
GATHERING PRODUCT DATA FROM SMART PRODUCTS

Jan Nyman, Kary Främling
Helsinki University of Technology, BIT research centre, P.O. Box 5500, FIN-02015 TKK, Finland

Vincent Michel
École Nationale Supérieure des Mines de Saint-Étienne 158, cours Fauriel F-42023 SAINT-ÉTIENNE cedex 2, France

Keywords: The Internet of Things, Distributed Systems, Smart Products.

Abstract: The enabling of data produced by product embedded sensor devices for use in product development could
greatly benefit manufactures, while opening up new business opportunities. Currently products such as cars
already have embedded sensor devices, but the data is usually not available for analysis in real-time. We
propose that a world-wide, inter-organizational network for product data gathering should be created. The
network should be based on open standards so that it can be widely adopted. It is important that a common,
interoperable solution is accepted by all companies, big or small, to enable innovative new services to be
developed. In this paper, the concept of the Internet of Things (IoT) is described. The PROMISE project
is presented, and a distributed messaging system for product data gathering developed within the project is
introduced. Practical experiences related to the implementation of the messaging system in a real application
scenario are discussed.

1 INTRODUCTION

The emergence of technologies, such as Radio Fre-
quency Identification (RFID), enable consumer prod-
ucts to be identified individually, and makes it possi-
ble for products to have some other information stored
on them as well. For example, a box of prescrip-
tion drug pills could have an embedded RFID tag,
which contains the identity of that specific box as
well as some metadata, for example an Internet URI.
The identity of the box and the metadata could then
be combined to fetch information about the specific
manufacturing batch the box originated from. The
increasing amount of product embedded information
devices (PEIDs), which provide functionality such as
self-diagnostics, could enable new services to be of-
fered to customers, if the data produced by the PEIDs
could be made available for real-time analysis.

To gain advantage from the possibilities of prod-
uct data, let it be simple location information for a
shipment, or more complicated information produced
by a product embedded information device, a global,
inter-organizational, open messaging network for data
gathering must be created. The Internet is the ideal

medium, as it is widely available. For the network to
become widely accepted, it must be built upon exist-
ing standards, and the communication interface defi-
nitions must be open, so that all implementations can
communicate with each other.

This paper has the following structure: First, the
concept of the Internet of Things is presented and
some requirements for different enabling technolo-
gies are outlined. Then work done in the PROMISE
project regarding product data messaging systems and
product embedded information devices is presented.

2 THE INTERNET OF THINGS

The Internet of Things (IoT) is a name for the phe-
nomenon of physical objects gaining a ”presence” on
the Internet (Gershenfeld et al., 2004). The objects
involved might be consumer products and industrial
machinery, but also simple sensors spread out in the
environment to form sensor networks. The ”tradi-
tional” Internet consists solely of computers provid-
ing services for human users without any explicit link
to things outside the electronic domain. When the

252
Nyman J., Främling K. and Michel V. (2008).
GATHERING PRODUCT DATA FROM SMART PRODUCTS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 252-257
DOI: 10.5220/0001700302520257
Copyright c© SciTePress



Internet is augmented with the possibility of physi-
cal objects referencing services on the Internet, and
the ability for electronic services to track physical
objects, and access information stored on them, we
move towards a network that is no longer confined to
the electronic domain but deals instead with objects
and concepts that are present both in the electronic
and physical worlds.

The emergence of the IoT requires a network that
enables objects to reference electronic services on the
Internet, as well as technologies that enable entities
in the electronic domain to gain access to information
stored on individual product items. At the low end of
spectrum, ”things”, or physical objects participating
in the IoT just have some kind of identification, which
is machine readable in an automated fashion, such as
RFID or bar code tags. These objects are ”on-line”
only momentarily, perhaps just by an one-way link
that enables a tracker application to receive updates
on the new position of the object. Examples include
pallets with RFID tags in a logistics network. At the
high end of the spectrum, the objects are intelligent
themselves, they can gather statistical data about their
usage and have means of communicating that infor-
mation.

