
IMPLEMENTING THE DATA ACCESS OBJECT PATTERN
USING ASPECTJ

André Luiz de Oliveira, André Luis Andrade Menolli and Ricardo Gonçalves Coelho
Informatics Department, State University of the North of Paraná, Br 369 highway Km 54, Bandeirantes, Brazil

Keywords: Data Access Object pattern, aspect oriented implementation, metrics.

Abstract: Due to the constant need of access and information storage, there is a constant concern for implementing
those functionalities in large part of the currently developed applications. The most of those applications use
the Data Access Object pattern to implement those functionalities, once that this pattern makes possible the
separation of the data access code of the application code. However your implementation exposes the data
access object to others application objects, causing situations in that a business object access the data access
object. With the objective of solving this problem, this paper proposes an aspect oriented implementation of
this pattern, followed by a quantitative evaluation of both, object oriented (OO) and aspect oriented (AO),
implementations of this pattern. This study used strong software engineering attributes such as, separation
of interests, coupling and cohesion, as evaluation criteria.

1 INTRODUCTION

A lot of applications frequently need implementing
some access mechanism and data persistence, once
that the organizations often need access and storage
its information in some kind of database. To access
this information surely and efficiently some patterns
were introduced by several authors, not only in the
object-oriented software development (OOSD) but
also in the aspect-oriented software development
(AOSD).

In literature we can find several patterns that
implement the data persistence, such as Persistence
Data Collections (Massoni et. al. 2001), that
provides a set of class and interfaces to separate data
access code and business rules from user interface,
promoting the modularity. Among others patterns
with the same purpose is the Decoupling Patterns,
that is a set of data access patterns proposed by
Nock (2003), that describes strategies to uncouple
data access components from others parts of the
application, and the Data Access Object (Sun
Microsystems 2002), that is one of the data access
patterns more often used, due to fact of this pattern
isolates the whole data access code of the
application code facilitating migration processes for
other storage systems.

There are several forms of implementing the data
access functionalities of the application. As seen in
Sun Microsystems (2002), it can be adopted a data

access objects factory strategy, in situations in which
the applications access more than one storage
mechanism, or create a generic data access object, in
order to determine a common access point to the
data access functions of the application.

Both implementations previously mentioned are
good solutions that isolate the data access code from
others application functions, optimizing the
legibility and the modularity of the developed
application, facilitating future maintenance and
extension processes of the application, providing the
reuse of several components of the system.

It was verified in Sun Microsystems (2002), that
Data Access Object pattern allows the business
object to using the data source without having the
knowledge of the specific details of its
implementation, providing a transparent access to its
functionalities, once that those details of the data
source implementation are encapsulated within the
data access object. That whole transparency causes
the exposition of the data access object to others
application objects, causing situations in which a
business object access the data access object,
harming the modularity, the legibility and the
encapsulation of the application code, besides the
need of adding an extra object layer between the
data client and the data source so that its
implementation benefits this pattern.

With the objective of solving this problem, this
study proposes an alternative implementation of the

523
Luiz de Oliveira A., Luis Andrade Menolli A. and Gonçalves Coelho R. (2008).
IMPLEMENTING THE DATA ACCESS OBJECT PATTERN USING ASPECTJ.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 523-530
DOI: 10.5220/0001714805230530
Copyright c© SciTePress

Data Access Object pattern using the aspect oriented
programming with AspectJ language. This solution
provides the encapsulation of the data access
functions of the application developed, once that the
business object and others application components
not more need access the data access functions of the
application, all the control of the calls to the data
access and persistence operations is made by
aspects. This way, the others application objects do
not need anymore know the implementation details
of the classes and methods responsible by the data
access functions of the application, optimizing the
application modularity and legibility.

In this study, we identified some situations where
it is profitable to change the Data Access Object
pattern implementation to an aspect oriented
implementation of this pattern. Those situations
occur when there is a constant need of isolating all
the data access functions implementation of the
application, in order to avoid the exposition of the
data access object to others application objects. Your
application provides a better separation of concerns
of data access which is verified by the outcomes
presented in the section 4.

The results of this study were obtained through a
comparative study between object oriented (OO) and
aspect oriented (AO) implementations of the Data
Access Object pattern. The comparison between OO
and AO implementations of traditional patterns is
not so new. Some papers have already made this
kind of comparison, like Hannamann and Kiczales
(2002) and Garcia et. al. (2005). This paper presents
an alternative implementation of the Data Access
Object pattern, followed by a quantitative evaluation
of both OO and AO implementations of this pattern.
It is important to point out that this work does not
propose an approach that substitutes the Data Access
Object pattern, but certainly is an alternative
approach for the implementation of this pattern,
which can be applied to the applications
environment previously mentioned, providing a
better separation of concerns of this pattern.

