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Abstract. This paper addresses two important issues related to texture pattern
retrieval: feature extraction and similarity search. We use discrete wavelet trans-
forms to obtain the image representation from a multiresolution point of view.
Features of approximation subspaces compose the feature vectors, which suc-
cinctly represent the images in the execution of similarity queries. Wavelets and
multiresolution method are used to overcome the semantic gap that exists be-
tween low level features and the high level user interpretation of images. It also
deals with the €urse of dimensionality”, which involves problems with a similar-

ity definition in high-dimensional feature spaces. This work was evaluated with
two different image datasets and the results show an improvement of up to 90%
for recall values up to 65%, in the query results using the Daubechies wavelet
transform when comparing to other wavelets and gray level histograms.

1 Introduction

Content-based image retrieval (CBIR) is a technology that employs methods and algo-
rithms aiming at accessing pictures by referencing image patterns rather than alphanu-
merical indices. In order to allow a fast query answer, representative numerical features
that serve as image signatures are extracted from each image in the repository. Then,
the images are indexed using these precomputed signatures. In the query execution, the
signature extracted from the query example is compared to the signature precomputed
from all images in the database [1].

Techniques for content-based access into medical image repositories are a subject
of high interest in recent research, and remarkable efforts have been reported so far. In
particular, CBIR for picture archiving and communication systems (PACS) can make a
significant positive impact in health informatics and health care. However, in spite of
the reports of innovations, the practical use of CBIR in PACS has not been established
yet. The reasons are manifold, and they are identified only informally, without an ob-
jective measure for evaluating the CBIR systems and identifying the shortcomings (or
gaps) in the methods. In general, two gaps have been identified in CBIR techniques:
(i) the semantic gap between the low-level features (color, texture and shape) that are
automatically extracted by machine and the high-level concepts of human vision and
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image understanding; and (ii) tisensory gap between the object in the world and the
information in a (computational) description derived framecording of that scene [1].

Basically, all systems use the assumption of equivalen@afage and its rep-
resentation in the feature space. These systems often wsIrement systems, such
as the easily understandable Euclidean vector space nmardakfasuring distances be-
tween a query image (represented by its features) and p®ssifults, representing
all images as feature vectors in ardimensional vector space. Nevertheless, metrics
have been shown to not correspond well to the human visuaép#gon. Several other
distance measures do exist for the vector space model subk agy-block distance,
the Mahalanobis distance or a simple histogram intersecsdill, the use of high-
dimensional feature spaces has shown to cause problenos cAlgtion should be taken
when choosing the distance measure in order to retrieveimgfahresults. These prob-
lems with a similarity definition in high-dimensional fea¢tspaces is also known as the
“curse of dimensionality”, and has also been discussed in the domain of medical imag-
ing [2].

Beyer et. al. proved in [3] that the increasing in the numiddeatures (and con-
sequently in the dimensionality of the data) leads to loghwg significance of each
feature value. Thus, to avoid decreasing the discriminaixuracy, it is important to
keep the number of features as low as possible, establishirade-off between the
discrimination power and the feature vector size.

Aimed at overriding the problems of the semantic gap and¢hest of dimension-
ality”, this paper shows a simple but powerful feature estvabased on multiresolution
wavelet transforms, which uses the approximation subspammempose the feature vec-
tor to represent the image. The results of applying our nteuhieves 90% regarding
the precision in the retrieval of medical images that ask®u§b% of the image set.

2 Background - Wavelets

Our proposed technique works on image subspaces genenatapplying wavelet
transforms through the multiresolution method. Waveletsraathematical functions
that separate the signal in different components of frequeand then examine each
component with a combined resolution with its scale.

Itis interesting to compare the wavelet transform to therleotransform. While the
Fourier transform analyzes a signal according to the frequehe wavelet transform
analyzes it according to the scale. Thus, the wavelets caove statistical redundancy
among pixels, providing a more compact representationeirttage information. It is
believed that image indexing generated over the wavelesfoamed domain are more
efficient than those designed over the spatial domain. Bhifue to the fact that the
transformed coefficients have better defined distributibas image pixels. Besides,
the wavelets have a multiresolution property that make stezao extract the image
features from transformed coefficients [4].

