
Firewall Rule Set Inconsistency Characterization
by Clustering

Sergio Pozo, Rafael Ceballos and Rafael M. Gasca

Department of Computer Languages and Systems, ETS Ingeniería Informática
University of Seville, Avda. Reina Mercedes S/N, 41012 Sevilla, Spain

Abstract. Firewall ACLs could have inconsistencies, allowing traffic that
should be denied or vice-versa. In this paper, we analyze the inconsistency
characterization problem as a separate problem of the diagnosis one, and pro-
pose definitions to characterize one-to-many inconsistencies. We identify the
combinatorial part of the problem that causes exponential complexity in com-
bined diagnosis and characterization algorithms proposed by other researchers.
The problem is divided in several smaller combinatorial ones, which effectively
reduces its complexity. Finally, we propose a heuristic to solve the problem in
worst case polynomial time as a proof of concept.

1 Introduction

A firewall is a network element that controls the traversal of packets across different
network segments. It is a mechanism to enforce an Access Control Policy, repre-
sented as an Access Control List (ACL), or a rule set. An ACL is in general a list of
linearly ordered (total order) condition/action rules. Let RS be a firewall rule set con-
sisting of n rules, { }1 , ... nRS R R= . Consider 4, ,R H Action H=< > ∈` as a rule,

where { },Action allow deny= is its action. A selector of a firewall rule Rj is defined

as { }[],1 , , _ , _ , _ , _jR k k n k protocol src ip src prt dst ip dst prt≤ ≤ ∈ . A rule
matches a packet when the values of each field of the header of a packet are subsets
or equal to the values of its corresponding rule selector.

Firewalls have to face many problems in modern networks. One of the most impor-
tant ones is rule set consistency [6]. Selectors of rules can partially or totally overlap.
There is an inconsistency when two or more rules with different actions overlap. An
inconsistent firewall ACL implies a design error in general, and indicates that the
firewall is accepting traffic that should be denied or vice-versa.

In this paper we analyze the inconsistency characterization problem in firewall
rule sets, and extend the complete formal inconsistency characterization given by Al-
Shaer et al. [3], resulting in a complete one-to-many characterization. Then, we
identify the combinatorial part of the problem that causes the combinatorial explosion
in combined diagnosis and characterization algorithms proposed by other researchers,

Pozo S., Ceballos R. and M. Gasca R. (2008).
Firewall Rule Set Inconsistency Characterization by Clustering.
In Proceedings of the 6th International Workshop on Security in Information Systems, pages 138-144
DOI: 10.5220/0001730701380144
Copyright c© SciTePress

and propose a decomposition of this combinatorial part in several smaller ones. The
proposed characterization algorithms are based on a polynomial heuristic and on a
previous diagnosis process that is worst case O(n2) time complexity [6]. In this paper,
detection is understood as the action of finding the rules that are inconsistent with
other rules; identification is the action of finding the rules that cause all the
inconsistencies among the detected inconsistent rules (the faulty rules); and
characterization is understood as the action of naming the identified inconsistent rules
among a pre-established taxonomy of faults.

2 Related Works

Some other researchers have complemented the diagnosis process with a characteriza-
tion of the faults with an established taxonomy [3]. One of the most important ad-
vances was made by Al-Shaer et al. [4], where authors define a complete inconsis-
tency model for firewall rule sets. They give a combined algorithm to diagnose and
characterize the inconsistencies between pairs of rules. They used rule decorrelation
techniques [2] as a pre-process in order to decompose the rule set in a new, bigger,
one with no overlapping rules. This new rule set is different from the initial one, and
the user is the responsible of mapping the rules of this rule set to the original one once
inconsistencies are given. This model can only diagnose and characterize inconsisten-
cies between pairs of rules. Although the proposed characterization algorithm pro-
posed by Al-Shaer is polynomial, the decorrelation pre-process imposes a worst case
exponential time and space complexity for the full process. A modification to their
algorithms was provided by García-Alfaro et al. [5], where they integrate the decorre-
lation and characterization algorithms of Al-Shaer, and generate a decorrelated and
consistent rule set. Thus, due to the use of the same decorrelation techniques, this
proposal also has worst case exponential complexity. However, García-Alfaro et al.
provide a characterization technique with multiple rules. Ordered Binary Decision
Diagrams (OBDDs) have been used in Fireman [7], where authors provide a diagno-
sis and characterization technique with multiple rules. However, the complexity of
OBDD algorithms depends on the optimal ordering of its nodes, which is NP [6].

