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Abstract. Firewall ACLs could have inconsistencies, allowing traffic that 
should be denied or vice-versa. In this paper, we analyze the inconsistency 
characterization problem as a separate problem of the diagnosis one, and pro-
pose definitions to characterize one-to-many inconsistencies. We identify the 
combinatorial part of the problem that causes exponential complexity in com-
bined diagnosis and characterization algorithms proposed by other researchers. 
The problem is divided in several smaller combinatorial ones, which effectively 
reduces its complexity. Finally, we propose a heuristic to solve the problem in 
worst case polynomial time as a proof of concept. 

1 Introduction 

A firewall is a network element that controls the traversal of packets across different 
network segments. It is a mechanism to enforce an Access Control Policy, repre-
sented as an Access Control List (ACL), or a rule set. An ACL is in general a list of 
linearly ordered (total order) condition/action rules. Let RS be a firewall rule set con-
sisting of n rules, { }1 , ... nRS R R= . Consider 4, ,R H Action H=< > ∈`  as a rule, 

where { },Action allow deny=  is its action. A selector of a firewall rule Rj is defined 

as { }[ ],1 , , _ , _ , _ , _jR k k n k protocol src ip src prt dst ip dst prt≤ ≤ ∈ . A rule 
matches a packet when the values of each field of the header of a packet are subsets 
or equal to the values of its corresponding rule selector. 

Firewalls have to face many problems in modern networks. One of the most impor-
tant ones is rule set consistency [6]. Selectors of rules can partially or totally overlap. 
There is an inconsistency when two or more rules with different actions overlap. An 
inconsistent firewall ACL implies a design error in general, and indicates that the 
firewall is accepting traffic that should be denied or vice-versa. 

In this paper we analyze the inconsistency characterization problem in firewall 
rule sets, and extend the complete formal inconsistency characterization given by Al-
Shaer et al. [3], resulting in a complete one-to-many characterization. Then, we 
identify the combinatorial part of the problem that causes the combinatorial explosion 
in combined diagnosis and characterization algorithms proposed by other researchers, 
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and propose a decomposition of this combinatorial part in several smaller ones. The 
proposed characterization algorithms are based on a polynomial heuristic and on a 
previous diagnosis process that is worst case O(n2) time complexity [6]. In this paper, 
detection is understood as the action of finding the rules that are inconsistent with 
other rules; identification is the action of finding the rules that cause all the 
inconsistencies among the detected inconsistent rules (the faulty rules); and 
characterization is understood as the action of naming the identified inconsistent rules 
among a pre-established taxonomy of faults. 

2 Related Works 

Some other researchers have complemented the diagnosis process with a characteriza-
tion of the faults with an established taxonomy [3]. One of the most important ad-
vances was made by Al-Shaer et al. [4], where authors define a complete inconsis-
tency model for firewall rule sets. They give a combined algorithm to diagnose and 
characterize the inconsistencies between pairs of rules. They used rule decorrelation 
techniques [2] as a pre-process in order to decompose the rule set in a new, bigger, 
one with no overlapping rules. This new rule set is different from the initial one, and 
the user is the responsible of mapping the rules of this rule set to the original one once 
inconsistencies are given. This model can only diagnose and characterize inconsisten-
cies between pairs of rules. Although the proposed characterization algorithm pro-
posed by Al-Shaer is polynomial, the decorrelation pre-process imposes a worst case 
exponential time and space complexity for the full process. A modification to their 
algorithms was provided by García-Alfaro et al. [5], where they integrate the decorre-
lation and characterization algorithms of Al-Shaer, and generate a decorrelated and 
consistent rule set. Thus, due to the use of the same decorrelation techniques, this 
proposal also has worst case exponential complexity. However, García-Alfaro et al. 
provide a characterization technique with multiple rules. Ordered Binary Decision 
Diagrams (OBDDs) have been used in Fireman [7], where authors provide a diagno-
sis and characterization technique with multiple rules. However, the complexity of 
OBDD algorithms depends on the optimal ordering of its nodes, which is NP [6]. 

There are several important differences between our works and these ones. The 
combination of diagnosis and characterization in only one step results in exponential 
algorithms. However, only a part of the characterization problem is of exponential 
nature. In a previous work, we proposed to divide consistency management in two 
sequential processes [6]: detection and identification (diagnosis) of inconsistent rules, 
and characterization of the diagnosis. This analysis enabled us to identify and isolate 
the combinatorial part of it and improve the algorithmic complexity of the full 
process. A heuristic polynomial algorithm is provided as a proof of concept. Results 
are given over the original, unmodified, rule set. 
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3 Analysis of the Inconsistency Characterization Problem 

Real life rule sets can be decomposed in two different subsets of rules. The first one is 
a set of consistent rules. The other one is formed by subsets of ICIRs (Definition 2). 

Definition 3.1. Inconsistency between two rules ,x yR R RS∈ . 

