour and relations between individual members of the organi-
zation is examined. From this perspective, organizations are regarded as contexts. The
organization as a discrete entity of its own appears at theorganization structure level

86



enter leave

use frame

integration

operation

governance

Fig. 5. Open System Unit: Peripheral Processes.

where the structural properties and social processes that characterize an organization
and its subdivisions are studied. Theecological levelfinally focuses on characteristics
and actions of organizations as corporate actors that operate in even more global net-
works of relations. For the ecological level, further refinements are possible. Among
these the concept oforganizational fieldis the most comprehensive one referring to
immediate environments of organizations while thesocietyoffers a common frame for
organizational fields.4

As a consequence, our reference architecture for multi-organization systems con-
sists of four levels of system units. In order to emphasize that these units are particu-
lar instances of the universal scheme of system units according to Section 2, they are
termedorganizational units. Figure 6 shows an overview of the architecture as nested
organizational units.5

Eachdepartment is exclusively assigned to anorganization. Each organization
consists of multiple departments and operates on multipleorganizational fields. Each
field hosts multiple organizations and is embedded in the single integrativesociety.

Departments as the lowest level units of abstraction embodythe connection to multi-
agent system technology. Each department is a multi-agent system. This perspective
only makes sense if a department fulfils an organizational purpose. As described in the
introduction of this paper, a considerable part of multi-agent system research of the past
years was devoted exactly to this aspect. Thus, we arrive at aseamless transition from
agent- to organization-orientation.All organizational units of the reference architecture
can be regarded as logical units (nevertheless embodied by explicit software constructs,
e.g. being agentified) that are built upon physical multi-agent systems.

4 This distinction according to Scott is a refinement of the prevailing distinction inmicro- and
macro-levelwhere the first corresponds to the social-psychological level and the latter encom-
passes all other levels.

5 The model has a reference net semantics. Reference nets showsome extensions compared to
conventional coloured Petri nets [14]. They implement the nets-within-nets paradigm where a
surrounding net (the system net) can havenets as tokens(the object nets). Reference semantics
is applied, so these tokens arereferencesto net instances. Synchronous channelsallow for
communication between net instances.

87



government

infrastructure

fields

institution

material-ressource
structure

inhabitants

dominant
coalition

superstructure

subdivisions

management

positions +
grouping

members

organizational
field

department

society

organization

ZOOM

ZOOM

ZOOM

ZOOM

ZOOM

ZOOM

ZOOM

ZOOM

ZOOM

1 n
m

n
1n

Fig. 6. Multi-Organization Software Architecture: Overview.

3.2 Architectural Levels

Due to space limitations, no complete description of the architectural levels is possible
in this paper. Instead, we present a short summary of the characteristics of each level in
order to sketch the conceptual differences.

– Society.The society as the highest architectural level embodies theclosure of the
system and thus has no super-ordinate units. It embeds organizationalfields. These
are connected through afield infrastructure for interaction and migration between
fields. Thegovernment is a legal authority that holds and enforces system-wide
(field-spanning) societal laws.

– Organizational Field.DiMaggio characterizes organizational fields as critical units
bridging the organization and society level in the study of social and community
change [7]. For example, state regulations directed at individual organizations are
typically mediated by field level structures such as trade associations.
Concerning the characteristics of an organizational field,two broad categories are
distinguished. Thematerial-resource structure characterizes the field as a stock
of resources and source of information, which provide the primary premise under
which organizations asinhabitants of the field come together. However, material-
resource environments always rest on aninstitution. As Scott puts it, institutions are
composed ofregulative, normative, andcultural-cognitiveelements that together
with associated activities and resources provide stability to social life [18].

– Organization.Organizations put particular emphasis on an organizational structure
and an organizational authority. Mintzberg [15] for example identifies five funda-
mental types of organizationalsubdivisions (operating core, middle line, strategic

88



apex, technostructure, support staff) that are integrated into an organizationalsu-
perstructure. It is built up by grouping individual positions into units and units
into ever larger units until the hierarchy is complete.
Each organization has an authority that is in charge of powerand setting the or-
ganizational goals. Cyert and March [6] come up with a quite broad concept. Or-
ganizations are viewed as being composed of various and varying coalitions, each
of which seeks to impose its preferences onto the larger system. If none of them
succeeds, they seek as allies other coalitions whose interests are related. Finally, a
conglomerate will arrive at a mutually acceptable agreement and at the same time
will be influential enough to constitute thedominant coalition of the organization.