There are several important differences between our works and these ones. The
combination of diagnosis and characterization in only one step results in exponential
algorithms. However, only a part of the characterization problem is of exponential
nature. In a previous work, we proposed to divide consistency management in two
sequential processes [6]: detection and identification (diagnosis) of inconsistent rules,
and characterization of the diagnosis. This analysis enabled us to identify and isolate
the combinatorial part of it and improve the algorithmic complexity of the full
process. A heuristic polynomial algorithm is provided as a proof of concept. Results
are given over the original, unmodified, rule set.

139

3 Analysis of the Inconsistency Characterization Problem

Real life rule sets can be decomposed in two different subsets of rules. The first one is
a set of consistent rules. The other one is formed by subsets of ICIRs (Definition 2).

Definition 3.1. Inconsistency between two rules ,x yR R RS∈ .

{ }

(, ,) 1 , , [] [] [] [],

, _ , _ , _ , _

,
x y x yi jInconsistent R R RS i j n i j R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

≤ ≤ ≠ ⇔ ≠ ∅ ∧ ≠

∀ ∈

∩

Definition 3.2. ICIR. Let { }1 , ... nCV R R= be a set of rules, then

(,) (,) , , (,)
i i i j i j

ICIR root CV R CV Inconsistent root R R R CV i j Inconsistent R R⇔∀ ∈ • ∧∀ ∈ ≠ •¬

Definition 3.3. Diagnosis Set, DS.
{ }

{ }
1

1

, ...,

(), ..., ()

Let be the set of all ICIR of a given , then
m

m

ICIR ICIR

DS ICIR root ICIR root

ICIRS RS

=

=

3.1 Characterization Taxonomy of One to Many Inconsistencies

Our definitions extend Al-Shaer [3] and are capable of a one to many characteriza-
tion. Let ‘<’ and ‘>’ be operators defined over the priority of the rules, where Rx < Ry
implies that then Rx has more priority than Ry and vice-versa. These definitions can be
directly extended to support a cluster of rules with the same action in Rx or Ry (but
not in both). If Rx is a cluster of rules and Ry is a rule, then Ry is shadowed by Rx, and
vice-versa.

• Shadow and Exact Shadow

{ }

()

[] [] [] []

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R Shadow R

k R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

⊂

∃ ∈ > • ⇔

∀ • ∧ ≠

∈

•

{ }

()

[] [] [] []

, _ , _ , _ , _

,
x y x y y

y x x y

R R RS R R ExactShadow R

k R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

=

∃ ∈ > • ⇔

∀ • ∧ ≠

∈

•

Shadow Exact shadow

• Generalization. It is the inverse of shadow respect to the priority.

{ }

() [] []

, _ , _ , _ , _

,
x y x y y y x x y

R R RS R R Generalization R k R R R Action R Action

k protocol src ip src prt dst ip dst prt

∃ ∈ > • ⇔ ∀ • ⊃ ∧ ≠

∈

•

• Correlation

{ }

() [] [] [] []

