
A REASONED APPROACH TO ERROR HANDLING
Position Paper on Work-in-Progress

Tamara Babaian and Wendy Lucas
Bentley College, Computer Information Systems Department, Waltham, MA, 02452, USA

Keywords: Planning, reasoning, error handling, collaboration, ERP systems.

Abstract: It is widely acknowledged that Enterprise Resource Planning (ERP) systems are difficult to use. Our own
studies have revealed that one of the largest sources of frustration for ERP users is the inadequate support in
error situations afforded by these systems. We propose an approach to error handling in which reasoning on
the part of the system enables it to behave as a collaborative partner in helping its users understand the
causes of errors and, whenever possible, make the necessary corrections. While our focus here is on ERP
systems, this approach could be applied to any system for improving its error handling capabilities.

1 INTRODUCTION

Enterprise Resource Planning (ERP) systems present
many challenges to their users. Not least among
these is the typically inadequate support provided in
error situations. Even trained users can be stymied
by the lack of information conveyed in error
messages concerning the source of an error and
possible alternative actions for how it can be
handled. Information on system-provided data that
was entered by another user is virtually impossible
to track down without the specialized knowledge
possessed by highly trained power users. System
resources that could help users avoid some types of
errors, such as the calendar function for entering
correctly formatted dates, are available if one knows
where to find them but are not offered up by the
system in times of need.

We propose an innovative approach to error
handling that is inspired by the collabororative view
of system-user interaction (Terveen, 1995; Grosz,
1996; Shieber, 1996). This view specifies that the
system must act as a partner to its users by
supporting them in the increasingly complex
environments of modern applications (Grosz, 2005).
Note that this stream of research is different from
Computer-Supported Cooperative Work (CSCW),
which is concerned with computing technology that
supports human collaboration.

The novelty of our approach to error handling
comes from the application of reasoning capability
for enabling the system to act as a collaborative

partner in times of need. To that end, the system
must be knowledgeable about the resources it has at
its disposable and must reason about which ones to
offer and when to offer them to its users. The system
must, therefore, be able to plan a course of action in
response to error conditions and then carry out that
plan. We have chosen to focus on ERP systems
because of the known paucity of their error handling
capabilities, but this approach can be applied to any
system for helping users in error situations.

This work is part of a larger project focusing on
achieving significant improvements in ERP
usability, where usability is defined as “the extent to
which a product can be used by specified users to
achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of
use” (ISO 9241-11, 1998). As part of this project,
we conducted a field study of ERP system users in a
Fortune 500 company and categorized and described
the usability issues they encountered (Topi et al.,
2005). Our field study revealed that error handling
was the most painful and time-consuming aspect of
daily operations, resulting in users creating hundreds
of pages of informal documentation to support them
in their system usage (Topi et al., 2006). The special
role of a power user was also created as an
additional support mechanism. The majority of the
“power” users’ efforts were directed at diagnosing
and resolving the most difficult and obscure errors
faced by other users who sought their help.

One of the major frustrations facing users comes
from the lack of transparency inherent to ERP

420
Babaian T. and Lucas W. (2008).
A REASONED APPROACH TO ERROR HANDLING - Position Paper on Work-in-Progress.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - HCI, pages 420-423
DOI: 10.5220/0001727304200423
Copyright c© SciTePress

systems. Data-to-process and process-to-process
relationships play a critical role in defining system
functions, but they are too complex and too
numerous to be known in their entirety by an
individual user or user group. The support an ERP
system affords its users can be significantly
strengthened by improving error diagnosis and
recovery techniques based on its knowledge of such
processes and relationships. From the collaborative
standpoint, the system can provide better support to
its users by sharing that knowledge effectively.

The next section of this paper discusses related
work. We then describe our proposed approach for
improving support to users in error situations. This is
followed by our conclusions and directions for
future work.

2 RELATED WORK

Several streams of research have examined the
mechanisms for supporting a user’s operations based
on the explicit knowledge embedded within the
system itself. Most notably, examples of these
mechanisms have come from research on
collaborative interfaces and tutoring systems. The
fact that these two streams have similarities in their
methodologies is not surprising, since the interaction
between a tutor and her student is a type of
collaborative activity (Davies et al., 2001).

Collaborative interfaces view the process of
humans using a software system as a collaborative
effort in which the human user and the software
system are partners working towards achieving
shared goals. These partners have different natural
strengths and, therefore, the effectiveness of their
collaboration depends to a large extent on the
allocation of the subtasks that builds on the
respective strengths of the system and the human
user (Shieber, 1996).

To achieve successful collaboration, the partners
must also maintain awareness of the overall strategy
for achieving the goal and understand how the steps
taken by each partner contribute to that strategy. To
enable this kind of awareness on the part of the
system requires equipping it with the knowledge of
the structure of the tasks for which it was designed.
This structure is commonly referred to as a task
model. Such a model can be specified using various
means: it can be either implicitely built into the
system’s processes or explicitly specified in a
declarative fashion and made available to the system
as a component. Many intelligent systems (e.g.,

Johnson et al. 2003, Eisenstein and Rich, 2002,
Traum et al., 2003) use explicit representation of
task models as plans (Russell and Norvig, 2002).
Generally speaking, a plan is a structure that
combines action descriptions, specified via
preconditions and effects, in a way that guarantees
achievement of a specified goal or a set of goals as a
result of executing that plan.

