
EVALUATING CONSISTENCY BETWEEN UML ACTIVITY AND
SEQUENCE MODELS

Yoshiyuki Shinkawa
Department of Media Informatics, Ryukoku University, 1-5 Seta Oe-cho Yokotani, Otsu, Shiga, Japan

Keywords: UML, software engineering, model consistency, formal methods, process algebra.

Abstract: UML activity diagrams and sequence diagrams describe the behavior of a target domain or a system from
different viewpoints. When we use these diagrams for modeling the same matter in an application, these di-
agrams, or the models written by them, must be consistent from each other. However, the evaluation for the
consistency is difficult, since these diagrams have considerably different syntax and semantics. This paper
presents a process algebraic approach to evaluating the consistency between these models. CCS (Communi-
cating Sequential Processes) is used as process algebra.

1 INTRODUCTION

UML activity diagrams and sequence diagrams de-
scribe a target problem domain or a system from two
different contrastive viewpoints. The former mainly
focus on the usage and external behavior of the sys-
tem, whereas the latter deal with the interaction be-
tween components within the system and depict the
internal behavior of it (Ambler, 2004).

In dynamic or behavioral modeling for software
development, one of the most effective uses of these
diagrams is to represent a requirement model by ac-
tivity diagrams, for which the implementation model
is created using sequence diagrams. In this approach,
both the requirement and implementation models
must beconsistent, or in other words, there must be no
conflicts between these models (Elaasar and Briand,
2004).

However it seems difficult to examine and eval-
uate the consistency, since both the models are rep-
resented in the different notations with different syn-
tax and semantics. In addition, the granularity is of-
ten different between these models, which makes the
evaluation more complicated.

In order to evaluate the consistency rigorously, we
first need to reveal the interrelationship between these
two models. This interrelationship can be shown in
the form of the correspondence between each model
element of these models.

However, even though the above element level in-
terrelationship is revealed, it only suggest structural
similarity of the models. For the evaluation of inter-

model consistency, we have to identify

1. what the models intend to express,

2. what conditions must be met for the consistency,
and

3. what inference rules can be applied to conclude
the consistency.

Unfortunately, UML is too vague and complicated
to accomplish the above. We need more formalized
and simplified way to express the behavior of UML
activity and sequence models1.

Various efforts have been made to formalize
UML models, using such formal techniques aslogic
(France et al., 1997),Petri-nets(Hu and Shatz, 2004),
algebraic specification(Favre and Clerici, 1999),
and other formal techniques (McUmber and Cheng,
2001).

The above formal approaches can express the be-
havior and semantics of each individual model rigor-
ously, however few efforts were made to evaluate the
inter-model consistency including activity-sequence
model consistency (Shinkawa, 2006).

This paper presents a formal approach to evalu-
ating the consistency between a UML activity model
and a sequence model. The paper is organized as fol-
lows. In section 2, we discuss the relationships be-
tween a UML activity model and a sequence model
between which the granularity might be different.

1In this paper, we refer to a model composed of UML
activity diagram as anactivity model, or as asequence
modelif it is composed of sequence diagrams.

282
Shinkawa Y. (2008).
EVALUATING CONSISTENCY BETWEEN UML ACTIVITY AND SEQUENCE MODELS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 282-289
DOI: 10.5220/0001699302820289
Copyright c© SciTePress

Section 3 presents a process algebraic representation
of these UML models. CCS (Communicating Se-
quential Processes) (Milner, 1989) is used as process
algebra. Section 4 presents how the consistency be-
tween an activity model and a sequence model is eval-
uated using CCS.

2 INTERELATIONSHIPS
BETWEEN ACTIVITY AND
SEQUENCE MODELS

UML 2.x provides us with thirteen different kinds of
diagrams, which can be classified into two groups of
structural diagramsand behavioral diagrams. The
former includesclass, object, component, deploy-
ment, and packagediagrams, whereas the latter in-
cludesuse-case, sequence, communication, timing,
interaction overview, state-machine, andactivity di-
agrams.

Even though each diagram can expresses various
target domains from various viewpoints, and there are
no definite restrictions on which diagrams to be used
for a specific purpose, the activity diagram and se-
quence diagram perform important roles in behavioral
modeling for business applications and enterprise in-
formation systems. Both diagrams depict the behav-
ioral or dynamic aspects of a system, however the
viewpoints are different, from which the models are
created.

