Routing Mechanism for Secure, Distributed Discovery
Services for Global Auto-ID Networks

Jons-Tobias Wamhoff!»2, Eberhard Grummt!-2 and Ralf Ackermann®

1 SAP Research CEC Dresden

2 Dresden University of Technology

Abstract. Enterprises capture immense amounts of data in Auto-ID repositories
as items travel along the supply chain. For collaboration among partners individ-
ual repositories need to be discoverable when they are not explicitly linked. At
the same time confidential information including supply relationships needs to be
protected. The task of identifying repositories by keeping the secrets of a supply
chain is done by a Discovery Service. The discovery information can be spread
over multiple nodes. The routing mechanism ensures that queries sent to any
node within the Discovery Service hierarchy will be forwarded to all responsible
nodes. By anonymizing the request and response propagation, the repositories
and Discovery Service data nodes remain hidden as long as the request did not
produce an authorized result set.

1 Introduction

Auto-ID networks target on allowing enterprises an integrated supply chain manage-
ment by capturing data about items automatically (e.g. with RFID technology) and
storing it in back end systems for further processing or analysis. This closes the gap
between the digital and the physical world. As items travel along the supply chain they
leave a trace in the form of events in local repositories of organizations that processed
a business step. But as long as the observed data is kept local and traces are not linked
explicitly it is not possible to engineer applications for Track and Trace [1]. Therefore,
partners that belong to a supply chain but not to the same enterprise need the possibility
to discover and retrieve item information that is distributed among several repositories.
This task is fulfilled by an additional Discovery Service that locates all repositories that
contain information for an item of interest. A typical application of Track and Trace is
a recall of a product where it is necessary to locate all resellers or even customers that
own the product.

This paper proposes a routing mechanism for a Discovery Service that allows to
protect a supply chain by keeping repository and Discovery Service anonymous as
long as the requester is not entitled for access. Because collaboration requires commit-
ment to open standards this paper is based on standards of the EPCglobal Architecture
Framework [9]. It defines a naming scheme for Electronic Product Codes (EPC), and
presupposes the existence of data repositories according to the EPC Information Ser-
vice (EPCIS) specification [5]. Queries can be sent by EPCIS Accessing Applications

Wamhoff J., Grummt E. and Ackermann R. (2008).

Routing Mechanism for Secure, Distributed Discovery Services for Global Auto-ID Networks.

In Proceedings of the 2nd International Workshop on RFID Technology - Concepts, Applications, Challenges, pages 136-141
DOI: 10.5220/0001733101360141

Copyright © SciTePress



137

(EPCIS AA) which can be from within an enterprise or from a external partner. For
locating the EPC Manager that originally assigned an EPC, the EPC Object Naming
Service (ONS) [4] can be used. ONS does hardly addresses any privacy or security as-
pects and is not sufficient for item discovery [6]. A standard for EPC Discovery Service
(EPCDS) is not available yet.

The rest of the paper is structured as follows. Section 2 introduces hierarchical ar-
chitecture topologies and the new approach towards secure routing of Discovery Service
requests. Sections 3 and 4 discuss perspectives for this new approach and show related
work.

2 Hierarchical Routing

Organizing Naming Services and Directory Services in a hierarchical structure is widely
used and well examined, e.g. in the context of DNS. It has the advantages to be adaptive
to higher storage or timing demands by adding new branches to the tree. To simplify
administration of EPCDS the origin of information to resolve must reside in leafs of the
tree only (lowest level of hierarchy).

The EPCDS tree itself is used for routing requests to the responsible EPCDS nodes.
Privacy requires the anonymity of both the requester of information about an EPC as
well as the responder that hosts and offers this information. The aim is that the requester
should not be identified during the routing process and the EPCDSs have to be hidden
in the case they do not allow access for the requester. To grant or deny access it is
necessary to get the ID of the requester in the EPCDS leaf.

A request consists of the ID of the requester, the EPC and optional predicates such
as a time frame or business step. Routing is entirely based on EPCs. Registrations and
queries that contain EPC ranges are split in multiple requests that are processed sequen-
tially.

To allow the superior approach of a Directory Service over a Daisy-chain, which
means to refuse explicit linking of predecessors and successors in a supply chain, the
EPCIS repositories need to self-register with the EPCDS on the first occurence of an
EPC. All registrations for a single EPC can either be stored in one EPCDS or they are
distributed over a federation of EPCDS, e.g. for more locality or fault-tolerance. The
location of the EPCDS information depends on the agreement of supply chain partners.
If they host their own EPCDS, it must be guaranteed that internal or external partners
are granted write access to make their repository information publicly available.