The central element of a multiresolution analysis is a fiomcp(¢), called the scal-
ing function, whose role is to represent a signal at diffeseales. The translations of
the scaling function constitute the “building blocks” okthepresentation of a signal at



a given scale. The scale can be increased by dilating (sinefcthe scaling function or
decreased by contracting it.

The scaling function(t) acts as a sampling function (a basis), in the sense that
the inner product ob(¢) with a signal represents a sort of average value of the signal
over the support (extent) af. A recursive application of this process generates new
nested spacdg’, thatis, .V-2 c V-1 c V-0 c V! C ..., which are the basis of the
multiresolution analysis.

By definition, a signal in/ —! can be expressed as a superposition of translations of
the functiong', but since the spadé’ is included inV’ —!, any function ini’® can also
be expanded in terms of the translationg@f). In particular, this is true for the scaling
function itself.

Consequently, there must exist a sequence of nuniberé,, h1, . .. such that the
following relationship is satisfied :

) =Y b (- 3) M

Equation 1 is very important and it is known as the scalingatign. Equation 1
describes how the scaling function can be generated bysogiag compressed copies
of itself. Now it is possible to define a new spdé€ as the orthogonal complement of
V7in Vi+l In other words}¥7 is the space of all functions i/ that are orthogonal
to all functions inV’7 under the chosen inner product. The relationship to was@én
the fact that the spac@E™ are spanned by dilation and translation of a functign),
thus, such collection of basis functions are called waselet

As in the case with the scaling function, since the wavelg) belongs tov/ 1, it
can be expressed as a linear combinatiof(of at scalen = —1, which can be written
as:

Y(t) =D gud”(t—n) 2)

where the sequengas called thevavel et sequence. In the literatureh andg are known
as thelow andhigh frequency filters respectively.

Different wavelet bases are obtained by varying the suppidih of the wavelet. In
general, changes in the wavelet support affect the final#reqy characteristics of the
wavelet transform. Usually the amplitudes of the coeffitsemange and, consequently,
the scale, where the signal and noise separate, also chargeshoice of a wavelet
basis still represents an open problem for filtering.

Probably the most popular wavelets are the Daubechies gtayblecause of their
orthogonality and compact support [5]. We choose Symlet#in@@an and Daubechies
wavelets to explore in this work.

3 Proposed Method

Our method deals with two inherent drawbacks of a CBIR systhenhigh dimension-
ality of feature vectors and the semantic gap. We amend gtefie by applying higher



resolution on the multiresolution technique, and the sdeamore by characterizing im-
ages through the feature vectors composed of the appragimsibspace, which are
obtained through a convolution over each image by the wafittkrs. We choose the
following wavelet filters: Coifmandpif1 and coif2), Symlet cym2, sym3, sym4,
symb andsym15) and Daubechiesip1, db2, db3, db4 anddb8)*.

Figure 1 graphically summarizes the proposed method. WetuSeand 6 levels
of resolution and the approximation subspace is repreddnteeading it column to
column, putting the values obtained on the feature vectmusTthe dimension of the
feature vector is given by multiplying the dimension of th@peoximation subspace.
That is, to calculate the dimension of the feature vectorusedivide by two the width
and the height of the image from each resolution level agpés is shown in Figure 2,
and multiplying the dimensions of the approximation sulbspdhe Equation 3 gives
the formula to calculate the number of elements of the pregdésature vector.

# features = w;(]ivth * —he;]%ht’ 3)
wherewidth is the image widthheight is the image height and¥ is the level of decom-
position. Figure 2 shows an example of a wavelet decompaositind the configuration
of regions after decomposition.
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Fig. 1. Proposed method of feature extraction using 4 levels ofdeosition. Each pixel value
of the approximation subspace is put in a feature vector.

For instance, if an image has6 x 256 pixels, when it is applied 4 levels of reso-
lution, the feauture vector has 256 features, when it usegdld, the feature vector has
64 features. And when it uses 6 levels, the feature vectoiGdsatures, which is the
total of pixels from the approximation subspace.

