
SCHEMA EVOLUTION IN WIKIPEDIA
Toward a Web Information System Benchmark∗

Carlo A. Curino1, Hyun J. Moon2, Letizia Tanca1 and Carlo Zaniolo2

1DEI, Politecnico di Milano, Italy
2CSD, UCLA, Los Angeles, CA, U.S.A.

Keywords: Schema evolution, Wikipedia, Case Study, Benchmark.

Abstract: Evolving the database that is at the core of an Information System represents a difficult maintenance problem
that has only been studied in the framework of traditional information systems. However, the problem is likely
to be even more severe in web information systems, where open-source software is often developed through
the contributions and collaboration of many groups and individuals. Therefore, in this paper, we present an in-
depth analysis of the evolution history of the Wikipedia database and its schema; Wikipedia is the best-known
example of a large family of web information systems built using the open-source software MediaWiki. Our
study is based on: (i) a set of Schema Modification Operators that provide a simple conceptual representation
for complex schema changes, and (ii) simple software tools to automate the analysis. This framework allowed
us to dissect and analyze the 4.5 years of Wikipedia history, which was short in time, but intense in terms of
growth and evolution. Beyond confirming the initial hunch about the severity of the problem, our analysis
suggests the need for developing better methods and tools to support graceful schema evolution. Therefore,
we briefly discuss documentation and automation support systems for database evolution, and suggest that the
Wikipedia case study can provide the kernel of a benchmark for testing and improving such systems.

1 INTRODUCTION

Every Information System (IS) is the subject of a con-
stant evolution process to adapt the system to many
factors such as changing requirements, new func-
tionalities, compliance to new regulations, integra-
tion with other systems, and new security and privacy
measures. The data management core of an IS is one
of the most critical portions to evolve. Often based on
Relational DataBase (DB) technology, the data man-
agement core of a system needs to evolve whenever
the revision process requires modifications in the log-
ical and physical organization of the data. Given its
fundamental role, the evolution of the DB underly-
ing an IS has a very strong impact on the applications
accessing the data; thus, support for graceful evolu-
tion is of paramount importance. The complexity of
DB and software maintenance, clearly, grows with
the size and complexity of the system. Furthermore,
when moving from intra-company systems – typically
managed by rather small and stable teams of devel-
opers/administrators – to collaboratively-developed-
and-maintained public systems, the need for a well-

∗This work has been partially funded by the project
MIUR-FIRB ARTDECO and the NSF project IIS 0705345.

managed evolution becomes indispensable. Leading-
edge web projects, characterized by massive collabo-
rations and fast growth, experience a relentless drive
for changes, which in turn generates a critical need
for widespread consensus and rich documentation.
Schema evolution has been extensively studied in
the scenario of traditional information systems. An
authoritative and comprehensive survey of the ap-
proaches to relational schema evolution and schema
versioning is presented in (Roddick, 1995). More re-
cently, (Ram and Shankaranarayanan, 2003) has sur-
veyed schema evolution on the object-oriented, re-
lational, and conceptual data models. Case studies
on schema evolution on various application domains
appear in (Sjoberg, 1993; Marche, 1993). Schema
evolution has also been studied in the context of
model management – research which aims at devel-
oping a systematic approach to schema management
and mapping (Bernstein, 2003). Other interesting ap-
proaches tackled the problem of schema evolution
in XML (Moro et al., 2007), data warehouse (Rizzi
and Golfarelli, 2007) and object-oriented databases
(Galante et al., 2005; Franconi et al., 2001).

Of particular interest, are Web Information Sys-
tems (WIS), often based on open-source solutions.

323
A. Curino C., J. Moon H., Tanca L. and Zaniolo C. (2008).
SCHEMA EVOLUTION IN WIKIPEDIA - Toward a Web Information System Benchmark.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 323-332
DOI: 10.5220/0001713003230332
Copyright c© SciTePress



This large and fast-growing class include, among
many other examples: Content Management Systems,
Wiki-based web portals, E-commerce systems, Blog,
and Public Scientific Databases from ‘Big Science’
Projects. The common denominator among these sys-
tems is the collaborative and distributed nature of
their development and content management. Among
the best known examples we have: MediaWiki1, a
website software underlying a huge number of web
portals, including Wikipedia 2, Joomla3, a complete
Content Management System (CMS) and Web Ap-
plication Framework, and TikiWiki4, an open source
groupware and CMS solution.

Moreover, inasmuch as large collaborative
projects are now very common in natural science
research, their reliance on databases and web systems
as the venue needed to promptly shared results and
data has created many large Scientific Databases,
including the Human Genome DB5, HGVS6, and
many others. Although different in many ways, these
all share a common evolution problem for which
the slow labor-intensive solutions of the past have
become inadequate. New conceptual and operational
tools are needed to enable graceful evolution by
systematically supporting the migration of the DB
and the maintenance of its applications. Among the
desiderata in such a scenario, we seek systems that
preserve and manage the past contents of a database
and the history of its schema, while allowing legacy
applications to access new contents by means of old
schemas (Moon et al., 2008; Curino et al., 2008b).