The IoT raises questions how the right to privacy
can be ensured. Privacy should be taken into account
already at the design phase of the product, by apply-
ing the principles of Notice, Consent, Anonymity, Lo-
cality, and Adequate security presented in (Langhein-
rich, 2001). The user should be made aware that data
is being recorded, and recording should not happen
without the user’s express approval. Collected data
should be anonymized, communicated using secure
means, and the user should have control on the data
also after it has been stored for analysis.

To enable the product items to have individual
data and events associated with them, they must be
identifiable in some manner. This means that a global
registry of some sort must be created, with every
product item having its own Globally Unique Product
Identifier (GUPI) (Främling et al., 2007b). The identi-
fication is used to tie the physical object to some kind
of proxy service, or product agent (Kärkkinen et al.,
2003) running on a host on the Internet. The proxy
acts as a representant providing information or ser-
vices on the behalf of the object.

There are several approaches to the identity-to-
proxy mapping. The address (as an Uniform Re-
source Locator, URL) of the proxy is either directly
or indirectly obtainable from the object, the so-called
direct or indirect sensing described in (Kindberg et al.,
2002). In the direct sensing case, the object itself con-
tains the complete URL of the proxy service. In the

indirect sensing case the identity of the product is an
Uniform Resource Name (URN), which is used as a
search key to find the URLs of the proxies from a cen-
tral repository of identity-to-URL mappings, much in
the same way that the Domain Name System (DNS)
of the Internet works for converting Fully Qualified
Domain Names to Internet Protocol addresses.

The ID@URI naming scheme used in the Dialog
collaborative logistics system (Kärkkinen et al., 2003)
developed at the Helsinki University of Technology
represents the direct sensing approach. In the Dia-
log system, every item has an identity of the form
identity@URI, where the URI part is the address
(URL) where the proxy service can be found, and the
identity part is used to identify that particular item to
the proxy. This scheme has the advantage of the in-
herent simplicity of the direct sensing approach, i.e.
no look-up service is required. On the other hand, if
the URL of the proxy service was to change at some
point, it would require a re-programming of every
item with the new address, a huge task. The ID@URI
scheme works well in a logistics network environ-
ment, where the existence of a particular item on the
network is temporally limited, but in an Internet of
Things environment, where the product is present on
the network for its entire lifetime, the static nature of
the URI could be problematic.

The EPCglobal network developed by the Auto-
ID consortium is using the indirect sensing approach
to map product identities to proxy services. In
this case, the GUPI is the Electronic Product Code
(EPC), which defines a way to encode existing prod-
uct numbering schemes for use in RFID tags and
inter-organizational data exchange. The EPCglobal
implementation of the identity-to-proxy mapping is
named the Object Naming Service (ONS), and is an
extension to the DNS system (Armenio et al., 2007).
This approach has the inherent advantage that the ad-
dress of the proxy can change freely. On the other
hand, this scheme requires an organization that con-
trols the allocation of id’s, because every id must be
unique. This could make the scheme less attractive to
manufacturers, because they are then dependent on an
external organization for obtaining the unique IDs.

The World Wide Article Information (WWAI)
system proposed by Trackway is a peer-to-peer net-
work for propagating requests related to product in-
formation. This approach represents the indirect sens-
ing approach, with the responsibility of maintaining
the mappings from GUPIs to product agent URLs dis-
tributed among the nodes of the network. The infor-
mation providers, manufacturers, form a network of
trusted nodes, which are identified by company num-
bers defined in existing product numbering schemes.