An activity model, which is composed of activ-
ity diagrams, is created from an external viewpoint.
For example, in business applications, they often used
to representbusiness processesor workflowswhich
can be observed externally. On the other hand, a
sequence model is usually created from an internal
viewpoint, and represents interactions between ob-
jects or classes that compose a system. These inter-
actions occur within the system, which cannot be ob-
served externally.

We often create these two models for the same
matter in an application, one of which represents the
external behavior and the other does the internal be-
havior. In such case, no conflicts are allowed be-
tween them, or they must be consistent from each
other. However, the evaluation of the consistency be-
tween these models becomes complicated since the
model elements and their relationships are consider-
ably different between these models. In addition, the
granularity of these models might be different, which
makes the evaluation more complicated.

For this evaluation, we first have to reveal the
structural interrelationship between these two models

which might have the different granularity. Succes-
sively we need to define the meaning of the consis-
tency between the models.

2.1 Structural Interrelationships

An activity model represents the behavior of a system
as a flow ofactions. An action is an atomic unit of the
behavior, which is connected with other actions using
directed arrows calledflows. There are two kinds of
flows defined, namelycontrol flowsandobject flows,
which represent simple control sequences and mes-
sage passing respectively.

In addition to these two basic model elements, the
following complementary elements are provided

• Initial and final nodes: represent the starting and
ending points of an activity model respectively.

• Fork and join nodes: Afork node splits a single
flow into multiple parallel flows, while ajoin node
synchronizes multiple parallel flows into a single
flow.

• Decision and merge nodes: A decision node im-
plements a conditional branch, which splits sin-
gle flow into multiple flows with conditions. Each
flow becomes active only when the associated
condition is true. A merge node consolidates the
above split flows.

• Accept event action and send signal actions: An
event and a signal represent interactions with ex-
ternal participants, e.g. people, systems, or pro-
cesses. An accept event action is an action that
waits for such events, while a send signal action
is an action that generates and sends a signal ac-
cording to the events. Events and signals may oc-
cur asynchronously.

• Exception handlers: An exception handler deals
with exceptional events that occur within the ac-
tivity,

• Data store nodes: A data store node represents a
place for persistent data, e.g. a database system.

• Expansion regions: An expansion region includes
action flows inside, and processes an input collec-
tion like an array. The region is processed in one
of three modes,iteration, parallel, or stream.

• Interruptible activity regions: An action within
these regions can be interrupted by an event fol-
lowed by an action that handles it.

An activity model that is composed of the above ele-
ments can be divided intopartitions, in order to em-
phasize the actors or participants that are responsible
to the activity, or to emphasize the functionality that
each partition performs.

EVALUATING CONSISTENCY BETWEEN UML ACTIVITY AND SEQUENCE MODELS

283

Unlike an activity model, a sequence model repre-
sents the behavior of a system as interactions between
objects, classes, or actors.

The simplest form of a sequence model is made
up of a set oflifelines along with the messages that
flow between them. A point on a lifeline, from which
a message is leaving, is called asending event occur-
rence, while a point at which a message is arriving is
called areceiving event occurrence. There are sev-
eral types of messages defined, namelysynchronous
messagesand theirreturn values, asynchronous mes-
sages, creation messages, lost messages, and found
messages.

In addition to the above basic elements, the fol-
lowing supplementary model elements are defined.

• Execution occurrences: An execution occurrence
is a thin rectangle on a lifeline, which indicates
that the lifeline is active. If the lifeline represents
an object or class, it means the execution of meth-
ods.

• Interaction occurrences: An interaction occur-
rence represents a reference to another sequence
model.

• Gates: A gate is used to connect a message to a
port outside the current sequence model.

• State invariants: A state invariant expresses a con-
straint at a specific point on a lifeline.

• Combined fragments: A combined fragment is
used to express complicated control flows, e.g. it-
erations, concurrency, conditional breaks, and so
on. The following types of combined fragments
are defined.