In the rest of this paper, we shall analyze the
case of MediaWiki, a data-intensive, open-source,
collaborative, web-portal software, originally devel-
oped to run Wikipedia, a multilingual, web-based,
free-content encyclopedia: this platform is currently
used by over 30,000 wikis, for a grand total of over
100 million pages7. While the Wikipedia content evo-
lution has been analyzed previously (Almeida et al.,
2007), this report is the first that focuses on the prob-
lem of DB schema evolution. MediaWiki has seen,
during its 4 years and 7 months of life, 171 different
DB schema versions released to the public by means
of a CVS/Subversion versioning system8. As one can
easily imagine, every schema change has a profound

1Available at: http://www.mediawiki.org.
2Available at: http://wikipedia.org.
3Available at http://www.joomla.org.
4Available at http://www.tikiwiki.org.
5Available at http://www.gdb.org/.
6Available at http://www.hgvs.org/index.html
7See http://s23.org/wikistats/.
8See: http://svn.wikimedia.org/viewvc/mediawiki/trunk-

/phase3/maintenance/tables.sql.

impact on the application queries and the code man-
aging the results, which must thus be revised. In the
case of MediaWiki, we observed in our analysis that
only a small fraction (about 22%) of the queries de-
signed to run on old schema versions are still valid
throughout the schema evolution (see discussion in
Section 3.4).

Our analysis was made possible by the col-
laborative, public, and open-source nature of the
development, documentation and release of Medi-
aWiki and Wikipedia.

Contributions. The main contributions of this paper
are the following: (i) we present the first schema evo-
lution analysis of a real-life Web Information System
DB, by studying the MediaWiki DB backend. This
provides a deep insight on Wikipedia, one of the ten
most popular websites to date9 and reveals the need
for DB schema evolution and versioning techniques,
and (ii) we provide and plant the seeds of the first
public, real-life-based, benchmark for schema evolu-
tion, which will offer to researchers and practitioners
a rich data-set to evaluate their approaches and solu-
tions. As a part of the benchmark, we also release a
simple but effective tool-suite for evolution analysis.

The paper is organized as follows: Section 2
presents the MediaWiki architecture, Section 3 dis-
cusses statistics on the MediaWiki schema evolution,
Section 4 presents the tool-suite we developed to
carry out such analysis. Section 5 shows how this
analisys is contributing to the definition of a unified
benchmark for schema evolution. Section 6 is devoted
to related works, and Section 7 draws our conclusions.

2 MEDIAWIKI

In this section we briefly discuss the MediaWiki soft-
ware architecture and DB schema (as in the current
version of November 200710), to provide the reader
with a broad understanding of the internals of the sys-
tem we are going to analyze.

2.1 Architecture

The MediaWiki software is a browser-based web-
application, whose architecture is described in de-
tails in (Wikimedia Foundation, 2007). As shown
in Figure 1, the users interact with the PHP frontend
through a standard web browser, submitting a page

9Source: http://www.alexa.com.
10The current version is the 171st schema version corre-

sponding to the SVN commit revision 25635.

ICEIS 2008 - International Conference on Enterprise Information Systems

324



USER's 
BROWSER

PAGE CACHING 
(Squid)

PHP
ENGINE

(mod_php)

MediaWiki
PHP SCRIPTS

WEB SERVER
(Apache)

MySQL

DB
(webpage contents, 

user accounts,
logging, ...)

(1) page request

(6) page returned

(5) Rendered
XHTML page

DBMS
(MySQL)

HTTP
server

(3) SQL queries

(4) Query results

(2) script 
invocation

Figure 1: MediaWiki Software Architecture.

request (e.g., a search for pages describing “Paris”).
The frontend software consists of a simple presenta-
tion and management layer (MediaWiki PHP Scripts)
interpreted by the Apache PHP engine. The user re-
quests are carried out by generating appropriate SQL
queries (or updates), that are then issued against the
data stored in the backend DB (e.g., the database
is queried looking for article’s text containing the
term “Paris”). The backend DB can be stored in
any DBMS: MySQL, being open-source and scal-
able, is the default DBMS for the MediaWiki soft-
ware. The results returned by the DBMS are ren-
dered in XHTML and delivered to the user’s browser
to be displayed (e.g., a set of of links to pages men-
tioning “Paris” is rendered as an XHTML list). Due
to the heavy load of the Wikipedia installation of
this software, much of effort has been devoted to
performance optimization, introducing several levels
of caching (Rendered Web Page, DB caches, Media
caches), which is particularly effective thanks to the
very low rate (0.04%) of updates w.r.t. queries. Ob-
viously, every modification of the DB schema has a
strong impact on the queries the frontend can pose.
Typically each schema evolution step can require sev-
eral queries to be modified, and so several PHP scripts
(cooperating to interrogate the DB and render a page)
to be manually fixed, in order to balance the schema
changes.