In order to explicit the foundation of the
proposed solution, the present work is organized in
eight sections. The section 2 presents the
organization of the developed study that includes the
illustration of the OO and AO implementations of
the Data Access Object pattern, the metrics used in
the validation of this study and the evaluation
procedures adopted. The section 3 exposes the
outcomes obtained in the comparison of the OO and
AO implementations of the Data Access Object
pattern. The section 4 illustrates the constraints of
this study. The section 5 approaches some related

works to this study. And finally, the section 6
exposes the conclusions and the future research
proposes.

2 ORGANIZATION OF THE
STUDY

This section describes the configuration of that
empirical study. This study approaches an
alternative implementation of the Data Access
Object pattern, using the aspect oriented
programming, with the AspectJ language. In order to
explicit the foundations of proposed solution, the
section 2.1 presents the object oriented
implementation of the Data Access Object pattern
and later the aspect oriented implementation of this
pattern. Already the section 2.2 introduces the
metrics used in the evaluation process of the
proposed solution. And finally, the section 2.3
describes the evaluation procedures applied in this
study.

2.1 Data Access Object Pattern
Implementation

As seen previously, the Data Access Object aims at
avoiding direct dependence situations between the
application code and the data access code (Sun
Microsystems 2002). When analyzing this pattern, it
was verified that it defines two roles for its
participant classes that corresponds to the Business
Logic and the Data Access. The Business Logic role
is responsible by the whole control of the business
logic of the application, that means, it treats the
input data before of those data have been passed into
the call of one data access function, besides
manipulating the obtained data of a data access
function, to summarize that role is a data client (Sun
Microsystems 2002). The Data Access role
represents the object that abstracted the underlying
data access implementation (Sun Microsystems
2002) to the Business Logic role, enabling
transparent access to the data source, which means,
it provides all the access and storage data
functionalities to the Business Logic role. The
Figure 1 illustrates the oriented object
implementation of this pattern applied in the present
work. When analyzing this figure it is assumed that
the Data Access role implementation is dispersed by
all classes of the pattern. Since the Business Logic
role is implemented by the BusinessObject and
TransferObject classes.

ICEIS 2008 - International Conference on Enterprise Information Systems

524

Figure 1: Object oriented model of the Data Access Object
pattern.

The Figure 2 presents the source code of the
BusinessObject class. The code spaces that do not
implement the Business Logic role are shaded. This
class possesses a reference to DataAccessObject and
TransferObject classes (line 09-10), that are
instantiated in the constructor method of the class
(line 14- 15). This class contains the insert method
(line 17-26), that modifies the attribute values of the
LaboratoryReservation object (line 19-23), and
passes this object as argument to the insert method,
which is present in the LabReservationDAO (line
24) class, to register a new reservation.

Figure 2: Business Object class in the OO implementation.

As it is observed in Figure 2, the shadowed code
implements the Data Access role within the Business
Logic role implementation. Those shadowed points
are places where there is a concern switch in the
pattern implementation, once that the data access
concern is interlaced with the business logic
manipulation concern.

In order to solve this problem, the aspect
oriented implementation of this pattern avoids that
the business components, in this case the
BusinessObject class, have the knowledge of the
data access objects of the application, totally
isolating those objects of the application code,
providing a better separation of the Business Logic
and Data Access roles, as illustrates the Figure 3.

Figure 3: Aspect oriented model of the Data Access
Object pattern.

In the diagram previously shown, the business object
acts as a Facade (Gamma et. al. 1995) object that
works as an access interface to functionalities
present in the subsystem, in your conventional
implementation. But in the AspectJ implementation,
this object acts as one interface that contains only
the method body (assign, parameters list and the
return value) needed for the execution of the data
access functionalities of the application.

The DAOAspect object, showed in the Figure 3,
is the key point of the AO implementation of the
Data Access Object pattern proposed in this work,
due to fact this object makes the whole control of the
data access logic of the application, through the
pointcuts definition, that contains the join points that
will be captured her for the execution of the data
access functions of the application, implemented in
the advices, as displayed in full detail the class
diagram of Figure 4. This diagram is based on an
aspect oriented modelling notation proposed by
Jacobson and Ng (2003).