– Department.The requirement of departments being exclusively assignedto orga-
nizations is a logical one. Departments of different organizations need not be dis-
joint and might for example acquire their members from the same physical multi-
agent system. Nonetheless, it is crucial to distinguish between different depart-
ments. This issue has been addressed by multi-agent system technology and cor-
responding solutions follow thecommon organization implementation architecture
for open MASfrom [3]. The integrational units aspositions and grouping charac-
teristics represent anorganizational layerthat encapsulates organizational specifi-
cations. This layer offersproxiesto which domain agents from an open multi-agent
system must connect to act asmembers in the organization.
Supervision and authoritarian decision making might be woven into the position
and grouping specifications or might instead (or additionally) be taken care of by
an explicitmanagement.

4 Conclusions

We have presented an extended perspective on current organization-oriented multi-
agent system engineering and derived a reference architecture for multi-organization
systems. The architecture introduces four types of (logical) organizational units built
upon (physical) multi-agent systems.

The rationale for the selection of the particular organizational units of the archi-
tecture is deeply rooted in organization theory. The resultis a software engineering
approach that supports micro as well as macro perspectives and at the same time is ac-
companied by concepts and constructs that are familiar fromreal-world social scenar-
ios. In this respect, our proposal is also one step in the direction of supporting a proper
IT alignmentthrough a homomorphism between real-world and software artefacts.

As a related aspect, we consider our approach to be multi-perspective. One partic-
ular software system might appear in multiple instances of multiple types of organiza-
tional units at the same time. It all comes down to embedding relations. For example,
one software system might relate to a second one like an organization to a field and to
a third one like a department to an organization (virtual organization).

Turning to future work, the practical usage of the architecture is the most pressing
issue. As a starting point, a Petri net-based model of organizational structures and ser-
vices is presented in [13]. At the same time it is demonstrated how agent technology
can be used as a middleware to deploy the organizational specifications. The modelling

89



approach is general enough to be adapted for arbitrary levels of abstraction and allows
to define collective entities and nest them inside each other. Thus it supports the devel-
opment of multi-level architectures.

References

1. S. Beer.Brain of the Firm. John Wiley & Sons, second edition, 1994.
2. L. v. Bertalanffy. General system theory. InGeneral Systems: Yearbook of the Society for

the Advancement of General Systems Theory, volume 1, pages 1–10. Ann Arbor, MI: The
Society, 1956.

3. O. Boissier, J. Hübner, and J. S. Sichman. Organization oriented programming: From closed
to open systems. InProceedings of the Seventh International Workshop on Engineering
Societies in the Agents World (EASW 2006), 2006.

4. K. Boulding. General systems theory: The skeleton of science.Management Science, 2:197–
208, 1956.

5. W. Buckley.Sociology and Modern Systems Theory. Upper Saddle River, NJ: Prentice Hall,
1976.

6. R. Cyert and J. March.A Behavioral Theory of the Firm. River, NJ: Prentice Hall, 1963.
7. P. DiMaggio. Structural analysis of organizational fields: A blockmodel approach. InRe-

search in Organizational Behaviour, volume 8, pages 355–370. Greenwich, CT: JAI Press,
1986.

8. J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: an organizational
view of multi-agent systems. InAgent-Oriented Software Engineering IV, 4th International
Workshop, AOSE 2003, volume 2935 ofLecture Notes in Computer Science. Springer Verlag,
2003.

9. C. Girault and R. Valk.Petri nets for systems engineering: a guide to modelling, verification
and applications. Springer Verlag, 2003.

10. M. Hannan and G. Carroll. An introduction to organizational ecology. InOrganizations
in Industry: Strategy, Structure and Selection, pages 17–31. New York: Oxford University
Press, 1995.

11. N. Jennings. On agent-based software engineering.Artificial Intelligence, 177(2):277–296,
2000.

12. A. Koestler.The Ghost in the Machine. Henry Regnery Co., 1967.
13. M. Köhler and M. Wester-Ebbinghaus. Petri net-based specification and deployment of orga-

nizational models. InProceedings of the International Workshop on Petri Nets andSoftware
Engineering (PNSE’07), pages 67–81, Siedlce, Poland, June 2007. Akademia Podlaska.

14. O. Kummer.Referenznetze. Logos Verlag, Berlin, 2002.
15. H. Mintzberg.Structure in Fives: Designing Effective Organizations. Prentice-Hall, 1983.
16. L. Northrop. Ultra-Large-Scale Systems: The Software Challenge of the Future. Software

Engineering Institute, Carnegie Mellon, 2006.
17. L. Pondy and I. Mitroff. Beyond open system models of organization. InResearch in Orga-

nizational Behaviour, volume 1, pages 3–39. CT: JAI Press, 1979.
18. W. R. Scott.Organizations: Rational, Natural and Open Systems. Prentice Hall, 2003.
19. M. Wester-Ebbinghaus, D. Moldt, C. Reese, and K. Markwardt. Towards Organization–

Oriented Software Engineering. InSoftware Engineering Konferenz 2007 in Hamburg:
SE’07 Proceedings, volume 105 ofLNI, pages 205–217. GI, 2007.

90