2.2 Database Schema

The DB, in the current version, presents 34 tables
with, all in all, 242 columns. It holds the entire
website content, over 700 GBytes in the case of
Wikipedia. The tables can be functionally grouped as
follows:
Article and content management (6): page,
revision, text, image, user newtalk, math.
History and archival management (4): archive,
filearchive, oldimage, logging.
Links and website structure (9): categorylinks,
externallinks, imagelinks, interwiki,
langlinks, pagelinks, redirect,
templatelinks, trackbacks.

Users and permissions (5): user, user groups,
ipblocks, watchlist, page restrictions.
Performance and caching (7): objectcache,
querycache, querycache info, job,
querycachetwo, transcache, searchindex.
Statistics and special features support (3):
recentchanges, hitcounter, site stats.

Note the presence of many tables devoted to per-
formance tuning, by means of caching and indexing,
and to preservation of deleted or historical copies of
the system’s main content, e.g., articles and images.

3 SCHEMA EVOLUTION IN
MEDIAWIKI

In this section, we analyze the schema evolution of
MediaWiki based on its 171 schema versions, as com-
mitted to SVN between April 2003 (first schema revi-
sion) and November 2007 (date of this analysis).

3.1 Basic Statistics

Schema Size Growth. In Figure 2 and 3, we re-
port the size of MediaWiki DB schema in history, in
terms of the number of tables and columns, respec-
tively. The graphs show an evident trend of growth in
sizes, where the number of tables has increased from
17 to 34 (100% increase) and the number of columns
from 100 to 242 (142%). Sudden drops in the graphs
are due to schema versions with syntax errors, i.e.,
schema versions that could not be properly installed.
In both graphs we observe different rates of growth
over time, which seem to be related to the time pe-
riods preceding or following official releases of the
overall software (see Table 1).

Schema growth is due to three main driving forces
as follows: (i) performance improvement, e.g., intro-
duction of dedicated cache tables, (ii) addition of new
features, e.g., support for logging and content vali-
dation, and (iii) the growing need for preservation of
DB content history, i.e., introduction of tables and
columns to store outdated multimedia content such as

SCHEMA EVOLUTION IN WIKIPEDIA - Toward a Web Information System Benchmark

325



Figure 2: MediaWiki Schema Size: the Number of Tables.

Figure 3: MediaWiki Schema Size: the Total Number of
Columns.

the “filearchive” table.
Table/Column Lifetime. Figure 4 shows a histogram
representation of the table lifetimes, in terms of num-
ber of versions. The lifetimes range from very long
ones, e.g., the user table that was alive throughout the
entire history, to short ones, e.g., random table that
only survived for two revisions. On average, each ta-
ble lasted 103.3 versions (60.4% of the total DB his-
tory). Figure 5 presents lifetimes of columns in his-
togram, where columns lasted 97.17 versions on av-
erage (56.8% of the total DB history). Interestingly,
both figures show that there are two main groups of
tables and columns: “short-living” and “long-living”.
The former might be due to the fact that the schema
has been growing lately so a significant portion of ta-
bles and columns has been introduced only recently.
The latter can be explained noting that the core ta-
bles/columns tend to be rather stable throughout the
entire history.
Per-month Revision Count. In Figure 6, we show
how many schema versions were committed during
each month in history, providing an estimation of the
development effort devoted to the DB backend over
time.

3.2 Macro-Classification of Changes

We group the 170 evolution steps based on the types
of evolution they present as in Table 2. While the “ac-
tual schema changes” have an impact on the queries,

Figure 4: Histogram of Table Lifetime.

Figure 5: Histogram of Column Lifetime.

as they modify the schema layout, the evolution of the
DBMS engine, indexes, and data types, (while being
relevant to performance) does not require any query
correction, because of the physical data-independence
provided by the DBMS. Table 2 shows the frequen-
cies11 of the types of changes among the 170 evolu-
tion steps. In particular, the table highlights that:

(i) almost 55% of the evolution steps involve
actual schema changes (further discussed in Sec-
tion 3.3); (ii) over 40% of the evolution steps
involve index/key adjustments and this is due to
the performance-critical role of the DB in a data-
intensive, high-load, website such as Wikipedia; (iii)
8.8% of the evolution steps were rollbacks to previous
schema versions; (iv) 7.6% of the analyzed evolution
steps present only documentation changes.

3.3 Micro-Classification of Changes

Schema Modification Operators. To better under-
stand the Relational DB schema evolution, we intro-
duce a classification of the “actual schema changes”.
Different formalisms can be exploited for this pur-
pose. Shneiderman and Thomas proposed in (Shnei-
derman and Thomas, 1982) a comprehensive set of
schema changes, including structural schema changes
and also changes regarding the keys and dependen-
cies. More recently, Bernstein et al. have also

11Please note that each evolution step might contain more
than one type of change.

ICEIS 2008 - International Conference on Enterprise Information Systems

326



Table 1: MediaWiki Software Releases and the Number of
DB Schema Versions Immediately Preceding Each Release.

software release schema version # of schema
releases date used (ordinal) versions

1.1 Dec 8, 2003 7 7
1.2 Mar 24, 2004 14 7
1.3 Aug 11, 2004 28 14
1.4 Mar 20, 2005 48 20
1.5 Oct 5, 2005 79 31
1.6 Apr 5, 2006 93 14
1.7 Jul 7, 2006 102 9
1.8 Oct 10, 2006 110 8
1.9 Jan 10, 2007 127 17
1.10 May 9, 2007 145 18
1.11 Sep 10, 2007 171 26

Table 2: Macro-Classification of Schema Changes (One
evolution step may have more than one change type).