Figure 4: Class diagram of the aspect oriented
implementation of the Data Access Object pattern.

Due to that solution, it can be observed that the
aspect makes the whole control of the data access
logic of the application, capturing a join point,
executing a data access operation and returning the
operation value to this join point.

The AO implementation of the Data Access
Object pattern approached in this work avoids that
the business object instantiating a data access object,
in order to have access to its functionalities, once
that the aspect captures the join points present in the
business object, executes the required operation and
returns the resultant value of its execution to this
join point.

IMPLEMENTING THE DATA ACCESS OBJECT PATTERN USING ASPECTJ

525

The presented solution provides the
encapsulation of all data access functionality of the
application, contributing to the modularity and
legibility of the development application, once that
in this solution the business object does not need to
interact with the data access object that is
implemented as one aspect that controls all the data
access functions defined in the business object. The
optimization of those software engineering attributes
was verified through the application of a
measurement process of this solution which is
described in the next sections of this work.

In the AO solution of the Data Access Object
pattern, the code that implement the Data Access
role is textually localized in the aspect DAOAspect,
that encapsulates all the data access functions of the
application, isolating I from the remaining the
application code, as illustrates Figure 5.

Figure 5: DaoAspect implementation.

The related code to the Data Access role
implementation is shaded and contains a reference to
the GenericDAO object (lines 12 and 16), that
corresponds to the data source implementation and a
reference to the LaboratoryReservation object (line
13), which is the object that implements part of the
business rules of the application.

The whole implementation process of the data
access concern ponders in the insert pointcut (line
19-23), that captures the insert join point, defined in
the BusinessObject class, and in the around advice
(line 25-40), that executes a database manipulation
operation around the call of a join point, returning
the resultant value of that operation to the same joint
point. That implementation removes the whole data
access concern from the class that implements the
business rules of the application due to the fact those
classes do not depend on the data access classes of
the application anymore. This independence can be
better visualized in Figure 6 that illustrates the
BusinessObject class implementation after the
insertion of the data access aspect DAOAspect.

Figure 6: BusinessObject class after of the DaoAspect
implementation.

As displays Figure 6, in the AO implementation of
the Data Access Object pattern, the whole data
access concern code was removed from the classes
that carry out the Business Logic role, making them
more modulated and maintained, once that in those
classes it is pondered only the Business Logic
concern, that corresponds to shaded code of the
Figure 6 and there is not dependence on calls in
relation to the data access functions of the
application, as illustrated in the conventional object
oriented implementation in the Figure 2. This is
possible due to the whole call control and execution
of the data access functions of the application is
pondered in a data access aspect.

2.2 Metrics Used

This study selected a group of metrics of separation
concerns, coupling, cohesion and size (Sant’Anna et.
al. 2003) to evaluate the foundations of the aspect
oriented implementation of the Data Access Object
pattern approached in this work. Those metrics have
already been used in four different studies (Garcia
2004; Garcia et al. 2005; Garcia et. al. 2004; Soares
2004). Some of them have been automated in the
context of a query based tool for the measurement
and analysis of aspect oriented programs (Alencar
et. al. 2004). Those metrics were defined based on
the reuse and refinement of some classical and
object oriented metrics (Chidamber and Kemerer
1994). The original definitions of object oriented
metrics (Chidamber and Kemerer 1994) were
extended to be applied in a paradigm independent
way, supporting the generation of comparable
results.

The separation of concern metrics measures the
degree to which a single concern in the system is
mapped for the design components (classes and
aspects), operations (methods and advices), and lines
of code (Sant’Anna et. al. 2003). The Table 1
presents a brief definition of each metric applied in
this study, and associates them with the attributes
measured by each one. More detailed information
about those metrics can be found in Garcia (2004)
and Sant’Anna et. (2003).

ICEIS 2008 - International Conference on Enterprise Information Systems

526

Table 1: Metrics.

2.3 Assessment Procedures

With the purpose of comparing the OO and AO
implementations of the Data Access Object pattern,
both versions of the pattern implement the same
functionalities, with the same style of codification.
This pattern has several implementation forms, in
which this study chose the one that seemed to be the
most suitable. A few modifications happened in the
aspect oriented solution in relation to the object
oriented solution, in which some methods were
modified or excluded, some attributes and a class
were excluded and an aspect was added. Likewise to
the HK study, this work treats each role as a
crosscutting concern, because the roles are primary
sources of crosscutting structures (Garcia et. al.
2005).