GATHERING PRODUCT DATA FROM SMART PRODUCTS

253



The manufacturer is free to assign product identi-
ties inside its own sub-space of WWAI object iden-
tifiers, the object GUPI being a concatenation of the
company prefix and node-specific suffix. Access to
the network of information providers is through any
node of the peer-to-peer network. The node prop-
agates the requests to other nodes on the network,
and gathers the results, (product agent URLs) and
presents them to the client that issued the request
(Främling et al., 2007b). The service provided by
the WWAI peer-to-peer network is the mapping of
WWAI identifiers, (keys) to proxy URLs, (values) in
a distributed data structure called Distributed Hash
Table, DHT. Finding the correct value (proxy URL)
for a key (GUPI) involves routing the request in the
peer-to-peer network to the node that contains the
relevant mapping. Similar routing overlay systems
for use as application-independent middlewares have
been implemented previously (see (Coulouris et al.,
2005), section 10.4 and 10.5). The peer-to-peer look-
up mechanism might provide better availability than
the DNS-based Object Naming Service in EPCglobal,
which is dependent on availability of the ONS root
server maintained by EPCglobal. Internet DNS root
servers have been subject to various denial-of-service
attacks in the past, and the ONS root servers might
also be targeted in the future.

Agent look-up services to replace or supplement
the ONS have been proposed, such as the Extensible
Supply-chain Discovery Service (ESDS) by Afilias
(Young, 2007). The ESDS system also specifies an
event mechanism for passing information about the
current life cycle of a tracked object.

The solutions discussed previously are all solu-
tions that act on the application layer. The problem
of GUPIs could also be addressed on the network
layer, which is the level on which the Internet Proto-
col works. Ordinary Internet Protocol (IP) addresses
as such cannot be treated as GUPIs, even though the
address space in IPv6 is sufficiently large, because an
IP address uniquely determines the host’s location on
the network, and tells how to route datagrams to the
host. An IP address is confined to a particular net-
work, even if the underlying data link layer technol-
ogy would allow geographical movement of the host.
On the other hand, using the Mobile IP approach, the
identity (GUPI) of the product item would be the IP
address of its product agent, orhome agentin Mo-
bile IP terminology, which must be a permanent ad-
dress that is always reachable. The agent keeps track
of the current IP address where the product can be
reached by receiving a notification from the product
every time the address changes.

Combined with the auto-configuration features

and larger address space of IPv6, and a standard ap-
plication layer interface for delivering messages, such
as the interface described in the next section, Mo-
bile IP could provide a neat solution for data gather-
ing. The drawback would be that every product item
would have to have its own product agent (or home
agent) with a distinct IP address, and it probably does
not make sense to allocate an IP to every conceivable
product item because of the associated administrative
overhead.

A challenge for the design of the messaging sys-
tem is how to create a single solution that spans
the entire spectrum of products, from intermittently
connected products with a simple smart tag that can
store an ID and a limited amount of information, to
products that have a powerful embedded computer.
The messaging system must have some standard data
model for sensor readings and events, in other words
there must be a standard way for presenting infor-
mation created by the products. There must also be
mechanisms for gaining information about what kind
of information a particular device provides.

Physical products in the physical world constitute
hierarchies. For example, a car is made from several
different sub-assemblies, which can be seen as sepa-
rate products that sum up to make the car. To properly
support hierarchies, the underlying messaging system
must be able to constitute things of a higher-order
from lower-order ”building blocks”. Consider for ex-
ample the box of pills with a RFID tag. The box can
be thought as an independent object in the network.
But when a shipping pallet is filled with these boxes
of pills, it does not make sense that every one of them
is reported separately, but rather they should appear
as sub-objects of the shipping pallet. These product
hierarchies can be modeled by applying the Compos-
ite design pattern (Främling et al., 2007a).

The messaging system to enable IoT must be able
to convey product life cycle events, such as the prod-
uct becoming a sub-product of an other product, or
the end-of-life of a product, in addition to the gath-
ering of product data such as sensor readings for the
needs of product monitoring systems. The data model
associated with the EPCglobal network, the EPC In-
formation Services, has support for product events
that are needed in inter-organizational logistics appli-
cations and inventory management. A generic event
model for product life cycle monitoring is not part of
the standard, nor is any mechanism for data gathering
from product instances (Armenio et al., 2007).

In the following section we shall take a look at a
proposed system for product data gathering that aims
also to address the needs of distributing product life
cycle events.