Type of Change # of evolution steps % of evolution steps

Actual 94 54.9%
Schema
Index/Key 69 40.3%
Data Type 22 12.8%
Syntax Fix 20 11.7%
Rollback 15 8.8%
Doc Only 13 7.6%
Engine 6 3.5%

proposed a set of schema evolution primitives using
algebra-based constraints as their primitives (Bern-
stein et al., 2006).

Among several options, we chose the Schema
Modification Operators (SMOs) that we proposed in
(Moon et al., 2008; Curino et al., 2008b) (briefly de-
scribed in Table 3). SMOs capture the essence of the
existing works, but can also express schema changes
not modeled by previous approaches. For exam-
ple, by using function12 in the ADD COLUMN operator,
SMOs can support semantic conversion of columns
(e.g., currency exchange), column concatenation/s-
plit (e.g., different address formats), and other simi-
lar changes that have been heavily exploited in mod-
eling MediaWiki schema changes. The effectiveness
of SMOs have been validated in (Moon et al., 2008;
Curino et al., 2008b), where the PRISM and PRIMA
systems used SMOs to describe schema evolution
in transaction-time databases and to support histori-
cal query reformulations over multi-schema-version
transaction-time databases.

The syntax of SMO is similar to that of SQL DDL,
and provides a concise way to describe typical modi-
fications of a database schema and the corresponding
data migration. Every SMO takes as input a schema

12Both from system libraries and user defined.

Table 3: Schema Modification Operators (SMOs).

SMO Description
CREATE TABLE introduces a new, empty table to the database
DROP TABLE removes an existing table from the schema
RENAME TABLE changes a table name.
DISTRIBUTE TABLE takes as input a source table and distribute tu-

ples into two newly generated tables, accord-
ing to the specified conditions.

MERGE TABLE takes two source tables with the same schema
and creates a new table storing their union.

COPY TABLE creates a duplicate of an existing table
ADD COLUMN introduces a new column into the specified ta-

ble. The new column is filled with values gen-
erated by a user-defined constant or function.

DROP COLUMN removes an existing column from a table.
RENAME COLUMN changes the name of a column.
COPY COLUMN makes a copy of a column into another table,

filling the value according to a join condition
between source and target tables.

MOVE COLUMN same COPY COLUMN but the original col-
umn is dropped.

Figure 6: Schema Versions Committed during Each Month.

and produces as output a new version of the same
schema. Table 3 presents a list of SMOs, operating
on tables (the first six) and on columns (the last five)
of a given DB schema, together with a brief explana-
tion. Note that SMOs can be arbitrarily combined to
describe complex structural changes, as those occured
in the MediaWiki DB schema evolution.

Classification using SMOs. In this context we
exploit SMOs as a pure classification instrument to
provide a fine-grained analysis of the types of change
the schema has been subject to. While there might
be several ways to describe a schema evolution step
by means of SMOs, we carefully select, analyzing
the available documentation, the most natural set of
SMOs describing each schema change in the Medi-
aWiki history. Table 4 shows the distribution of the
SMOs, presenting, for each type, how many times
it has been used in the entire schema evolution his-
tory. Is interesting to notice that the more sophisti-
cated SMOs (e.g., MERGE TABLE) while being indis-
pensable are not very common. The balance between
column/table additions and deletions highlights the
“content preserving” attitude of Wikipedia13.

13The main noticeable exception is the set of informa-

SCHEMA EVOLUTION IN WIKIPEDIA - Toward a Web Information System Benchmark

327



Table 4: Micro-Classification of Schema Changes Using
SMOs and Frequencies.

SMO type # of usages % of usage % per version
CREATE TABLE 24 8.9% 14%
DROP TABLE 9 3.3% 5.2%
RENAME TABLE 3 1.1% 1.75%
DISTRIBUTE TABLE 0 0.0% 0%
MERGE TABLE 4 1.5% 2.33%
COPY TABLE 6 2.2% 3.5%
ADD COLUMN 104 38.7% 60.4%
DROP COLUMN 71 26.4% 41.5 %
RENAME COLUMN 43 16.0% 25.1 %
MOVE COLUMN 1 0.4% 0.58%
COPY COLUMN 4 1.5% 2.33%
Total 269 100% –

Figure 7 shows the number of SMOs (overall) for
each evolution step. The curve shows how the schema
evolution has been mainly a continuous process of ad-
justment, with few exceptions shown as spikes in the
figure, coinciding with major evolution steps, such as:
(i) v6696 - v6710 (41st -42nd), 92 SMOs: a change in
the storage strategy of the article versions,
(ii) v9116 - v9199 (61st -62nd), 12 SMOs: a change in
link management, and
(iii) v20393 - v20468 (138th-139th), 9 SMOs: history
management (log features added to several tables).