((, _ , _ , _ , _

,

)),
x y x y x y x y

x y x y

R R RS Correlation R R k R k R k R Action R Action

R R R R k protocol src ip src prt dst ip dst prt

∃ ∈ • ⇔ ∀ • ∧ ≠ ∧

¬ ¬ ∈⊆ ∨ ⊃

∩

140

4 Inconsistency Characterization Process

The characterization process explained in this section takes as input the inconsistency
diagnosis as ICIRs [6]. At the first step, for each ICIR, children are joined in different
clusters in order to abbreviate the returned characterization for that conflicting rule
(ICIR root). These clusters are formed by rules that are subsets, supersets, equal, or
form a continuous space for all selectors. The clusters represent the rules that share
the same inconsistency with their ICIR root. Due to the priority dependency of char-
acterization definitions, it is possible to divide ICIR children rules in two lists: rules
that come before and rules that go after root. Then, clustering is done independently
for each of these two lists. Division process is in O(c) with the number of children. In
general, clustering is possible if all rule selectors permit multiple values, ranges
and/or wildcards in their syntax. Fortunately, firewall languages support it in all se-
lectors, but only continuous ranges [1]. This enables the clustering of rules for all
selectors.

Algorithm 1. Initialization.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Func initialization(in Rule: root, List of Rule: children)
Alg
 if root.DstPort().isRangeOrWildcard() AND
 children.size()>1 {
 sortAscendingByDestinationPort(children)
 if root.Priority()>children.last().Priority() OR
 root.Priority()<children.first().Priority() {
 clusterize(root, children)
 }
 else {
 List before = Rules with priority > root
 List after = Rules with priority < root
 clusterize(root, before)
 clusterize(root, after)
 }
 else {
 doPairwiseCharacterization(root, children)
 }
End Alg

Func doPairwiseCharacterization(in Rule: root, List of
Rule: children)
Alg
 for each i=1..children.size()
 doClassification(root, children.get(i))
End Alg

141

Algorithm 2. Cluster construction.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Func clusterize(in Rule: root, List of Rule: children)
Var
 Rule cluster
Alg
 cluster = children.first()
 for each i=2..children.size() {
 if isClusterizable(union, children.get(i) AND
 i<children.size()) {
 cluster.joinWith(children.get(i))
 }
 else if isClusterizable(union, children.get(i) AND
 i==children.size()) {
 cluster.joinWith(children.get(i))
 doClassification(root, cluster)
 }
 else { // Not clusterizable
 doClassification(root, cluster)
 // re-initializes for a new cluster
 cluster=children.get(i)
 }
 }
End Alg

Since ICIRs represent independent clusters of inconsistencies, they can also be
characterized independently, effectively reducing the problem complexity: the
combinatorial problem have been reduced from the entire rule set to several smaller
ICIRs. However, there is still a trade off between optimally solving the problem in
exponential time, or using an approximation to the optimum. In this paper we propose
a worst case polynomial heuristic. The heuristic is used when clustering ICIR
children. It only takes into account one selector for rule clustering, and does not try to
check all possible unions between all selectors. For each ICIR, their children are
clusterized in several groups by destination port forming a continuous range. This
task can be done in linear time if children are ordered by destination port. The first
cluster is formed with the first children. Then the next children should be added only
if its destination port selector can form a continuous range with the cluster, and if the
rest of selectors are equal, subset, superset or wildcard. If it cannot be joined, then the
cluster is closed and a new one is formed with that child, and the process begins again
until there are no more children.

The first part of the process checks ICIR root structure and prepare children for
clustering (Algorithm 1). Then, it identifies the rules that can be joined with others in
each ICIR (Algorithm 2). Algorithm 1 takes as input the ICIR root and children, and

142

first checks if the ICIR has a valid structure for clustering. That is, (1) the considered
ICIR must have at least two children; (2) at least one selector of ICIR root must be a
range of values or a wildcard. The joined rules in a cluster must form a continuous
range (with or without overlapping) and must be subset, superset or equal the
corresponding root selector; and (3) for root selectors that do not have multiple
values, rules in the cluster must have the same value as root, or at least one of them
must be a wildcard. Then it sorts children by destination port in ascending order.