ICEIS 2008 - International Conference on Enterprise Information Systems

254



3 THE PROMISE PROJECT

The PROMISE project is financed by the Euro-
pean Union sixth framework programme, in which
research is being conducted in to ways of gathering
and processing of product data created by product em-
bedded sensors and information systems. The aim
is to create a framework of solutions that would en-
hance the usability of product data at various product
life-cycle phases and to create sufficiently generic in-
terfaces for data transfer, so that the solutions could
be applicable in any product, let it be mass-produced
household appliances or custom-built complex pieces
of machinery. The PROMISE project is focusing on
specifying interfaces between components and how
data is stored and processed, in contrast to EPCglobal,
which defines a GUPI and agent look-up infrastruc-
ture, and specifies data exchange and event interfaces
focusing on consumer product logistics.

In the PROMISE world (Fig. 1), the messaging
between the participants, e.g. products and the Prod-
uct Data Knowledge Management systems, is done by
passing messages between nodes over a messaging in-
frastructure defined by the PROMISE Messaging In-
terface, PMI. PMI uses the SOAP remote procedure
call system, which uses the HTTP protocol as trans-
port medium. The choice of SOAP over other RPC
mechanisms is above all dictated by the presence of
network firewalls, which typically block many types
of traffic other than requests to port 80. For the mes-
saging system to become widely adopted, it cannot
require changes to network firewalls, which are usu-
ally tightly controlled by the network security staff.
A defining characteristic of PMI is that nodes do not
have predefined roles, as it follows the ”peer-to-peer”
approach to communications. A ”full” PMI node ca-
pable of sending as well as receiving requests does
have to include both HTTP client and server function-
ality, but a more limited node can just have the HTTP
client functionality, if it is assumed that it will only
send messages to other nodes. An example of such
”limited” nodes are ones associated with RFID tag
readers, or generally, nodes that are unreachable from
the outside because of a firewall, which periodically
send product data to a product monitoring system ac-
cording to a ”subscription” that is specified when the
product is installed.

The current incarnation of the PMI is a collec-
tion of methods that can be called over the SOAP re-
mote procedure call mechanism. The methods repre-
sent different operations such as a read or write of the
value of a particularinfo item. The info items repre-
sent actual values such as sensor readings of adevice.
Methods also exist for querying metadata, such as the

list of info items that a device provides. A PMInode
is a communications end-point in a PMI network, and
manages communications for one or several devices.
The parameters for the method calls are XML strings
whose structure is defined by an XML schema. The
XML string conveys additional request information,
such as the involved device, information item, sub-
type of request, etc. As PMI messages are in essence
XML documents transmitted over the HTTP protocol,
all the technologies for making HTTP traffic secure
can be applied.

Figure 1: The PROMISE world featuring some possible
participants. All participants can send messages to each
other by using the Promise Messaging Interface (PMI).

In addition to ordinary ”synchronous” reads and
writes, the PMI also provides a callback method for
asynchronous communications. Examples of asyn-
chronous communications include a ”subscription”
read, a call to the read method with parameters that
specify that the target node should not respond di-
rectly with a value, but rather send multiple responses
at a specified interval. The callback method interface
also provides a mechanism for nodes to send events
to each other (with or without a prior subscription,
subject to the particular node implementation). In-
deed, the callback method is an embodiment of the
Observer pattern in (Främling et al., 2007a).

The PMI implementation created at the Helsinki
University of Technology, called PMI-Dialog, is
based on earlier work done in the Dialog project, in
which a messaging infrastructure for logistics was
created. Dialog is licensed under the GNU Lesser
General Public License. The Dialog architecture
(Fig. 2) is centered around agents, which commu-
nicate with remote agents by sending and receiv-
ing messages. Different send and receive mecha-
nisms are supported, one of which is the SOAP pro-
tocol. The software is implemented in Java, using
the Apache Axis SOAP implementation running un-
der the Apache Tomcat servlet container. To support

GATHERING PRODUCT DATA FROM SMART PRODUCTS

255



PMI, a Dialog agent has been created for handling
PMI messages.