2.1 Encrypted Routing Tree

To gain a better protection of supply-chain information together with an increase in
anonymity of the Discovery Service from the clients we propose an advanced routing
architecture. The Discovery Service will do query and result routing internally and con-
sists of two different kinds of nodes: routing nodes and the actual EPCDS data leaf
nodes (DSd). EPCDS nodes must not provide routing functionality under their identity
to remain anonymous. Routing nodes have two interfaces: DS entry (DSe) for accepting
client requests and DS route (DSr) for accepting routing requests. In detail processing
of a request works like this (Figure 1):



138

“Koseor AAID

@ [AMDIKose
/,,—o‘r serial

DSelD, serial, EPC

no info ->

(3)DS known
to parent

DS data

info ->
to all children
with info

Fig. 1. Schema of encrypted routing tree.

—_—

. EPCIS AA (AA) contacts any known DSe node with its ID and the EPC

2. DSe encrypts AA ID with its own key to hide the identity of AA (key of target data
EPCDS leaf can not be used because it is unknown). Contacted EPCDS becomes
new originator of request, which contains the plain EPC and DSe ID along with the
encrypted AA ID. The new request is forwarded to the own or any other DSr node.

3. Request is routed according to EPC: if DSr has no routing information the request
is forwarded to the parent DSr, if DSr has routing information about the EPC it
forwards the request to all children that are connected with the EPC in the routing
table or, if DSr is aware of a DSd, the request will be forwarded to that location.
This will be repeated at every DSr until the request reaches a DSd.

4. DSd uses DSe ID to get its key (symmetric encryption) by contacting the node
directly, authentication is done with certificates. To avoid that an attacker can obtain
the key illegally, the contacted EPCDS should cache the EPCs that are in progress
and the key should not be returned more than once. Black and whitelists can be
used to ban fraudulent nodes.

5. DSd uses AA ID for authorization and has now two possibilities to return the result,
either by sending it back to DSe or directly to AA (then skip the remaining step).

6. DSd returns union of all received results to DSe and DSe delivers result to AA.

All message channels are link encrypted. The DSe key is valid for one transaction
only or if nodes have frequent contact and trust each other they exchange a key that



139

is valid on a longer term. Alternatively to encryption, DSe can use serial numbers that
are kept in a cache with the corresponding AA ID and DSd would request the AA ID
instead of the DSe key. While requests can contain more predicates than EPC (e.g.
business step) that will be forwarded to DSd, routing is based on EPC only.

Discovery information about one EPC can be spread over multiple DSd, so the DSr
nodes will split the request according to their routing tables. The merging is to be done
at AA if the results are directly returned to the client or at DSe. If the results are routed
over DSe, it is possible to allow asynchronous communication. If no information is
available or AA is not authorized to get information about the EPC, the result will be a
timeout and the DSd remains anonymous. If the result is directly returned to AA, DSd
is exposed and loses its anonymity towards an authorized client. The advantage is that
AA can cache the DSd for further requests, again the timeout makes it indistinguishable
if the new request was not authorized or not successful. Also in case of successful
requests, DSd can include a certificate that proves authenticity.

2.2 Onion Routing Tree

Onion routing is known from Tor [3] and other proxies for anonymizing Internet con-
nections. In principle, the topology of the onion routing tree is similar to the encrypted
routing tree. The difference is that in every routing step the request will be encoded
again using the key of the current DSr, adding one layer to the onion. When the request
reached DSd, the node needs to peel the onion skin layer-wise by stepwisely collecting
all keys of DSr nodes that processed the request. The key of the outermost encrypted
skin is not encrypted and can be used to contact a Key Distribution Center (KDC) for the
key of that node. The key is used to decrypt the next skin layer which contains the next
DSr ID or the DSe ID that finally leads to the AA ID that is required for authorization.
All DSr IDs and DSe ID together with their keys are cached for result routing.

Since DSd will never be exposed to AA it can return empty results even if AA is
not authorized to get any information. The result is encoded in the opposite order it was
peeled and transmitted to the first DSr which removes its skin by decrypting the result
message and forwards it to the next visible DSr. If a request was split in a DSr it waits
for all responses from children to whom requests have been forwarded. Failed request
(e.g. expired timeout) can be resubmitted, potentially with replicated nodes. When the
result finally reaches DSe, the last layer is peeled. DSe does a union on all received
results and delivers it to AA.