In this measurement process, the data were
gathered with base on the code analysis, using the
Eclipse 3.3 tool (Eclipse Project). The measures of
separation of concerns (CDC, CDO and CDLOC)
were preceded by the shade of all classes and aspects
in both pattern implementations. This shade was
accomplished with the roles found in the Data
Access Object pattern implementation. Likewise to
the Hannemann and Kiczales (2002) study, in this
study each pattern role was treated as a concern,
once roles are primary source of crosscutting
structures [8]. The Figures 2, 5 and 6 exemplify the
shade of some classes and aspects in both the Java
and AspectJ implementations of this pattern,
considering the Business Logic and Data Access
roles. After the shade, the separation of concerns
data metrics was manually collected.

3 RESULTS

This section presents the measurement process
results. The data have been collected with base on
the metrics defined in section 2.3. The objective of
that measurement process is to describe the results
of the metrics application in the OO and AO
implementations of the Data Access Object pattern,
in order to compare and prove the foundations of the
aspect oriented implantation of this pattern,
proposed in this work. This analysis is divided in
two parts. The section 3.1 focus on the analysis of
what extent aspect oriented and object oriented
solutions provide support to the separation of the
pattern-related concerns. The section 3.2 presents
the results toward the coupling, cohesion and size
metrics.

In the exhibition of the results of this study
graphics are used to represent the data gathered in
the measurement process. The results of the graphs
present the data obtained from the OO and AO
implementations of the Data Access Object pattern.
The Y-axis of the graphic presents the absolute
values gathered by the metrics. Each bar pair, that
corresponds to the metric values gathered from the
OO and AO implementations of the pattern, is
attached to a percentage value, which represents the
difference between the OO and AO results. A
positive percentage means that the AO
implementation was superior, while the negative
percentage means that the AO implementation was
inferior. Th0se graphics support the analysis toward
how the introduction of new classes and aspects
affect both solutions in relation to the selected
metrics. The results presented in the graphics were

IMPLEMENTING THE DATA ACCESS OBJECT PATTERN USING ASPECTJ

527

gathered based on the pattern point view that means
that they represent the metric values associated with
all classes and aspects for each pattern
implementation.
In order to obtain the separation concerns metric
values of both OO and AO implementations of the
Data Access Object pattern, firstly it was verified the
presence of two roles in this pattern implementation.
This was made because the roles are primary sources
of crosscutting structures (Garcia et. al, 2005).

3.1 Separation of Concerns

The Figure 7 presents the separation of concerns
metrics results for the OO and AO implementations
of the Data Access Object pattern. As it is observed
in Figure 8, most of the measurements favoured
significantly the AO implementation of this pattern.
This solution reduced the coupling between the
classes that play the Business Logic role, and
consequently the number of operations for
implementing this role, besides demanding few
concerns switches between the components that play
the Business Logic and Data Access roles.

Figure 7: Results of separation of concerns metrics.

An analysis of the Figure 7 shows that those
improvements were reached through separating the
pattern roles in aspects. The definition of the
Business Logic role demanded 3 classes in the OO
solution, while the aspects application reduced that
number to 2, providing a better separation of that
role in relation to the OO solution. That
improvement is equal to the 33% of AO solution
superiority with relation to the OO implementation.
The results were even better for the concern
diffusion over components (CDC) and diffusion of
concerns over lines of code (CDLOC) metrics in the
implementation of the Business Logic role, which
reached optimizations of 87,5% in relation to OO
implementation.

In addition, it can be observed that good results
were reached in the modularization of the defining

role, which is the case of the Business Logic. After
this analysis, is ended that the AO implementation of
the Data Access Object pattern optimized about 69%
the isolation of the implemented concerns by the
Business Logic role in comparison with the OO
solution.
One of the reasons for the superiority of the AO
implementation over the OO implementation is that
in the OO solutions there are several operations
implementations mixed with the specific code of the
role.

3.2 Coupling, Cohesion and Size

In this section are presented the results of coupling,
cohesion and size metrics. It was used graphs for the
representation of the gathered results, which
represents the metric values associates with all
classes and aspects for each pattern implementation,
with the exception of the DIT metric. The results of
DIT represent the maximum value of this metric for
all the implementation.

In the OO implementation of the Data Access
Object pattern the improvements were reached only
in the NOA metric, as illustrates the Figure 8. The
use of aspects led the reduction of only 0,5% of the
LOC metric in relation to the object oriented project,
therefore is assumed that this difference is
insignificant. In spite of the data access code retreat
of the classes that carry out the Business Logic role,
the aspect that carry out the Data Access role has
more code lines than the OO implementation of that
role.