– alt: indicates theif-then-elsestructure
– opt: indicates the simpleif structure
– break: indicates the exit from the fragment
– loop: indicates the iteration structure
– par: indicates the concurrent or parallel execu-

tion
– seq: indicates the sequence of the messages is

imposed only to the same lifeline in this frag-
ment

– strict: indicates the messages must be pro-
cessed strictly in the given order in this frag-
ment

– critical: indicates the fragment is acritical sec-
tion, that is, it must not be interrupted

– assert, ignore, consider, neg: these are used as
comments to the fragment.

As shown above, an activity model and a sequence
model consist of considerably different model ele-
ments. One of the most fundamental model elements

in these models are anactionand amessagerespec-
tively.

Each action in an activity model is performed by
either a person or a system. In case of a system, a
method in an object or a class is invoked manually or
automatically. On the other hand, a message in a se-
quence model reaches to either an object, a class, or
an actor. In case of an object or a class, an method in
it is invoked at the receiving event occurrence. There-
fore, actions and messages or receiving event occur-
rences are tied together through methods, as far as
they are dealt with objects or classes.

In order to define the structural interrelationships
between activity models and sequence models, we
first regard actions in the former are interrelated with
receiving event occurrences in the latter. This defini-
tion implies that the flows in the former are interre-
lated with the messages in the latter.

Based on this basic interrelationship between
these models, other model elements can be interre-
lated as shown in Table 1.

Table 1: Interrelationships between activity and sequence
models.

Activity Model Sequence Model
Initial node The topmost sending event

occurrence
Final node The bottommost receiving

event occurrence
Decision/Merge node alt or opt fragment
Fork/Join node par fragment
Accept event action gateand a dedicated

lifeline
Send signal action gateand a message to it
Exception handler found messageand a

dedicated lifeline
Data store node A dedicated lifeline for

data store
Expansion regions Combined fragment
parallel par
iterate loop
stream arguments of a message

There are several elements that are not interre-
lated, e.g. interruptible activity regionin a activity
model orstate invariantin a sequence model. These
are referred to in section 3.

2.2 Difference in Granularity

An activity model and a sequence model are often
created from different viewpoints, involving differ-
ent stakeholders. Therefore, classes and the meth-
ods within them are differently defined between those

ICEIS 2008 - International Conference on Enterprise Information Systems

284

models, with different granularity and functional
boundaries.

The word “granularity” is often used vaguely in
several contexts. However in our consistency eval-
uation, methods in classes or objects are the com-
mon units between an activity model and a sequence
model, in order to match an action with a receiving
event occurrence. Therefore we only focus on the
granularity of the methods in this paper. When con-
sidering the granularity, there are two different stan-
dards to determine it. One is the abstraction level, and
the other is the scope of input to be processed.

The granularity based on the abstraction level can
place the associated methods in order. The granularity
of a method with higher abstraction level islarger or
coarserthan that with lower abstraction level. For ex-
ample, in modeling the betting round of poker games,
a method “bet(intx)” is more abstract than that of
“raise(int x)”, “call()”, and ‘fold()”. The granularity
based on the abstraction level is formally defined as
follows.

1. Let f andg be methods that are defined as

f : P1×·· ·×Pm (= P) → R

g : Q1×·· ·×Qn (= Q) → R

2. If {Pi} ⊆ {Q j} and∀~x∈ P ∃~y∈ Q [f (~x) = g(~y)]
hold, the methodg has larger granularity thenf ,
based on the abstraction level.

The granularity of a methodf is denoted byγ(f),
and γ(f) � γ(g) represents that the granularity ofg
is larger than or equals tof . We can define the inter-
section and difference of methods in such case. As-
sumingγ(f) � γ(g),

f ∩g = f

g− f : Q1×·· ·×Qn−{~y}→ R

On the other hand, the granularity based on the
input scope is defined as follows.

1. Let two methodsf andg have the same signature.

2. If If Dom(f) ⊆ Dom(g) and

∀~x∈ Dom(f) [f (~x) = g(~x)]

hold, the methodg has the larger granularity than
f .

3. If Dom(f) ∩ Dom(g) 6= /0, Dom(f) * Dom(g),
Dom(f) + Dom(g), and

∀~x∈ Dom(f)∩Dom(g) [f (~x) = g(~x)]

hold, f and g intersect, and have the different
functional boundaries.