Being able to reason about the structure of the
tasks and monitor the progress made as a result of
system-user interaction significantly enhances the
collaborative strengths of a system, as demonstrated
by the intelligent systems cited above. Rich et. al.
(2001) describe several systems that provide
assistance to the user via a dialog-based interface to
applications. Examples include a VCR-configuration
assistant and a tutoring system for teaching a user to
operate a gas turbine engine. The task models,
represented as hierarchical “recipes” for the actions
that can be taken, enable these systems to monitor
and recognize the steps taken by the user, interpret
user actions within the task context of the
interaction, reason about the next steps in the
process, and suggest alternatives.

Eisenstein and Rich (2002) present a middleware
package that uses natural language to provide
automated help generation for simple input-form
GUIs. The help messages are generated based on the
explicit representation of the tasks that are tied to the
related graphical components of the interface.

The Writer’s Aid system (Babaian et. al., 2002)
demonstrates how reasoning about actions and
planning can be used to provide capabilities for the
robust and flexible autonomous operation of a
system in support of a user’s goals. Writer’s Aid
responds to the user’s requests for bibliographic
information by autonomously creating and executing
a plan for searching and delivering bibliographic
items such as papers, citation records, and reference
keys. What distinguishes Writer’s Aid from the
above examples is its ability to dynamically
construct and execute a plan from any situation,
given only partial information about the world and a
model of individual actions.

While automated planning has been used to
support human-computer collaboration, what
distinguishes the proposed approach is the use of
automated planning for creating an error-recovery
plan. The approach described below will enable not
only monitoring of the progress of the task based on
a fixed set of task models, but also creating plans
dynamically in support of error recovery. These
plans will use a combination of system actions and

A REASONED APPROACH TO ERROR HANDLING - Position Paper on Work-in-Progress

421

Action: DisplayCalendar() Action: EnterTextIntoField (newtext, field)
Precondition: none Precondition: Displayed(field)
Effect: if UserMadeSelection(d) then DateFormat(d) Effect:If In(text, field) then ¬In(text, field)

In(newtext, field)

Figure 1: Schematic action descriptions to be used by a planner.

user actions. Thus, they will rely significantly on the
model of such actions available to the system. The
next section presents an example of how this will be
accomplished.

3 REASONING IN SUPPORT OF
ERROR HANDLING

We propose a novel method based on automated
planning for overcoming difficulties in error
reporting and recovery. Automated planning is a
framework for reasoning about goal achievement via
actions (Russell and Norvig, 2002). Our approach
will use a planning framework and algorithms to
enable error handling that goes beyond the reporting
of errors: it will help the user resolve an error by
suggesting a dynamically constructed course of
corrective action.

As an example of a simple error, consider the
following situation: a novice user is entering a
delivery date in the date field and gets an error
message stating that the date value “12/3/2008”
cannot be accepted because it is in an incorrect
format. Having no familiarity with the particular
ERP system’s date specification format, she reads
the system help on the topic and, after a couple of
attempts, manages to correct the error. Upon hearing
about her troubles, her colleague points out a
calendar feature in the interface that allows selection
and input of the date simply by clicking on it in the
system-supplied calendar.

Let us consider how a planning framework can
be applied for supporting the user in such error
situations. This framework specifies actions as
having preconditions and effects using a formal
logic-based language. The initial conditions and the
goal are also specified using the same language. A
plan is a sequence of actions that are executable, i.e.,
that have their preconditions satisfied at the time
they are executed, and achieve the specified goal. To
apply the planning framework, each error situation
will be identified with a condition that, if not
satisfied by the user’s actions, will trigger an error.

For instance, to have a date entered correctly in
an input field requires satisfying the goal G: In (text,
field) & DateFormat(text) is true, i.e., the text
entered in the field is in the correct date format. To
enable the system to develop a course of action for
correcting the error, we will also embed the action
descriptions corresponding to a selected set of
system functions. For example, the function for
displaying a calendar and enabling a selection from
it could have the specification depicted in Figure 1.

The DisplayCalendar action has no preconditions
because it can be executed at any time when the
system is running. The conditional effect states that
if the user makes a selection, denoted here by d, the
action will produce d in the appropriate date format.
The second action description in the same figure
defines the system’s action of automatically placing
some new text into a given field. The precondition
of this action is that the field must be displayed in a
visible location. There are two effects: first,
whatever text was occupying the designated field
before the action will not be there after the action is
completed, and second, the field will contain the
new text.