3 Related Work

Naming Services such as DNS resolve a name to an address or id. Thereby no access
control is done. Discovery Services are used to locate a service in a network that is
specified by properties. In contrast to known Discovery Services, a EPCDS has to in-
clude access control and privacy protection of EPCIS AA and EPCIS.

Agrawal et al. [1] define traceability as the ability to track the current and all previously
recorded stated of an object. The approach presented requires supply chains to be ex-
plicitly defined by additional attributes. The main drawbacks of explicit chaining are



140

that if the node of a partner fails then the supply chain cannot be reconstructed and that
every participant must employ a compliant system.

Beier et al. [2] describe the role of an EPCDS in a EPC network and the requirements
for privacy and security. EPCDS is seen as an independent unit at which each EPCIS
repository has to register with the EPC when they observe an item for the very first
time. It is also mentioned that EPCDS should allow row-level data access control. The
presented requirements match those for this work but no details of the prototype archi-
tecture are given.

Huang et al. [7] present a distributed architecture that makes use of peer-to-peer tech-
nology and distributed hash tables to locate information about explicitly defined supply
chains.

Kiirschner et al. [8] give an overview about requirements towards an EPCDS and de-
scribe the directory look-up design currently under consideration at EPCglobal.

4 Summary and Future Work

In this paper we presented hierarchical architecture approaches that allow to keep dis-
covery information related to single EPCs to be spread over multiple EPCDS nodes.
EPCDS and EPCIS AA remain anonymous from each other as long as a request pro-
duces no authorized result set because EPCIS AA and EPCDS do not interact directly
with each other. Instead, requests are routed through a tree of nodes that re-encode the
request and change its originator. For authorization needs the EPCIS AA has to give up
its anonymity when the request reaches a responsible EPCDS data node but the EPCDS
can stay anonymous at any time. On an empty response it is indistinguishable for EPCIS
AA whether access was denied or no information for the EPC was available.

Future work includes how routing tables in DSr nodes are organized and how they
can be compressed for more efficiency. It also should be investigated if the hierarchical
approach with routing tables can be replaced by a peer-to-peer approach with distributed
hash tables as the routing mechanism. It has to be ensured that a request does a suffi-
cient amount of hops to keep its anonymity. For both approaches a prototype has to be
implemented for performance measurements.

References

1. Rakesh Agrawal, Alvon Cheung, Karin Kailing, and Stefan Schonauer. Towards Traceability
across Sovereign, Distributed RFID Databases. In IDEAS "06: Proceedings of the 10th Inter-
national Database Engineering and Applications Symposium, pages 174—184, Washington,
DC, USA, 2006. IEEE Computer Society.

2. Steve Beier, Tyrone Grandison, Karin Kailing, and Ralf Rantzau. Discovery Services — En-
abling RFID Traceability in EPCglobal Networks. In Proc. of the 13th International Confer-
ence on Management of Data (COMAD), Delhi, India, December 2006.

3. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: the second-generation onion
router. In SSYM’04: Proceedings of the 13th conference on USENIX Security Symposium,
pages 21-21, Berkeley, CA, USA, 2004. USENIX Association.

4. EPCglobal Inc. Object Naming Service (ONS) Version 1.0 Specification, October 2005.

5. EPCglobal Inc. EPC Information Services (EPCIS) Version 1.0 Specification, April 2007.



141

. Benjamin Fabian, Oliver Giinther, and Sarah Spiekermann. Security Analysis of the Object
Name Service for RFID. In International Workshop on Security, Privacy and Trust in Per-
vasive and Ubiquitous Computing — SecPerU’05, Santorini Island, Greece, July 2005. IEEE,
IEEE Computer Society Press.

. Dijiang Huang, Mayank Verma, Archana Ramachandran, and Zhibin Zhou. A Distributed
ePedigree Architecture. In FTDCS ’07: Proceedings of the 11th IEEE International Workshop
on Future Trends of Distributed Computing Systems, pages 220-230, Washington, DC, USA,
2007. IEEE Computer Society.

. Chris Kiirschner, Cosmin Condea, Oliver Kasten, and Frdric Thiesse. Discovery Service De-
sign in the EPCglobal Network: Towards Full Supply Chain Visibility. In The Internet of
Things, volume 4952, pages 19-34. Springer Berlin, Heidelberg, March 2008.

. Ken Traub, Greg Allgair, Henri Barthel, Leo Burstein, John Garrett, Bernie Hogan, Bryan
Rodrigues, Sanjay Sarma, Johannes Schmidt, Chuck Schramek, Roger Stewart, and KK Suen.
The EPCglobal Architecture Framework, July 2005.