The intersection and difference of methods can also
be defined in such case as follows.

f ∩g : Dom(f)∩Dom(g) → Im(g)

g− f : Dom(g)−Dom(f) → Im(g)

where Im(g) is the co-domain ofg.
We can define the common methods between an

activity model and a sequence model using the above
intersection of methods, when the granularity or func-
tion boundaries are different between them. The de-
tail is discussed in section 4.

3 EXPRESSING THE BEHAVIOR
USING PROCESS ALGEBRA

As discussed in section 1, an activity model represents
the external behavior of a system, while a sequence
model represents the internal behavior of it. In other
words, a sequence model realizes the corresponding
activity model. From this viewpoint, we first define
the meaning ofconsistencyas “all the behavior in an
activity model must occur in the corresponding se-
quence model, but not vice versa”. Or in other words,
any action sequence in the activity model must oc-
cur as a series of event occurrences in the sequence
model. However, this definition is still vague, and we
need to define the behavioral consistency more rigor-
ously. For this purpose, we introduceprocess alge-
bra, by which we express the behavior more rigor-
ously and evaluate the consistency accurately.

3.1 Process Algebra and Behavioral
Equivalency

Process algebra deals with system behavior as al-
gebraic expressions using rigorously defied calcu-
lus rules. There have been several process algebras
proposed, which include CCS (Milner, 1989), CSP
(Hore, 1985), and ACP (Bergstra and Klop, 1985).
Among them, we use CCS as a consistency evaluation
tool, since it treats behavioral equivalency in depth,
and there is a standardized specification language LO-
TOS (Ardis, 1994) based on CCS. CCS represents
each behavior of a system as an algebraic expression
called a process behavior expression or process ex-
pression in short. These process expressions are de-
fined recursively as shown in the upper part of Table 2.
The most primitive unit of a CCS process expression
is an action, which transforms a process to another
one. CCS regards a system as a transition system be-
tween processes caused by the above actions. Axioms
or inference rules for these transitions are defined as
CCS semantics shown in the lower part of Table 2.

EVALUATING CONSISTENCY BETWEEN UML ACTIVITY AND SEQUENCE MODELS

285

Table 2: CCS Syntax and Semantics.

CCS Syntax
L = A ∪A (A : set of namesA : set of conames)
Act= L ∪{τ} (τ : invisible action)
X : a set of process variables
K : a set of process constants
E : a set of process expressions
E includesX andK and contains the following
expressions, whereE andEi are already inE
α.E a Prefix
∑k∈I Ei a Summation (ifI = {0,1} thenE1 +E2)
E1|E2 a Composition
E\L a Restriction
E[f] a Relabelling (f is a relabelling function)
µxj{xi = Ei} a Recursion
CCS Semantics

ACT :
α.E

α
−→E

SUM j :
E j

α
−→E′

j

∑k∈I Ei
α

−→E′
j

(j ∈ I)

COM1 : E
α

−→E′

E|F
α

−→E′|F
COM2 : F

α
−→F ′

E|F
α

−→E|F ′

COM3 : E
l

−→E′ F
l̄

−→F ′

E|F
τ

−→E′|F ′

RES : E
α

−→E′

E\L
α

−→E′\L
(α, ᾱ /∈ L) REL : E

α
−→E′

E[f]
f (α)
−→E′[f]

CON : P
α

−→P′

A
α

−→P′
(A

de f
= P) REC : E j{µx̃.Ẽ/x̃}

α
−→E′

µx̃.Ẽ
f (α)
−→E

P
α

−→ P′ means a transition from stateP to
stateP′ by actionα.

Behavioral equivalency between two processes
is defined based on the transitions they can make.
Many kinds of equivalency relations can be defined in
CCS, however the most useful ones arestrong equiv-
alence, weak equivalence, and observation congru-
ence, which are shown in Table 3. Among these
equivalency relations,observation congruenceseems
most suitable for our consistency evaluation since

1. it can deal with an internal or invisible action “τ”
which can represent human actions in an activity
model or internal codes in a sequence model.

2. we can substitute any processes with observation-
ally congruent other processes, that is, the obser-
vation congruence∼= is a congruence relation.