3.4 The Impact on the Applications

In order to study the effect of schema evolution on
the frontend application, we analyze the impact of the
schema changes on six representative sets of queries.
Each experiment tests the success or failure of a set
of queries, originally designed to run on a specific
schema version, when issued against other schema
versions.

To simulate a case where current applications are
run on databases under older schema versions, we test
three sets of queries, valid on the last schema version,
on all the previous schema versions (Figure 8). Also,
to study how legacy applications succeed or fail on
newer versions of the database schema, we test three
sets of legacy queries on all the subsequent schema
versions (Figure 9). The six sets considered in our
experiments are as follows:
Real-world Templates, Current (Figure 8). The
500 most common query templates (extracted14 from
over 780 millions of query instances), derived from
the Wikipedia on-line profiler15 and post-processed

tion supporting the user rights management, which has been
strongly reduced in the DB after version v9335 (65th ver-
sion), as it was moved to the application layer.

14The templates are extracted ignoring constants and re-
taining only the query structure.

15Available on-line at http://noc.wikimedia.org/cgi-

Figure 7: Number of SMOs Used in Each Evolution Step.

for cleaning16.

Lab-gen Queries, Current (Figure 8). 2496 query
instances generated by a local installation of the
current version of MediaWiki (release 1.11, schema
version 171), interacting with the frontend17 and
logging the queries issued against the underlying
MySQL DBMS.

Lab-gen Templates, Current (Figure 8). 148 tem-
plates of queries extracted from the above queries.

Lab-gen Queries, Legacy (Figure 9). 4175 query
instances generated by a local installation of an old
version of MediaWiki (release 1.318, schema version
28), interacting with the frontend and logging the
queries issued against the underlying MySQL DBMS.

Lab-gen Templates, Legacy (Figure 9). 74 tem-
plates extracted from the above lab-gen queries,
legacy.

Synthetic Probe Queries, Legacy (Figure 9). 133
synthetic queries accessing single columns (i.e.,
select tab j.atti from tab j) of schema version 28,
designed to highlight the affected schema portion.

Each set has been tested against all schema ver-
sions: the resulting query execution success rates are
shown in Figure 8 and Figure 9. The outliers in the
graphs (sudden and extremely low values) are due to
syntactically incorrect DB schema versions.

The first three sets are shown in Figure 8. It is
interesting to notice that:

• proceeding from right to left, the series of de-
scending steps illustrates the increasingly low
compatibility of queries and schemata.

bin/report.py.
16The cleaning process removes syntactical errors pro-

duced by the template extraction of the Wikipedia profiler.
17In order to generate as many as possible types of

queries, we tried to trigger all features accessible from the
web browser.

18The oldest version compatible with the environment of
our experimental setting.

ICEIS 2008 - International Conference on Enterprise Information Systems

328



20 40 60 80 10
0

12
0

14
0

16
00

20

40

60

80

100

%
 o

f 
qu

er
y 

su
cc

es
s real-world 

templates

 lab-gen
templates

lab-gen
queries

version (ordinal)

Figure 8: Average query success rate against preceding
schema versions (the queries are designed for the last ver-
sion, and run against all the previous versions).

• the sudden drop in query success – of about 30%
– which appears between commit revisions v6696
and v6710 (41st -42nd)19 highlights one of the
most intense evolution steps of the MediaWiki
data management core, involving a deep change
in the management of article revisions;

• the lab-generated and real-world templates carry
very similar information. This seems to indicate
that our local query generation method is capable
of producing a representative set of queries.

Figure 9 shows a graph of the average execution
success rates for the latter three query sets. Some in-
teresting observations are as follows:

• the synthetic probe queries, by failing when
columns or tables are modified, highlight the por-
tion of the schema affected by the evolution. The
figure shows how the schema evolution invali-
dates at most 32% of the schema.

• in the last version, a very large portion (77%) of
the lab-gen templates fails due to the evolution.

• for lab-gen templates, the big evolution step be-
tween commit revisions v6696 and v6710 (41st -
42nd) invalidates over 70% of the queries.

• lab-gen templates failure rate compared to syn-
thetic probe queries failure rate exposes how the
schema modifications affected a schema portion
heavily used by the applications (32% of the
schema being affected invalidates 77% of the
query templates).

• the gap between the success rate of legacy query
instances (2.9%) and legacy query templates
(22%) shows that the failing templates actually
correspond to the most common query instances.

Finally it is interesting to notice that the number
of features of the MediaWiki software has grown in

19See (Curino et al., 2008a) for SVN commit version to
ordinal numbers conversion.

40 60 80 10
0

12
0

14
0

16
00

20

40

60

80

100

%
 o

f 
qu

er
y 

su
cc

es
s

version (ordinal)

synthetic probe queries

lab-gen
templates

lab-gen
queries

Figure 9: Average query success rate against following
schema versions (the queries are designed for the 28th ver-
sion, and run against all the following versions).

time; this explains the growth in the number of the
query templates extracted from legacy queries (74)
and current queries (148).