Interfaces for receiving

messages
Interfaces for sending

messages 

Arriving messages are examined and

forwarded to the correct agent

Departing messages are examined and sent

using the correct protocol

Database

Device data can be saved 

to a DB for later retrieval

Device controller acts as

a "device driver", presents 

device data to the PMIAgent 

as item/value pairs

Smart Device(s)

Smart Device (RFID reader, home appliance...)

connected to the PMI-Dialog node using a 

wired or wireless connection

PMI Agent
PMIAgent receives PMI 

messages, interprets them 

and creates replies

PMI SenderPMI Receiver Send HandlerReceive Handler

DB Interface

Other Sender TypesOther Sender TypesOther Receiver TypesOther Receiver Types

Other AgentsOther Agents

Device Controller(s)Device Controller(s)

Figure 2: The Dialog architecture. The dashed line shows
the node boundary. The Dialog architecture can support
many different interfaces for receiving and delivering mes-
sages.

We have been involved the development one of the
PROMISE technology demonstrators, in which sup-
port for data gathering from an intelligent refrigera-
tor’s statistical data collection unit was integrated to
the PMI-Dialog messaging system. The refrigerator
prototype was provided by Indesit, a major European
domestic appliance manufacturer, and has functional-
ity similar to what can be expected of smart household
appliances available in the near future. By integrat-
ing to the refrigerator a device capable of collecting,
storing and communicating statistical data obtained
from the various embedded sensors, the manufacturer
plans to enhance final product testing performance at
the manufacturing plant, as well as the possibility of
offering a preventive maintenance service contract to
customers. This latter business scenario is the most
interesting from a distributed systems point of view.

Figure 3: Information gathered from the refrigerator-
embedded information device displayed on a product
agent’s user interface.

The refrigerator-embedded information device was
interfaced to the Dialog software using a purpose-

built device controller agent, and for gathering data
from the product embedded information device, a
product agent was created. The agent’s graphical user
interface can be seen in Fig. 3.

It is assumed that in the future, product embed-
ded devices such as the one presented here, will be
using some wireless technology (eg. WLAN), and
a communications software stack capable of auto-
configuration, (eg. Universal Plug-and-Play, (UPnP).
To support UPnP, the PMI-Dialog implementation
will just have to be changed at the device controller
level, by adding a UPnP-aware device controller
agent.

When the first drafts of the promise messaging in-
terface were created, the Web Services/SOAP tech-
nology was chosen as the RPC mechanism. It was
thought that the interface should include a multitude
of methods to represent different operations, with
atomic parameters. But as the project evolved, it was
discovered that with a complex multi-method, multi-
parameter interface it is hard to keep the interface in
synch between the nodes during deployment, because
if the interface changes (eg. number of parameters
for a method change), different implementations are
no longer compatible. As a solution to this problem
the decision was made to keep the multi-method inter-
face, but change the parameter format to XML strings,
with the format governed by an XML schema. This
way, even if different participants would use differ-
ent schema versions, some level of compatibility (ie.
”understanding” of the transmitted messages) would
be preserved. This enables nodes implementing an
older PMI version to continue operating with nodes
implementing a newer version without the need for
the newer PMI versions to include a ”legacy inter-
face” for compatibility. But a multi-method interface
with ”rich” XML parameters led to the evolution of
the interface to the point where it was no longer use-
ful to have several methods, but instead express dif-
ferent operations purely by XML requests defined by
the PMI XML schema. In practice the multiple meth-
ods just caused more complex code than a single-
method interface. Also, if the meaning of a mes-
sage can be deduced from the message contents itself,
without a need to know to which method the mes-
sage was posted to, it makes adapting PMI to work on
some other RPC mechanism easier, which is good for
a generic message interface specification.

When we end up with a SOAP interface with just
one method accepting an XML string as a parameter
(and returns XML too), the question arises, that what
is the point of having the SOAP layer between the
web server and the application. Our current under-
standing is that it is useless overhead, and the alter-

ICEIS 2008 - International Conference on Enterprise Information Systems

256



native solution would be to just send operations ex-
pressed in XML using the POST method offered by
the HTTP protocol.