4 Experiments and Results

Using the proposed method, we developed a prototype to gs@egearest neighbor
queries k-NN), answering queries such as: “retrieve the ten most sinmilages of the

! These respectively wavelet filters can be found on the Matfatool
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Fig. 2. Example of wavelet decomposition (a) original image; (bag®a decomposed in two steps
from Haar wavelets; (c) configuration of regions after deposition.

image MR Head of John Doe”. Figure 3 shows an examplekelN&l query performed
by our prototype. The similarity between two images is egpeel by the distance be-
tween their respective feature vectors. We use the welvkreuclidean distance func-
tion (L2) to compare the feature vectors.
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Fig. 3. Example of a 10-nearest neighbor query performed by thelale»e prototype over an
image database of 704 images.

In order to evaluate the effectiveness of the proposed tqubrwe worked on a
variety of medical images categories, and finecision and Recall (PR) graph [6] was
used as an efficacy measure, since it has been broadly erdpioyexpress the re-
trieval efficiency of a methodzecall indicates the proportion of relevant images in the
database that has been retrieved when answering a queryresigion is the portion
of the retrieved images that are relevant for the query. Adeaaf thumb, the closer the
PR curve to the top of the graph, the better the techniqueiso&r experiments, each
PR curve represents the average curve of all the curveseltaly performing &NN
query for each image in the whole images set.

We have used the Slim-tree [7] as the indexing structuraf@ptrototype, which is
a metric access method (MAM) specially developed to mingniisk accesses, making
the whole system faster.

4.1 Experiment 1- The 210 Images Dataset

This dataset consists of 210 medical images classified enseategories: Angiogram,
MR (Magnetic Resonance) Axial Pelvis, MR Axial Head, MR QaabAbdomen, MR



Coronal Head, MR Sagittal Head and MR Sagittal Spine. Eatdgoay is represented
by 30 images.

First, we compare the method by using 4 levels of resolutimh@oifman ¢oi f1
andcoif2) , Daubechiesdb2 anddb8) and Symlet §ym?2, sym3, sym4, sym5 and
sym15) wavelets. The use of each one of these wavelet transformergte a vector
with 256 features. The PR curves of the nine proposed veatershown in Figure 4.
Each point of the graph is obtained by the average of 210 egleri
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Fig. 4. PR curves showing the retrieval behavior of the proposediodetising the 4* level of
resolution, with 256 features.

Analyzing the graphs of Figure 4, we can see that the waVedetitest represents
the images is the Daubechidg2. We can also consider that the curve generated by
coi f1 wavelet practically ties tdb2.

For the graphics in Figure 5, we compare the Coifmest (1 and coif2) and
Daubechiesdp1, db2 anddb8) wavelet transforms in the!’5 level of resolution. Thus,
their feature vectors also have 64 features. Figure 5 shbe/$°R curves from the
gueries on the dataset represented by these feature vectors

Note that the Haar (o@b1) wavelet is the best one to represent these images. As
a basis for comparison, the graphs in Figure 6 also preseatavierage PR curve ob-
tained by using gray-level histograms over the same imageseta The results for Haar
(or dbl) give the best PR curves shown until now. We can see that elptbhposed
methods have better PR curves than Histogram. The curvebetthr precision is the
one generated bybl, with just 64 features, while the other methods use 256 featu
i.e., there is a reduction of 75% on the data dimensiondlitg queries performed by
using thedbl feature vectors taken from thé"3evel of resolution give precision rates
up to 82,55% regarding the images’ histogram, to querigsatstauntil 90% of the im-
ages. These methods are well-suited to represent the irmagesevaluation, since the
precision values are over than 80% for all recall valuestieas 65%.
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Fig. 5. PR curves showing the retrieval behav-Fig.6. PR curves showing the retrieval be-
ior of the proposed method using thé fevel  havior of the best curves and gray-level his-
of resolution, with 64 features. tograms.

Thus, we can conclude that the dimensionality curse realpabes the results,
because the irrelevant features disturb the influence akllegant ones. Moreover, the
application of wavelet transform in 5 levels through the tinesolution method reduced
the redundancy of information from data, and it also wellrespnts the images for
executing similarity queries.