{ }

( , , ) 1 , , [ ] [ ] [ ] [ ],

, _ , _ , _ , _

,
x y x yi jInconsistent R R RS i j n i j R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

≤ ≤ ≠ ⇔ ≠ ∅ ∧ ≠

∀ ∈

∩
 

Definition 3.2. ICIR. Let { }1 , ... nCV R R= be a set of rules, then 

( , ) ( , ) , , ( , )
i i i j i j

ICIR root CV R CV Inconsistent root R R R CV i j Inconsistent R R⇔∀ ∈ • ∧∀ ∈ ≠ •¬  

Definition 3.3. Diagnosis Set, DS. 
{ }

{ }
1

1

, ...,

( ), ..., ( )

Let  be the set of all ICIR of a given , then
m

m

ICIR ICIR

DS ICIR root ICIR root

ICIRS RS

=

=
 

3.1 Characterization Taxonomy of One to Many Inconsistencies 

Our definitions extend Al-Shaer [3] and are capable of a one to many characteriza-
tion. Let ‘<’ and ‘>’ be operators defined over the priority of the rules, where Rx < Ry 
implies that then Rx has more priority than Ry and vice-versa. These definitions can be 
directly extended to support a cluster of rules with the same action in Rx or Ry (but 
not in both). If Rx is a cluster of rules and Ry is a rule, then Ry is shadowed by Rx, and 
vice-versa. 

• Shadow and Exact Shadow 

{ }

( )

[ ] [ ] [ ] [ ]

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R Shadow R

k R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

⊂

∃ ∈ > • ⇔

∀ • ∧ ≠

∈

•

 

{ }

( )

[ ] [ ] [ ] [ ]

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R ExactShadow R

k R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

=

∃ ∈ > • ⇔

∀ • ∧ ≠

∈

•

 

Shadow Exact shadow 

• Generalization. It is the inverse of shadow respect to the priority. 

{ }

( ) [ ] [ ]

, _ , _ , _ , _

,
x y x y y y x x y

R R RS R R Generalization R k R R R Action R Action

k protocol src ip src prt dst ip dst prt

∃ ∈ > • ⇔ ∀ • ⊃ ∧ ≠

∈

•
 

• Correlation 

{ }

( ) [ ] [ ] [ ] [ ]

( ( , _ , _ , _ , _

,

) ),
x y x y x y x y

x y x y

R R RS Correlation R R k R k R k R Action R Action

R R R R k protocol src ip src prt dst ip dst prt

∃ ∈ • ⇔ ∀ • ∧ ≠ ∧

¬ ¬ ∈⊆ ∨ ⊃

∩
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4 Inconsistency Characterization Process 

The characterization process explained in this section takes as input the inconsistency 
diagnosis as ICIRs [6]. At the first step, for each ICIR, children are joined in different 
clusters in order to abbreviate the returned characterization for that conflicting rule 
(ICIR root). These clusters are formed by rules that are subsets, supersets, equal, or 
form a continuous space for all selectors. The clusters represent the rules that share 
the same inconsistency with their ICIR root. Due to the priority dependency of char-
acterization definitions, it is possible to divide ICIR children rules in two lists: rules 
that come before and rules that go after root. Then, clustering is done independently 
for each of these two lists. Division process is in O(c) with the number of children. In 
general, clustering is possible if all rule selectors permit multiple values, ranges 
and/or wildcards in their syntax. Fortunately, firewall languages support it in all se-
lectors, but only continuous ranges [1]. This enables the clustering of rules for all 
selectors. 

Algorithm 1. Initialization. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Func initialization(in Rule: root, List of Rule: children) 
Alg 
    if root.DstPort().isRangeOrWildcard() AND  
        children.size()>1 { 
            sortAscendingByDestinationPort(children) 
            if root.Priority()>children.last().Priority() OR 
                root.Priority()<children.first().Priority() { 
                    clusterize(root, children) 
            } 
            else { 
                List before = Rules with priority > root 
                List after = Rules with priority < root 
                clusterize(root, before) 
                clusterize(root, after) 
            } 
    else { 
        doPairwiseCharacterization(root, children) 
    } 
End Alg 
 
Func doPairwiseCharacterization(in Rule: root, List of 
Rule: children) 
Alg 
    for each i=1..children.size() 
        doClassification(root, children.get(i)) 
End Alg 
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Algorithm 2. Cluster construction. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Func clusterize(in Rule: root, List of Rule: children) 
Var 
    Rule cluster 
Alg 
    cluster = children.first() 
    for each i=2..children.size() { 
        if isClusterizable(union, children.get(i) AND  
            i<children.size()) { 
                cluster.joinWith(children.get(i)) 
        } 
        else if isClusterizable(union, children.get(i) AND  
                   i==children.size()) { 
                       cluster.joinWith(children.get(i)) 
                       doClassification(root, cluster) 
        } 
        else { // Not clusterizable 
            doClassification(root, cluster) 
            // re-initializes for a new cluster 
            cluster=children.get(i)  
        } 
    } 
End Alg 