Returning to our example, the system will
establish that In(“12/3/2008”, field) is true, but the
text “12/3/2008” is not formatted correctly, i.e., the
negation ¬DateFormat(“12/3/2008”) is true and
therefore goal G is not achieved. The system will
detect an error and the planner will then create a
plan that will establish goal G given the action
specifications embedded in the system and the
description of the initial state I: In(“12/3/2008”,
field),¬DateFormat(“12/3/2008”), Displayed(field).

A plan that could achieve the goal involves two
system actions:
1. DisplayCalendar – produce a date d such that

DateFormat(d) if the user makes a selection
2. EnterTextIntoField (d, field) – enter d into the

designated field.
The effect of executing a plan consisting of these

two actions and the user entering a valid date would
be the satisfaction of goal G. If the date is invalid, in
addition to displaying an error message, the system
would display a calendar to enable the user to make

ICEIS 2008 - International Conference on Enterprise Information Systems

422

a selection, thus completing the process of
specifying the date correctly.

The above example was deliberately kept simple
for the sake of brevity, but it demonstrates the same
reasoning mechanism we will use to support errors
caused by mismatches between data within different
process interfaces. Because the system has
knowledge about the context for and linkages
between each data element, it will do more than just
display an error message; it will identify the task
interface that will offer the user a choice of only
appropriate values or present choices for possible
courses of action to address the error. Even if the
user does not have the authority to perform a
particular corrective action, she will at least learn
about the necessary steps and could ask the
appropriate person to perform them.

The benefits of using the planning framework in
error recovery are the flexibility and extensibility it
affords. Once the planner is embedded within the
system, additional functions and/or error diagnostics
can be specified in a declarative fashion through
textual descriptions such as those presented here.
The planning engine will be able to recognize new
error conditions and create new solution methods
that utilize the newly added functions as appropriate.
No modifications to the application code will be
needed, as opposed to approaches based on
“hardcoding” all responses to error situations, which
require modifying significant parts of the error-
handling code throughout the application.

4 CONCLUSIONS

We have described a novel approach for error
handling based on the application of reasoning
capability within a planning framework. This
approach enables the system to act as a collaborative
partner to its users in helping them navigate their
way through error situations. In response to an error,
the system will diagnose the cause and dynamically
construct and execute a plan for informing the user
about the underlying causes of an error and,
whenever possible, for guiding her through
corrective actions.

 The next stage in this research is to implement
this approach in an ERP prototype interface for
handling a range of realistic error situations. This
prototype will then be used for evaluating the
effectiveness of our design interventions.

REFERENCES

Babaian, T., Grosz, B. J., & Shieber, S. M., 2002. A
writer’s collaborative assistant. In Proceedings of
IUI’2002, 7-14. ACM Press.

Davies, J. R., Gertner, A. S., Lesh, N., Rich, C., Sidner, C.
L., & Rickel, J., 2001. Incorporating tutorial strategies
into an intelligent assistant. In Proceedings of
IUI’’2001, 53-56, ACM Press.

Eisenstein, J. & Rich, C. 2002. Agents and GUIs from task
models. In Proceedings of IUI’2002, 47--54, ACM
Press.

Grosz, B. J., 1996. AAAI-94 presidential address:
Collaborative systems. AI Magazine, 17(2), 67-85.

Grosz, B. J., 2005. Beyond Mice and Menus. In
Proceedings of the American Philosophical Society,
149(4), 529-523.

ISO 9241-11, 1998. Ergonomics requirements for office
work with visual display terminals, part 11 - guidance
on usability. International Standards Organization.

Johnson, W. L., Shaw, E., Marshall, A., & LaBore, C.,
2003. Evolution of user interaction: the case of agent
Adele. In Proceedings of the 8th international
Conference on intelligent User interfaces, 93-100.
ACM Press.

Rich, C., Sidner, C. L., & Lesh, N., 2001. Collagen:
applying collaborative discourse theory to human-
computer interaction. AI Magazine. 22, 4 (Oct. 2001),
15-25.

Russell, S. & Norvig, P., 2002. Artificial Intelligence: a
Modern Approach. Prentice Hall.

Shieber, S. M., 1996. A call for collaborative interfaces.
ACM Computing Surveys, 28A(electronic), 143.

Terveen, L.G., 1995. An overview of human-computer
collaboration. Knowledge-Based Systems Journal,
Special Issue on Human-Computer Collaboration,
8(2-3), 67-81.

Topi, H., Babaian, T., & Lucas, W., 2005. Identifying
usability issues with an ERP implementation. In
Proceedings of ICEIS’2005, pages 128–133.

Topi, H.; Lucas, W.; and Babaian, T., 2006. Using
informal notes for sharing corporate technology know-
how. European Journal of Information Systems,
15(5):486–499.

Traum, D., Rickel, J., Gratch, J., & Marsella, S., 2003.
Negotiation over tasks in hybrid human-agent teams
for simulation-based training. In Proceedings of the
Second international Joint Conference on Autonomous
Agents and Multiagent Systems, 441-448, ACM, New
York.

A REASONED APPROACH TO ERROR HANDLING - Position Paper on Work-in-Progress

423