The real performance ”acid-test” would be to sim-
ulate an environment where the node must process
messages arriving continuously from a very large
group of nodes. That would represent a situation
where a service company has a preventive mainte-
nance contract with a large group of customers, or
when an appliance manufacturer wishes to monitor
their products for the purpose of product develop-
ment. In any case, the performance of PMI implemen-
tations in general should not differ from other pro-
grams using SOAP as RPC mechanism. When PMI
implementations from other PROMISE partners be-
come available, measurements should be carried out
to obtain information about the relative performance
of our implementation. Measurements against other
messaging systems is not relevant, as messaging sys-
tems with a similar scope do not exist.

4 CONCLUSIONS

In this paper the concept of the Internet of things was
explained, and various approaches to product identity
management were presented. Generic requirements
for a messaging system to support the IoT were out-
lined. A messaging system interface specification, the
PMI, created within the PROMISE project was pre-
sented, and experiences related to the implementation
of a messaging system implementing the PMI were
discussed. In addition to a messaging interface for
exchanging data between entities in the IoT, a look-
up mechanism for obtaining the address of the soft-
ware agent is required. It was argued that the look-up
system should be globally distributed for reasons of
availability, and that a peer-to-peer architecture seems
most suited for such a system.

It was also argued that dependence on a particular
RPC mechanism, in this case SOAP, is not good for a
generic messaging interface, and the interfaces should
be defined so that any communications protocol could
be used.

ACKNOWLEDGEMENTS

The PROMISE project is funded by the European
Union sixth framework (IST). The PMI has been cre-
ated as joint effort between the PROMISE partners.

REFERENCES

Armenio, F., Barthel, H., Burstein, L., Dietrich, P.,
Duker, J., Garrett, J., Hogan, B., Ryaboy, O.,
Sarma, S., Schmidt, J., Suen, K., Traub, K.,
and Williams, J. (2007). The EPCglobal Ar-
chitecture Framework, EPCglobal Final Version
1.2 Approved 10 September 2007. Available at
http://www.epcglobalinc.org/standards/architecture/
architecture1 2-framework-20070910.pdf, refer-
enced on September 17, 2007.

Coulouris, G., Dollimore, J., and Kindberg, T. (2005).Dis-
tributed Systems, Concepts and Design. Addison-
Wesley, fourth edition. ISBN 0-321-26354-5.

Främling, K., Ala-Risku, T., Kärkkäinen, M., and Holm-
ström, J. (2007a). Design patterns for managing prod-
uct life cycle information.Commun. ACM, 50(6):75–
79.

Främling, K., Harrison, M., Brusey, J., and Petrow, J.
(2007b). Requirements on unique identifiers for man-
aging product lifecycle information: comparision of
alternative approaches.International Journal of Com-
puter Integrated Manufacturing, 20(7).

Gershenfeld, N., Krikorian, R., and Cohen, D. (2004). The
internet of things.Scientific American, 291(4):76–81.

Kärkkäinen, M., Ala-Risku, T., and Främling, K. (2003).
The product centric approach: a solution to supply
network information management problems?Com-
puters in industry, 52(2):147–159.

Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell,
D., Debaty, P., Gopal, G., Frid, M., Krishnan, V., Mor-
ris, H., Schettino, J., Serra, B., and Spasojevic, M.
(2002). People, places, things: web presence for the
real world.Mob. Netw. Appl., 7(5):365–376.

Langheinrich, M. (2001). Priacy by design - principles of
privacy-aware ubiquitous systems.LNCS 2201, pp.
273-291.

Young, M. (2007). Extensible Supply-chain Discovery
Service Concepts (Internet Draft). Available at
http://www.ietf.org/internet-drafts/draft-young-esds-
concepts-00.txt.

GATHERING PRODUCT DATA FROM SMART PRODUCTS

257