Since ICIRs represent independent clusters of inconsistencies, they can also be 
characterized independently, effectively reducing the problem complexity: the 
combinatorial problem have been reduced from the entire rule set to several smaller 
ICIRs. However, there is still a trade off between optimally solving the problem in 
exponential time, or using an approximation to the optimum. In this paper we propose 
a worst case polynomial heuristic. The heuristic is used when clustering ICIR 
children. It only takes into account one selector for rule clustering, and does not try to 
check all possible unions between all selectors. For each ICIR, their children are 
clusterized in several groups by destination port forming a continuous range. This 
task can be done in linear time if children are ordered by destination port. The first 
cluster is formed with the first children. Then the next children should be added only 
if its destination port selector can form a continuous range with the cluster, and if the 
rest of selectors are equal, subset, superset or wildcard. If it cannot be joined, then the 
cluster is closed and a new one is formed with that child, and the process begins again 
until there are no more children. 

The first part of the process checks ICIR root structure and prepare children for 
clustering (Algorithm 1). Then, it identifies the rules that can be joined with others in 
each ICIR (Algorithm 2). Algorithm 1 takes as input the ICIR root and children, and 
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first checks if the ICIR has a valid structure for clustering. That is, (1) the considered 
ICIR must have at least two children; (2) at least one selector of ICIR root must be a 
range of values or a wildcard. The joined rules in a cluster must form a continuous 
range (with or without overlapping) and must be subset, superset or equal the 
corresponding root selector; and (3) for root selectors that do not have multiple 
values, rules in the cluster must have the same value as root, or at least one of them 
must be a wildcard.  Then it sorts children by destination port in ascending order. 

Algorithm 3. Inconsistency Characterization. 
1 Func doClassification(in Rule: root, Rule: cluster; out 1 else { // Root is first rule 
2 String: conflictType) 2         if (superset(cluster, root) 
3 Alg 3             conflictType = “Cluster is generalization of root” 
4 // Root is last rule 4         else if (subset(cluster, root) 
5     if (root.getPriority()>cluster.getLastRulePriority())  { 5             conflictType = “Cluster is shadowed by root” 
6         if (cluster == root) 6         else 
7              conflictType = “Root is exact shadowed by union” 7             conflictType = “Root and cluster are correlated” 
8         else if (superset(cluster, root)) 8     } 
9              conflictType = “Root is shadowed by cluster” 9     return conflictType 
10         else if (subset(cluster, root)) 10 End Alg 
11              conflictType = “Root is generalization of cluster” 11  
12         else 12  
13              conflictType = “Root and cluster are correlated” 13  
14     } 14  

Next, the algorithm checks if root is the last or first rule or is in between. If root is in 
between it divides children in two lists: rules that come before and rules that go after 
root, as also was explained before. Finally, if clustering is possible, it calls Algorithm 
2, and if not, it calls directly the inconsistency characterization (Algorithm 3). Algo-
rithm 2 also takes as input ICIR root and children. This algorithm implement the 
heuristic as it has been described in the previous section. Characterization algorithm 
(Algorithm 3) follows directly the extended definitions proposed in an earlier section. 
Algorithm 3 takes as input ICIR root and the clusters of that ICIR. Then, it checks 
each type of inconsistency using the equality, subset and superset operations. Note 
that characterization is different depending on the relative priority of the ICIR root (if 
it is the first or last rule). Algorithm 3 is in O(c). Result is returned as a text string. 
The combined worst case complexity of the three algorithms is in O(clogc). As these 
algorithms must be run for each ICIR, the final time complexity is in O(h*clogc), 
where h is the cardinality of the diagnosis set (or the number of ICIRs) and c is the 
number of children of each ICIR. Note that the combinatorial part of the inconsis-
tency characterization problem is only the clusterization (where the heuristic has been 
used), and not the characterization itself. 

5 Conclusions and Future Works 

In this paper, we have analyzed the inconsistency characterization problem in firewall 
rule sets. We have proposed a complete and formal inconsistency characterization for 
clusters of rules in order to obtain a one-to-many characterization. The analysis of the 
characterization problem enabled us to identify and isolate the combinatorial part of 
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it. We showed that the combinatorial problems to be solved are very small due to the 
decomposition made in the diagnosis process, which has effectively reduced a worst 
case O(2n) problem in several O(2c) ones, with n>>c. As a proof of concept we have 
proposed a heuristic and algorithms that solve the characterization problem in worst 
case polynomial time. Algorithms are capable of handling full ranges in rule selectors 
without doing rule decorrelation. Results are given over the original ACL. In the 
future, we are going to design optimal algorithms, and compare its performance with 
other proposals. 
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