Figure 8: Coupling, cohesion and size metrics results.

In relation to the NOA metric results, the AO
implementation obtained 7,1% of superiority in
relation to the OO solution. This occurs in virtue of
in the OO solution, the classes that carry out the
Business Logic role possesses a reference to the data
access object that in the AO project was retired.

In relation to the CBC and LCOO metrics, the
results were same to both OO and AO
implementations. This similarity happens due to the

ICEIS 2008 - International Conference on Enterprise Information Systems

528

occurrence of just one a coupling inversion between
the business object and data access object
components in both implementations of the pattern.
In the OO implementation, the business object
component has a dependence relationship with the
data access object. On the other hand in the AO
implementation, the data access object component
possesses a dependence relationship with the
business object component, as shown in the Figure
3. In relation to the cohesion metrics, its values
continued constant in both solutions, once that they
use the same operations and references to the
attributes.

The value of the WOC metric was the only in
which the AO implementation obtained result
inferior to the solution OO. This inferiority
corresponds to 32,5%. The reason of this is based on
the fact that the AO implementation has declarations
of advices with many parameters, and this does not
happen in the OO solution.

4 STUDY CONSTRAINTS

In relation to the metrics used in this study, it was
verified in Garcia et. al. (2005) that there are some
criticisms about its application. Those critics refer to
the theoretical arguments related to the use of
conventional size metrics that are commonly applied
to the traditional software development. In spite of
the simplicity of those metrics, they have been the
target of several criticisms (Zuze 1995). The reason
of those criticisms is the difficulty of evaluating
software quality attributes, for instance, the LOC
measures are difficult to interpret, since in certain
situations a high value of LOC can mean a better
modularization, or mean code replication by the
project components.

It was verified in Garcia et. al. (2005) that due to
the limitations of those metrics, they not can be
analyzed in an isolated way. However they are
extremely useful when analyzed together with others
metrics. In addition, it was verified in Garcia et. al.
(2005) that some researchers, as Henderson-Sellers
(1997), have criticized the lack of a solid theoretical
base and empirical validation of the cohesion
metrics.

The AO implementation of the Data Access
Object pattern presented in this study can restrict the
extrapolation of the results obtained in this work.
The evaluation process of the presented
implementation is restricted to one specific instance
of the Data Access Object pattern in this case the
most used was selected.

5 RELATED WORKS

There are a few related works focusing on the
quantitative evaluation of aspects oriented solutions
to modularize crosscutting concerns of the classic
design patterns. It was verified in Garcia et al (2005)
that early experiments (Hannamann and Kiczales
2002) were based on qualitative measures. On the
other hand the study undertaken by Garcia et al.
(2005) presented a quantitative evaluation of the OO
and AO implementations of the 23 design patterns of
the GoF (Gamma et. al. 1995).

The section 4 exposed some criticism about the
cohesion metrics. Seeking to optimize those metrics,
the studies of Zao (2002) and Xu (2004) have
proposed new cohesion measures that considerer the
peculiarities of the AO abstractions and
mechanisms. Those metrics are based on a
dependence model for AO software that consists in a
group of dependence graphs. In that study the
authors have show that their measures have satisfied
some properties good measures should have.
However, as seen in Garcia et. al. (2005), those
metrics have not been validated or applied to the
assessment of realistic AO systems yet.

6 CONCLUSIONS

This study presents an alternative aspect oriented
implementation of the Data Access Object pattern,
and makes a comparative evaluation between the
OO and AO of this pattern. The results of this study
have been showing that the AO implementation
improves the separation of concerns, reduces the
amount of the lines of code (LOC) and optimizes the
number of attributes (NOA) of the pattern. In
relation to the coupling and cohesion metrics, there
not was difference between the results in both
implementations, due to the occurrence of
dependence inversion between the BusinessObject
and DAO components and due to the use of the
same attributes and methods in both
implementations. This occurs because the use of
aspects increases the cohesion and reduces the
coupling only in patterns that posses roles that are
highly interactive. Meanwhile the WOC metric was
the only metric that obtained inferior result in
relation to the OO implementation. This result is a
reflex of the advices declarations with many
parameters in the AO solution.