These experiments provide a clear evidence of the
strong impact of schema changes on applications, and
sustain the claim for better schema evolution support.

4 ANALYSIS TOOL SUITE

To collect the statistics described in this paper, we de-
veloped a set of tools, organized in a tool-suite avail-
able on-line (Curino et al., 2008a). This step-by-
step process, primarily designed to help researchers to
gain better insight in the schema evolution of existing
Information Systems, can be effectively exploited by
DB administrators and developers, in any data-centric
scenario, to analyze the history of the DB schema and
create a (summarized) view of its evolution history.
The tool suite will support the analysis of the evolu-
tion process and help to highlight possible flaws in
the design and maintenance of the Information Sys-
tem. Moreover, Researchers and designers of support
methods and tools for DB evolution and versioning,
can exploit this to test their approaches against real-
life scenarios.

We now discuss the features of our tool-suite re-
ferring to its application to the MediaWiki DB: first
of all, by means of an appropriate tool, the 171
MediaWiki DB schema versions have been down-
loaded from SVN repository and batch-installed in a
MySQL DBMS20. We developed a tool, named statis-
tics collection, that can be applied on this data to
derive the basic statistics of schema versions, such
as schema size and average table/column lifetime.
The statistics collection tool queries the MySQL
data dictionary (the information schema meta-
database) to gather the statistical measures presented

20MySQL version 5.0.22-Debian.

SCHEMA EVOLUTION IN WIKIPEDIA - Toward a Web Information System Benchmark

329



in Section 3.1.
For fine-grained view of the schema evolution we

also provide the SMO extractor tool. This tool, by op-
erating on the differences between subsequent schema
versions, semiautomatically extracts a set of candi-
date SMOs describing the schema evolution, min-
imizing the user effort21. To estimate query suc-
cess against different schema versions, the users can
exploit a tool named query success analyzer. This
tool performs a query success rate analysis by batch-
running its input queries against all schema versions.

For users’ convenience, we also provide a
log analyzer which can be used to extract and clean
the SQL query instances and templates from the raw
mysql log format.

Every component of the tool-suite stores the col-
lected information, in a non-aggregated form, in a
database, named evolution metadb. This database is
later queried to provide statistical measures of the
schema evolution, and provides a flexible SQL-based
interface, we exploit to compute the graphs and tables
of this paper.

5 TOWARD A UNIFIED
BENCHMARK

DB schema evolution has been recognized to be a
relevant problem among both researchers and practi-
tioners, but despite the number of proposed solutions
(Roddick, 1995; Ram and Shankaranarayanan, 2003;
Bernstein, 2003; Velegrakis et al., 2003; Yu and Popa,
2005), a unified benchmark is currently missing – al-
though needed as noted in (Bernstein et al., 2006).

The case study we present in this paper represents
our initial step towards the definition of a reusable and
standardized benchmark. To the best of our knowl-
edge, this is the first attempt to provide a real-world
DB schema evolution benchmark to date.

The benchmark we are developing will contain
the results of the analysis of several case studies of
open-source systems, currently under development,
together with the MediaWiki example presented here.
In addition we are developing a set of tools to sup-
port our benchmarking procedure. Among such tools
we have the query success analyzer discussed in the
previous section and a data generator, used to batch-
populate with synthetic data (of variable size) all
available versions of the DB under analysis. The

21Complex evolution patterns as the one appeared from
the 41st and 42nd schema versions in MediaWiki, require
the user to refine the set of SMOs according to his/her un-
derstanding of the schema evolution.

data generator produces randomized data, but is tai-
lored to create DB contents that maximize the query
answer predictability by means of data regularity.

While the overall benchmark is still under devel-
opment, we made available on-line at (Curino et al.,
2008a) our MediaWiki data-set to provide researchers
and practitioners data to evaluate and test their ap-
proaches. This data-set has already been successfully
exploited to test the PRISM and PRIMA system in
(Moon et al., 2008; Curino et al., 2008b).

We believe that, w.r.t. the goal of developing a
unified benchmark for DB schema evolution, Medi-
aWiki is an ideal starting point because: (i) it is a
real-life application used by 30,000 wikis, including
Wikipedia, (ii) its code and data are well-documented
and released under GPL License and based on an
open-source plaftorm, (iii) several differently-sized
DB contents (the DB dump of different public wikis),
ranging from tens of KBytes to hundreds of GBytes
(Almeida et al., 2007), are available to the public22,
and (iv) there is an on-line profiling system providing
real-life queries from the Wikipedia site, along with
their frequencies and typical workload details23.

Benchmark Users. The benchmark under devel-
opment is mainly intended to: (i) educate database
administrators on typical schema evolution scenar-
ios, in order to avoid common design errors and im-
prove the quality of initial schema designs, (ii) sup-
port the community of researchers working on the
schema versioning / schema evolution problems, (iii)
provide researchers and practitioners, designing solu-
tions for data migration, with a rich test-case for tools
and methodologies, (iv) provide a rich set of examples
of evolution to enable evolution pattern mining.