3.2 Transforming an Activity Model
into CCS Expressions

In a UML activity model, an action is a basic unit
of the behavior and can be regarded as a member
of Act (a set of actions) in CCS. Since an action in
an activity model is associated with a method with
arguments and a return value, it can be denoted by
a(~x). Onother model elements in an activity model
are represented in the form of CCS as follows.

Table 3: Equivalency between CCS Expressions.

Strong Bisimulation and Strong Equivalence
Let P, Q be processes, a binary relationS⊆ P×P
for all α ∈ Act

∀α(P
α

−→ P′) ∃Q′(Q
α

−→ Q′ and〈P′,Q′〉 ∈ S)

∀α(Q
α

−→ Q′) ∃P′(P
α

−→ P′ and〈P′,Q′〉 ∈ S)
∼= ∪ S : S is strong bisimulation
P and Q is strongly equivalent ifP∼ Q.
Bisimulation and Weakly Equivalence
Let P, Q be processes, a binary relationS⊆ P×P
for all α ∈ Act

∀α(P
α

=⇒ P′) ∃Q′(Q
α̂

=⇒ Q′ and〈P′,Q′〉 ∈ S)

∀α(Q
α

=⇒ Q′) ∃P′(P
α̂

=⇒ P′ and〈P′,Q′〉 ∈ S)
≈= ∪ S : S is bisimulation
P and Q is weakly equivalent ifP≈ Q
where
P

α
=⇒ P′ meansP(

τ
−→)∗

α
−→ (

τ
−→)∗P′

t = α1 . . .αn
t̂ ∈ (Act)∗ a string made from t, removing all “τ”s

t
=⇒

de f
=

α1−→ (τ)∗ α2−→ . . .(τ)∗ αn−→ (τ)∗
Observation Congruence
P and Q are observationally congruent, if
∀α(P

α
=⇒ P′) ∃Q′(Q

α
=⇒ Q′ andP′ ≈ Q′)

∀α(Q
α

=⇒ Q′) ∃P′(P
α

=⇒ P′ andP′ ≈ Q′)
we writeP∼= Q when P and Q satisfies the above.

Initial and Final Nodes. An actiona that is directly
connected to the initial node means the first action
to be taken in the model, while an actionb that is
directly connected to the final node means the last
action. Therefore the whole model can be denoted
by a.E.b, whereE is an interim process betweena
andb. The process prefix formE.b is not a standard
CCS notation, however a CCS based specification
language LOTOS introduces this form.

Fork and Join Nodes. When an actiona is split
into n processesE1, . . . ,En, which subsequently are
merged into an actionb, the whole process can be
expressed asa.(E1| · · · |En).b.

Decision and Merge Nodes.In order to represent a
decision node, we need to expressguard conditions
associated with it. However CCS does not provides
us with any way to describe the conditions. Therefore
we introduce a new property to actions, which
associates a condition with an action. A condition
c that is associated with an actiona is denoted by
a[c] in this paper, similarly to LOTOS. If one of
the actionsb1, . . . ,bm is performed after an actiona
according to the conditionsc1, . . . ,cm, the process is
expressed asa.(b1[c1]+ · · ·+bm[cm]).

Accept Event Actions and Send Signal Actions.
An accept event action is an action that receive an

ICEIS 2008 - International Conference on Enterprise Information Systems

286

asynchronous message to be processed. This action
can be represented as a CCS actionr, and the whole
process is expressed using the CCS composition as
E1|r.E2, whereE1 is a process for the normal case and
E2 is a process to handle the asynchronous message.
On the other hand, a send signal action creates an
instance of a signal, which is transmitted to another
action calledreceive signal action.These send/receive
actions are expressed as CCS actions associated with
a name and its co-name. The action with the co-name
does not occur in the CCS expression if the receive
signal action belongs to another activity model.

Exception Handler. An exception handler is
an action that deals with exceptional events. An
exceptional event may occur synchronously or asyn-
chronously according to the type of the exception. A
synchronous exception handler is expressed similarly
to an action after a merge node. On the other hand,
in case of an asynchronous exception, there are two
possible behaviors that the process shows. One is
the behavior that the exception handler interrupts
the normal process to terminate it. The other is the
behavior that the handler is concurrently scheduled
with the normal process. Assuming the exception
handler ise, the former is expressed in CCS as∑

i
Ei .e

whereEi is a possible process before the exception,
while the latter is expressed asE|∑

i
Ei .e, whereE

represents the normal process.