With the obtained results, it can be conclude that
the alternative implementation of the Data Access
Object, approached in this work, provides a larger

IMPLEMENTING THE DATA ACCESS OBJECT PATTERN USING ASPECTJ

529

modularity and legibility in the development
application code, facilitating maintenance and
extension processes of the application, once that this
solution provides the encapsulation of all data access
functionalities of the application, due to fact that the
business objects not more need to interact with the
data access object, that is implemented with an
aspect, which controls all the data access functions
defined in the business object.
The approach presented in this work allows that all
the data access layer of the application be
implemented through aspects, providing a total
isolation of the data access functions of the
application. The positive results obtained by the
application of this solution confirmed the
optimization of legibility and modularity aspects in
the development application, could be implemented
in any application that needs access and persistence
of data functionalities.

As a proposal for future researches it can be set a
quantitative study about the OO and AO
implementations of the Core J2EE patterns, aiming
at verifying in which patterns the aspect oriented
programming provides a better modularization in
relation to the object oriented implementations.

Other proposal for future researches is the
project of one aspect oriented software architecture,
based on the discussed approach in this writing. This
proposal has the purpose of reducing the increase in
the complexity and dimension of the software
systems projects currently caused by the increase in
the complexity of the user’s requirements and by the
constant need of the integration of applications
through several platforms, with the purpose of
making possible the global access to the
information.

REFERENCES

Alencar, P. et al. A Query-Based Approach for Aspect
Measurement and Analysis. TR CS-2004-13, School
of Computer Science, Univ. of Waterloo, Canada, Feb
2004.

Chidamber, S. & Kemerer, C., 1994, ‘A Metrics Suite for
OO Design’. IEEE Trans. on Soft. Eng., 20-6, 476-
493.

Eclipse Project. http://www.eclipse.org.
Gamma, E., Helm, R., Johnson, R. & Vlissides, J., 1995.

Design patterns: elements of reusable object-oriented
software, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA.

Garcia, A., Sant'Anna, C., Figueiredo, E., Kulesza, U.,
2005, ‘Modularizing Design Patterns with Aspects: A
Quantitative Study’, International Conference on

Aspect-Oriented Software Development (AOSD'05),
Chicago, USA. ACM Press. Pages 3-14.

Garcia, A. et al., 2004, ‘Separation of Concerns in Multi-
Agent Systems: An Empirical Study. In Software
Engineering for Multi-Agent Systems’, II, Springer,
LNCS 2940.

Garcia, A., Silva, V., Chavez, and C., Lucena, C., 2002,
’Engineering Multi-Agent Systems with Aspects and
Patterns’, J. of the Brazilian Computer Society, 1, 8
(July), 57-72.

Hannemann, J. & Kiczales, G., 2002, ‘Design Pattern
Implementation in Java and AspectJ’, Proc.
OOPSLA’02, 161-173.

Henderson-Sellers, B., 1996. Object-Oriented Metrics:
Measures of Complexity, Prentice Hall.

Jacabson, Ivar and Ng, Pan-Wei, 2004. Aspect Oriented
Software Development with Use Cases. Addison-
Wesley.

Java Reference Documentation. http://java.sun.com/refer
ence/docs/index.html.
Massoni, T.; Alves, V. and Soares, S., 2001, ‘PDC:

Persistent Data Collections pattern’, First Latin
American Conference on Pattern Languages of
Programming, Rio de Janeiro, Brazil.

Nock, Clifton, 2003, ‘Data Access Patterns: Database
Interactions in Object-Oriented Applications’,
Addison-Wesley.

Sant’Anna, C. et al. On the Reuse and Maintenance of
Aspect-Oriented Software: An Assessment
Framework. Proc. of Brazilian Symposium on
Software Engineering (SBES’03), Manaus, Brazil, 19-
34.

Soares, S., 2004, ‘An Aspect-Oriented Implementation
Method’, Doctoral Thesis, Federal Univ. of
Pernambuco.

Soares, S. et. al., 2002, ’Implementing distribution and
persistence aspects with AspectJ’, ACM. In
Proceedings of the OOPSLA' 2002, pp. 174-190,
Seattle, USA.

Sun Microsystems 2002, ‘Core J2EE Patterns: Data
Access Object’, viewed 01 November 2007,
http://java.sun.com/blueprints/corej2eepatterns/Pattern
s/DataAccessObject.html.

Zuse, H., 1995, ‘History of Software Measurement.
viewed 27 October 2007, http://irb.cs.tu-berlin.de/~

ICEIS 2008 - International Conference on Enterprise Information Systems

530