6 RELATED WORKS

In this section, we compare our analysis with the ex-
isting case studies on schema evolution for traditional
information systems (Sjoberg, 1993; Marche, 1993).
(Sjoberg, 1993) discusses database schema evolution
in a health management system (HMS). This careful
analysis of nine schema versions shows an increase in
the number of tables from 23 to 55 and in the number
of columns from 178 to 666 during 18 months (con-
sisting in 5 months of development and 13 months of
operational phase). Sjoberg discusses how applica-
tion queries are affected when the schema evolves, as
we do in Section 3.4.

22See http://download.wikimedia.org/.
23Available at: http://noc.wikimedia.org/cgi-

bin/report.py.

ICEIS 2008 - International Conference on Enterprise Information Systems

330



Table 5: Comparison of Schema Growth in MediaWiki and Those in Other Case Studies.

Case
Interval Number of Tables Number of Columns

(months) First Last Increase Inc/year First Last Increase Inc/year

Sjoberg-all 18 23 55 139% 92.6% 178 666 274% 182.7 %
Sjoberg-oper 13 47 55 17% 15.7% 528 666 26% 24.0 %
Marche 31.6 9.6 10.6 10% 3.8 % 118.9 139.0 17% 6.5 %
MediaWiki-all 55 17 34 100% 21.8 % 100 242 142% 31.0 %
MediaWiki-oper 48 18 34 89% 22.3 % 106 242 128% 32.0 %

In (Marche, 1993), a collective case study is pre-
sented for seven database applications from different
application domains. For each application, Marche
compares only two schema versions, taken at interval
ranging from 6 to 80 months. The author does not
specify whether such versions correspond to the de-
velopment or operational phase of the systems under
analysis. This analysis reports an increase in the aver-
age number of relations and columns from 9.6 to 10.6,
and from 118.9 to 139.0, respectively.

In addition to a major change of environment,
from Traditional to Web Information Systems, our
work improves the previous case studies as follows:

• Number of Schema Versions: We analyze 171
published24 versions of the schema whereas the
previous works use respectively nine and two ver-
sions. This was possible due to the open-source
nature of the MediaWiki project, uncommon in
case of traditional, proprietary applications.

• Detailed Schema Evolution Analysis: We clas-
sify schema changes at a finer level of granularity
by means of SMOs. We benefited from the rich
documentation of SVN schema revisions and of
the SQL schema files to obtain insight in each evo-
lution step and derive the corresponding SMOs.

• Legacy Application Failure Analysis: (Sjoberg,
1993) studied the effect of schema evolution on
applications, predicting query failure based on
query workload and schema changes between two
successive schema versions. In our setting we
were able to report the actual success rate of the
execution of queries from an old release of Medi-
aWiki (v1.3) on 144 subsequent schema versions,
together with the success rate of 500 templates
extracted from millions of queries run on the ac-
tual Wikipedia installation of MediaWiki, tested
against the 170 previous schema versions.

• Licensing and Data-set Release: Thanks to the
licensing of MediaWiki and Wikipedia, we are
able to release (Curino et al., 2008a) the entire

24More schema versions are available in the unstable
branches of the versioning system. We focused on the main
development branch.

data-set used for our analysis to the public, en-
abling other researchers to exploit such data to
extract their own statistics or to test their ap-
proaches.

Web IS vs Traditional IS. Table 5 provides results of
the MediaWiki schema growth compared to the cases
reported in the cited literature.

While (Sjoberg, 1993) reports the growth during
the entire studied period (5 months of development
and 13 months of operation) and that during the oper-
ational phase only, tagged in Table 5 respectively as
Sjoberg-all and Sjoberg-oper, we focus our compari-
son on the operational phase, which has a bigger im-
pact on users and maintenance costs. For this reason
we show as MediaWiki-oper the growth of the Medi-
aWiki schema, by removing from the overall history
the first six versions – preceding the first official re-
lease. (Marche, 1993) does not clearly specify which
phase of the software life-cycle each schema version
was taken from, so we simply report the available
data. Adjusted statistics appear in Table 5. Com-
paring the time-normalized (Increase/year) schema
growth, MediaWiki-oper is faster than every previous
result in Traditional Information Systems. The opera-
tional growth is about 38% more intense than the one
of Sjoberg-oper, and about 539% than the average of
the seven cases of Marche.

This difference can be attributed to the follow-
ing reasons: (i) the collaborative, open-source nature
of the development and usage of MediaWiki, deter-
mines the presence of several independent contribu-
tions, influencing the speed of growth, (ii) the suc-
cess of Wikipedia triggered the need for intense tun-
ing for performance and accessibility, leading to a
quicker evolution than traditional IS, and (iii) the in-
terest for maintaining historical information grew dur-
ing the development, affecting the schema size.