Data Store Nodes.A data store node itself is not a
part of the behavior, however the access to the data
store node can be regarded as an action to be included
in the process.

Expansion Regions.An expansion region deals with
a list or array of input data in eitheriterative, parallel,
or stream mode. An iterative mode represents a
while loop, and can be expressed as a recursion
µx.[x = E.(x+ s)], whereE is the process within the
region ands is the first action after the region. A
parallel mode represents a concurrent processing, and
expressed asE| · · · |E. A stream mode represents that
all the input elements are processed at the same time,
and can be simply expressed asE in CCS.

Interruptible Activity Region. An interruptible ac-
tivity region represents a region within which any ac-
tions can be interrupted by other events. The behav-
ior of this region resemble an asynchronous exception
handler, and can be expressed as∑

i

Ei .e, wheree is an

event handler action.

3.3 Transforming a Sequence Model
into CCS Expressions

In a UML sequence model, a message or its receiving
event occurrence corresponds to an action in an activ-
ity model and an action in CCS expressions. When
synchronous messagesm1, . . . ,mp flow in the model
in this order, the process is expressed as a series of
action prefixesα.m1.mp, whereα is the initial ac-
tion of the sequence model, which represents the exe-
cution occurrence that includesm1.

On the other hand, an asynchronous message
splits the process into two concurrent processes, and
therefore the process is expressed asE1.(E2|a.E3),
whereE1 is the process before the asynchronous mes-
sagea, E2 is the normal process aftera, andE3 is a
yieled process bya.

More complicated control structures provided by
combined fragmentsare expressed in the form of
CCS as follows.

Alt Fragments and Opt Fragments. An alt frag-
ment represents theif-then-elsestructure, and can
be expressed in CCS usingguard conditionsas
a1[c1].E1 + a2[c2].E2, whereai is the first action in
the upper or the lower section of the fragment, and
ci is the guard condition that activate the upper or
lower section. ai.Ei represents the process within
the section. Anopt fragment represents a simpleif
structure, and can be expressed asa[c].E.

Loop Fragments. A loop fragment is expressed as
µx.[E.(x[c] + s[¬c])], wherex is a process variable
that represents the fragment,E is the process expres-
sion within the fragment,c is the guard condition
for the loop, ands is the first action taken after the
fragment.

Break Fragment. A break fragment represents a
process to terminate the outer fragment to which this
fragment directly belongs. This fragment forms an
exit point of the outer fragment. The break fragment
is associated with a conditionc for terminating the
outer process, and the outer fragment is expressed
as E1.(E2[c].0 + E3[¬c]), where E1 is the process
before the break fragment,E2 is the process within
the break fragment, andE3 is the process after the
break fragment.

Par Fragments. A par fragment represents a con-
current execution of processes and simply expressed
in CCS using the process composition asE1| · · · |En,
where Ei is the process within each section in the
fragment.

EVALUATING CONSISTENCY BETWEEN UML ACTIVITY AND SEQUENCE MODELS

287

Critical Fragments. A critical fragment represents
a process that halts all other processes outside the
fragment. In order to implement this fragment, we
need a lock mechanism in CCS. For this purpose, we
introduce a special variablel that represents a lock,
and special actions lock(l) and unlock(l) which set
and reset the lock respectively. The critical fragment
is expressed as lock(l).E.unlock(l), while all the
other processes that are concurrently performed with
this fragment are associated the condition “the lockl
is reset”.

Seq Fragment. A seq fragment represents that the
sequence of messages can be interchanged within the
fragment. A process within the fragment is expressed
as a summation of process prefixes∑

i j 6=ık

ai1.ai2.ain,

whereai is an action that represents a message in the
fragment.

Strict Fragments. A strict fragment represents that
the sequence of messages must be arranged along the
lifelines. In CCS expressions, action prefixes satisfy
this constraint, therefore the process can be expressed
as a1.a2.an, whereai means theith message in
the fragment.