Algorithm 3. Inconsistency Characterization.
1 Func doClassification(in Rule: root, Rule: cluster; out 1 else { // Root is first rule
2 String: conflictType) 2 if (superset(cluster, root)
3 Alg 3 conflictType = “Cluster is generalization of root”
4 // Root is last rule 4 else if (subset(cluster, root)
5 if (root.getPriority()>cluster.getLastRulePriority()) { 5 conflictType = “Cluster is shadowed by root”
6 if (cluster == root) 6 else
7 conflictType = “Root is exact shadowed by union” 7 conflictType = “Root and cluster are correlated”
8 else if (superset(cluster, root)) 8 }
9 conflictType = “Root is shadowed by cluster” 9 return conflictType
10 else if (subset(cluster, root)) 10 End Alg
11 conflictType = “Root is generalization of cluster” 11
12 else 12
13 conflictType = “Root and cluster are correlated” 13
14 } 14

Next, the algorithm checks if root is the last or first rule or is in between. If root is in
between it divides children in two lists: rules that come before and rules that go after
root, as also was explained before. Finally, if clustering is possible, it calls Algorithm
2, and if not, it calls directly the inconsistency characterization (Algorithm 3). Algo-
rithm 2 also takes as input ICIR root and children. This algorithm implement the
heuristic as it has been described in the previous section. Characterization algorithm
(Algorithm 3) follows directly the extended definitions proposed in an earlier section.
Algorithm 3 takes as input ICIR root and the clusters of that ICIR. Then, it checks
each type of inconsistency using the equality, subset and superset operations. Note
that characterization is different depending on the relative priority of the ICIR root (if
it is the first or last rule). Algorithm 3 is in O(c). Result is returned as a text string.
The combined worst case complexity of the three algorithms is in O(clogc). As these
algorithms must be run for each ICIR, the final time complexity is in O(h*clogc),
where h is the cardinality of the diagnosis set (or the number of ICIRs) and c is the
number of children of each ICIR. Note that the combinatorial part of the inconsis-
tency characterization problem is only the clusterization (where the heuristic has been
used), and not the characterization itself.

5 Conclusions and Future Works

In this paper, we have analyzed the inconsistency characterization problem in firewall
rule sets. We have proposed a complete and formal inconsistency characterization for
clusters of rules in order to obtain a one-to-many characterization. The analysis of the
characterization problem enabled us to identify and isolate the combinatorial part of

143

it. We showed that the combinatorial problems to be solved are very small due to the
decomposition made in the diagnosis process, which has effectively reduced a worst
case O(2n) problem in several O(2c) ones, with n>>c. As a proof of concept we have
proposed a heuristic and algorithms that solve the characterization problem in worst
case polynomial time. Algorithms are capable of handling full ranges in rule selectors
without doing rule decorrelation. Results are given over the original ACL. In the
future, we are going to design optimal algorithms, and compare its performance with
other proposals.

References

1. S. Pozo, R. Ceballos, R. M. Gasca. “Model Based Development of Firewall Rule Sets:
Detecting and Diagnosing Errors.” Information and Software Technology Journal, Elsevier,
Spring 2008. Accepted, to appear.

2. S. Luis, M. Condell. "Security policy protocol." IETF Internet Draft IPSPSPP-01, 2002.
3. H. Hamed, E. Al-Shaer. "Taxonomy of Conflicts in Network Security Policies." IEEE

Communications Magazine Vol.44, No.3, 2006.
4. E. Al-Shaer, Hazem H. Hamed. Modeling and Management of Firewall Policies". IEEE

eTransactions on Network and Service Management (eTNSM) Vol.1, No.1, 2004.
5. J. García-Alfaro, N. Boulahia-Cuppens, F. Cuppens, Complete Analysis of Configuration

Rules to Guarantee Reliable Network Security Policies, Springer-Verlag International
Journal of Information Security (Online) (2007) 1615-5262.

6. S. Pozo, R. Ceballos, R. M. Gasca, “Fast Algorithms for Consistency-Based Diagnosis of
Firewalls Rule Sets.” International Conference on Availability, Reliability and Security
(ARES), Barcelona, Spain. IEEE Computer Society Press, March 2008.

7. L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, P. Mohapatra. FIREMAN: A Toolkit for
FIREwall Modelling and ANalysis. IEEE Symposium on Security and Privacy (S&P’06).
Oakland, CA, USA. May 2006.

144