7 CONCLUSIONS

The explosion of Web Information Systems (WIS) is
creating a throve of interesting research problems and
technical challenges. In particular, the DBMS sys-
tems that are at the core of many WIS are now faced

SCHEMA EVOLUTION IN WIKIPEDIA - Toward a Web Information System Benchmark

331



with new challenges and requirements—which we
have analyzed in this in-depth study of MediaWiki,
the sofware behind Wikipedia, a WIS of great renown
and importance. Our study shows that MediaWiki
has undergone a very intensive schema evolution, as
a result of the cooperative, multi-party, open-source
development and administration that is common in
leading-edge WIS projects. Thus, the WIS environ-
ment, (i) contrasts with the smaller, less-open and
slow-turnover setting of typical in traditional informa-
tion systems, (ii) creates a more urgent needs for bet-
ter automation and documentation tools for support-
ing graceful schema evolution in WIS. In this paper
we analyze and quantify the schema evolution prob-
lem of WIS and introduce concepts and tools that rep-
resent an important first step toward realizing (ii).

At the conceptual level, we have introduced the
Schema Modification Operators (SMOs), that proved
effective both in an operational mode to support
schema evolution (Moon et al., 2008; Curino et al.,
2008b), and in an “a posteriori” mode to support in-
depth analysis. Moreover, we also developed a sim-
ple set of software tools to facilitate the analysis of
schema evolution, and the derivation of the SMOs de-
scribing such an evolution. This tool-suite proved ef-
fective in the analysis of MediaWiki and is available
online at (Curino et al., 2008a). The structured repre-
sentation of the evolution history of MediaWiki that
we derived in this project is also available for down-
loading (Curino et al., 2008a). Such data-set is cur-
rently being extended by analyzing other leading WIS
projects in order to create a rich schema evolution
benchmark. Once completed, this benchmark will
(i) provide the community with a rich set of schema
evolution examples that can be studied to avoid com-
mon up-front design errors and improve schema man-
agement best practices, and (ii) represent a critical
validation tool for techniques and systems designed
to automate the schema evolution process (includ-
ing those that are currently under development in our
lab). Indeed, the desirability of such a benchmark was
stressed in the past by other researchers working in re-
lated areas (Bernstein et al., 2006).

ACKNOWLEDGEMENTS

The authors would like to thank Alin Deutsch for the
numerous in-depth discussions on schema mapping
and query rewriting.

REFERENCES

Almeida, R. B., Mozafari, B., and Cho, J. (2007). On the
evolution of wikipedia. In Int. Conf. on Weblogs and
Social Media.

Bernstein, P. A. (2003). Applying model management to
classical meta data problems. In CIDR.

Bernstein, P. A., Green, T. J., Melnik, S., and Nash, A.
(2006). Implementing mapping composition. In
VLDB.

Curino, C., Moon, H., Tanca, L., and Zan-
iolo, C. (2008a). Pantha rei data set [on-
line]: http://yellowstone.cs.ucla.edu/schema-
evolution/index.php/Main Page.

Curino, C. A., Moon, H. J., and Zaniolo, C. (2008b). Grace-
ful database schema evolution: the prism workbench.
In UCLA Tech. Rep., 2008. Submitted for publication.

Franconi, E., Grandi, F., and Mandreoli, F. (2001). Schema
evolution and versioning: A logical and computa-
tional characterisation. Database Schema Evolution
and Meta-Modeling, pages 85–99.

Galante, R. d. M., dos Santos, C. S., Edelweiss, N., and
Moreira, A. F. (2005). Temporal and versioning model
for schema evolution in object-oriented databases.
Data & Knowledge Engineering, 53(2):99–128.

Marche, S. (1993). Measuring the stability of data
models.European Journal of Information Systems,
2(1):37–47.

Moon, H. J., Curino, C. A., Deutsch, A., Hou, C.-Y.,
and Zaniolo, C. (2008). Managing and querying
transaction-time databases under schema evolution. In
UCLA Tech. Rep., 2008. Submitted for publication.

Moro, M. M., Malaika, S., and Lim, L. (2007). Preserving
XML Queries during Schema Evolution. In WWW,
pages 1341–1342.

Ram, S. and Shankaranarayanan, G. (2003). Research
issues in database schema evolution: the road not
taken. In Boston University School of Management,
Department of Information Systems, Working Paper
No: 2003-15.

Rizzi, S. and Golfarelli, M. (2007). X-time: Schema
versioning and cross-version querying in data ware-
houses. In ICDE, pages 1471–1472.

Roddick, J. (1995). A Survey of Schema Versioning Is-
sues for Database Systems. Information and Software
Technology, 37(7):383–393.

Shneiderman, B. and Thomas, G. (1982). An architecture
for automatic relational database system conversion.
ACM Transactions on Database Systems, 7(2):235–
257.

Sjoberg, D. I. (1993). Quantifying schema evolution. Infor-
mation and Software Technology, 35(1):35–44.

Velegrakis, Y., Miller, R. J., and Popa, L. (2003). Mapping
adaptation under evolving schemas. In VLDB.

Wikimedia Foundation (2007). The mediawiki workbook
2007 dammit.lt/uc/workbook2007.pdf. [Online].

Yu, C. and Popa, L. (2005). Semantic adaptation of schema
mappings when schemas evolve. In VLDB.

ICEIS 2008 - International Conference on Enterprise Information Systems

332