Other Fragment Types. Other fragment types like
assert, ignore, etc. are used to make comments to a
sequence model. Therefore they also are treated as
comments in CCS expressions.

In addition to the above model elements, there are
several supplementary elements, namely,gatesand
state invariants. A gate is used to send a message
to, or to receive a message from an object outside the
model. A gate can be implemented in CCS by con-
necting the processes likeE1.E2 whereE1 is the pro-
cess before the gate andE2 is the process outside the
model. A state invariant is a condition that must be
satisfied after a specific message, however it can be
treated as a comment in CCS.

4 CONSISTENCY EVALUATION

Once an activity model and a sequence model are ex-
pressed in the form of CCS process expressions, we
can evaluate the equivalency between them using the
observation congruence relation as discussed in sec-
tion 3.1. However, there are several considerations to
be taken into account.

Firstly, all the corresponding actions between
these models must have the same granularity and
functional boundaries as discussed in section 2.2.
Secondly, there might be the actions that occur in only

one model type, e.g. an action associated with human
interactions would occur only in the action model,
whereas an action associated with the internal codes
of a system would occur only in the sequence model.

In order to adjust these differences between the
models, the process expressions may have to be re-
constructed using the communized actions based on
the communized methods that were introduced in sec-
tion 2.2. Assuming there are two sets of CCS expres-
sionsE = {E1, . . . ,Em} andF = {F1, . . . ,Fn} that are
derived from an activity model and a sequence model
respectively, this reconstruction can be performed in
the following way.

1. Let {a1, . . . ,ap} and {b1, . . . ,bq} be the actions
which are included inE andF respectively.

2. For each actionai in the activity models, identify
a set of activities{b j} in the sequence model that
satisfies

∀ j,k (j 6= k) [ai ∩b j 6= /0, b j ∩bk = /0]

3. Define a new actionai j = a j ∩ b j . If there is no
suchb j , replaceai by the CCS invisible actionτ.
Similarly replaceb j by τ if there is no suchai .

4. Decompose Ei(a1, . . . ,ap) into a set of
expressions {Ei j (a1 j1,a2 j2, . . . ,an jn)} and
Ei(ã1, ã2, . . . , ãp), whereãi = ai −

⋃

j

(ai ∩b j).

5. Similarly, decompose Fi(b1, . . . ,bq) into
{Fi(a j11,a j22, . . . ,a jqq} and Fi(b̃1, b̃2, . . . , b̃ jq),

whereb̃ j = b j −
⋃

i

(ai ∩b j).

6. Each Ei(a1, . . . ,ap) and Fi(b1, . . . ,bq) are ex-
pressed using the common actions{ai j} as

Ei = ∑
j1··· jp

Ei(a1 j1, . . . ,ap jp)+Ei(ã1, . . . , ãp)

Fi = ∑
j1··· jq

Fi(a j11, . . . ,a jqq)+Fi(b̃1, . . . , b̃q)

Following the above steps, the CCS expressions for
the activity model and sequence model include the
set of common activities{ai j} and the exclusive ac-
tions{ãi} or {b̃ j}, along with the invisible action “τ”.
Since{ãi} and{b̃ j} are not interrelated between the
models, they are to be replaced by “τ”.

Even after commonizing the actions between the
models, there are two more considerations in our ap-
proach. One is the guard conditions that are not in-
cluded in the original CCS definition. The other is
the process prefix or the sequential compositionE1.E2
that also are not included originally. Since there is no
procedure provided to evaluate the equivalency be-
tween the process expressions with these elements,
we have to develop a procedure.

ICEIS 2008 - International Conference on Enterprise Information Systems

288

A process prefixE1.E2 can be transformed into a
a regular CCS expression as follows.

1. Identify the final elements{A j} in E1. A final ele-
ment is either an actiona j that occurs in the form
of a j .0 or a recursionµx.[x = E].

2. Identify the initial elementsBk in E2. A initial
element is either an action with no prefix or a re-
cursion with no prefix.

3. E1.E2 is transformed into∑
i, j
E i .Ai .B j .F j whereE i

is the process that ends withAi andF j is the pro-
cess that begins withB j .

If Ai is a recursion, it is expressed asµx.[x= E.(x+0)]
in our approach, andE.(x+ 0) can be decomposed
in the above way. In case ofB j , it is expressed as
µx.[x = E.(x+E)] and can be treates similarly.