4.2 Experiment 2 - The 704 Image Dataset

A larger image dataset, with 704 MR images, which is clagbifieeight categories was
used herein. The number of the images in the dataset regagdih category is: An-
giogram (36), MR Axial Pelvis (86), MR Axial Head (155), MR @tial Head (258),
MR Coronal Abdomen (23), MR Sagittal Spine (59), MR Axial Almden (51) and MR
Coronal Head (36). In the previous experiment the best regms obtained applying
a Daubechies wavelet transform, and, according to Wangdl8]Paubechies wavelet
achieves excellent results in image processing due todtsepties. Thus, we use sev-
eral wavelets of the family of Daubechies on 4, 5 and 6 levélsesolution by the
multiresolution method.

Figure 7 shows the Precision vs. Recall generated by theopegpmethod. First,
it is displayed the wavelet name, then the level of resotutiad finally the number
of elements of the feature vector. Observe that the PR cugererated by the same
wavelet transform in several levels of resolution decreaserding to the wavelet cho-
sen. The bigger the number of the filters, the faster the sueerease when a higher
level of resolution is chosen. Analyzing thgl wavelet, which has two filters, observe
that the curves generated in 4 and 5 levels of resolutionguiz&ent, even exiting a
large difference between the number of features from thesitors. For a 6 level of res-
olution we still have an excellent result (see db1-6n-1&e)ras with just 16 features,
the precision is over than 80% for values of recall until 9@%d comparing the 256
features with the 16 ones, we have a dimensionality reducti®3.75%. Also note that
the larger the number of filters, the smaller the precisiothefqueries, considering the
same level of resolution.
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Fig.7. PR curves generated by several Daubechies wavelets mamsstsing the 4, 54 and
6th level of multiresolution.

Figure 8 shows the best curves of PR with 256, 64 and 16 fegttespectively,
from the Figure 7 and compare them with the curve given by tag-tevel histogram.
Visually, all three methods have a better performance thamistogram. Numerically,
we get an improvement of precision until 531% to values o&llamtil 95%, for the
feature vector with 256 features. For 64 features, the ingr@nt in precision is up
to 528% to a recall of 95%; and for 16 features, the improverimeprecision is up to
491% to a recall of 90%.
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Fig. 8. PR curves showing the retrieval behavior of the best curndsyaay-level histogram.

To compare this method with another one from literature, gexla technique pro-
posed by Balan [9], which employs an improved version of tM/NEPM method to
segment images, and for each region segmented based orefesxtfeatures were ex-



tracted: the massi{); the centroid £o andyo); the average gray levelJ, the Fractal
dimension ); and the linear coefficient used to estim&e(b). Therefore, when an
image is segmented ih classes, the feature vector hag 6 elements. Here we use
L = 5, so the feature vector has 30 features. Figure 9 illustittegeature vector
described.
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Fig. 9. The feature vector.

Figure 10 shows the comparison of the curves generated bynetirod with 16
features (db1-6n-16 curve) to the method that uses an iregdreersion of EM/MPM
algorithm, which is one of the best methods in the literatWe can see that our method
performs better when processing similarity querlesl). Note also that our method
demands fewer features than EM/MPM. We can also comparétleespending to im-
age processing and extraction of the features. While thedveg version of EM/MPM
spends around 17.05 seconds per image, our method with fiGdeaspends around
0.77 seconds.
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Fig. 10. PR curves from db1-6n with 16 features and from improvediwarsf the EM/MPM.

5 Conclusions

In this paper we presented a new technique based on wayglatxamation subspaces,
which was used to compose the image feature vector to pregegarity queries on
the image content. A tool based on the presented technigsiénwpdemented, aimed at
validating the technique proposed on real images from rdiffetissues of the human
body, and to assist the study and analysis of medical imddess, the method can be
included in a PACS under development in our institution.



Several wavelets were evaluated, and the Daubechies stebetter efficacy than
the other ones for the analyzed image sets. The achievellsrebowed that the pro-
posed method performs very well, presenting an image velraeccuracy always over
90% for recall values smaller than 65%. Moreover, we obthméeature vector with
just 16 elements that provided a better performance thafettiere vector with 30 fea-
tures obtained from segmented images by using an improverassion of EM/MPM
algorithm, which is a much more time consuming method. Byr#seilts obtained in
the work, we can claim that wavelets and the multiresoluti@thod are well suited to
deal with the issue of the semantic gap and the dimensigrdlifeature vectors.
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