As for the guard conditions, we can introduce the
observation congruence with a condition “c”, which
is denoted byP∼=[c] Q as follows.

∀α(P
α[c]
=⇒ P′) ∃Q′(Q

α[c]
=⇒ Q′andP′ ≈ Q′)

∀α(Q
α[c]
=⇒ Q′) ∃P′(P

α[c]
=⇒ P′ andP′ ≈ Q′)

In the above definition,α[c] means that the actionα
can be taken only under the conditionc. This con-
ditional transition can also be applied to the CCS se-
mantics in Table 2,

Ideally, one CCS expression in the activity model
corresponds to that in sequence model. However, a
behavior in the activity model may correspond to mul-
tiple behaviors in the sequence models, or vice versa.
In such case, we need to decompose CCS expres-
sions into appropriate sizes. This decomposition is
performed by extracting a continuous part of an ex-
pression.

5 CONCLUSIONS

A process algebraic approach to evaluating consis-
tency between a UML activity model and a sequence
model is proposed. The behavior of an activity model
is characterized by a series of actions, while that of an
sequence model is characterized by a series of mes-
sages. The behavior of these models must be con-
sistent if they represent the same problem domain or
system. The consistency can be evaluated using CCS,
a kind of process algebra, if the behavior is expressed
in the form of CCS process expressions.

For this evaluation, the granularity and functional
boundaries of corresponding actions must be equal-
ized between these models. The equalization is per-
formed by a set theoretic adjustment. Even though

activity and sequence models show very different ap-
pearances, CCS can express them in the unified form.

The behavioral equivalency, which forms the
foundation of the consistency between models, is
evaluated using CCS observation congruence rela-
tion. This relation is extended to deal with conditions
that are introduced to represent the complicated con-
trol flows in UML models. Similar to the differences
in each action, each CCS expression might have the
different granularity from each other. It can be re-
solved by decomposing the expressions.

REFERENCES

Ambler, S. W. (2004).The Object Primer, Third Edition.
Cambridge University Press.

Ardis, M. A. (1994). Lessons from using basic LOTOS.
In Proc. of the 16th International Conference on Soft-
ware Engineering (ICSE94), pages 5–14. EEEE.

Bergstra, J. A. and Klop, J. W. (1985). Algebra of Com-
municating Processes with Abstraction. InTheoreti-
cal Computer Science, Elsevier Science, volume 37,
pages 77–121.

Elaasar, M. and Briand, L. C. (2004).An Overview of UML
Consistency Management. Technical Report SCE-04-
18, Carleton University.

Favre, L. and Clerici, S. (1999). Integrating uml
and algebraic specification techniques. InProc.
of 32nd International Conference on Technology of
Object-Oriented Languages and Systems(TOOLS’99),
pp.151-162. IEEE.

France, R. B., Bruel, J. M., Larrondo-Petrie, M. M., and
Shroff, M. (1997). Exploring the semantics of uml
type structures with z. InProc. of 2nd IFIP confer-
ence, Formal Methods for Open Object-Based Dis-
tributed Systems(FMOODS’97), pp.247-260. Chap-
man and Hall.

Hore, C. A. R. (1985). Communicating Sequential Pro-
cesses. Prentice-Hall International UK Ltd.

Hu, Z. and Shatz, S. M. (2004). Mapping UML Diagrams to
a Petri Net Notation for System Simulation. InProc.
of the International Conference on Software Engineer-
ing and Knowledge Engineering (SEKE), pages 213–
219.

McUmber, W. E. and Cheng, B. H. C. (2001). A gen-
eral framework for formalizing uml with formal lan-
guages. Inthe 23rd International Conference on Soft-
ware Engineering (ICSE 2001), pp.433-442. EEEE.

Milner, R. (1989).Communication and Concurrency. Pren-
ticeHall.

Shinkawa, Y. (2006). Inter-Model Consistency in UML
Based on CPN Formalism. InProc. of the 13th Asia
Pacific Software Engineering Conference, pages 411–
419. EEEE.

EVALUATING CONSISTENCY BETWEEN UML ACTIVITY AND SEQUENCE MODELS

289

