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Abstract: This paper proposes an effective mutation operator for the cooperative genetic algorithm (CGA) to solve a 
nurse scheduling problem. The nurse scheduling is very complex task for a clinical director in a general 
hospital. Even veteran director requires one or two weeks to create the schedule. Besides, we extend the 
nurse schedule to permit the change of the schedule. This permission has explosively increased computation 
time for the nurse scheduling. We propose the new mutation operator to solve the problem. The CGA with 
the new mutation operator has brought surprising effective results. 

1 INTRODUCTION 

A general hospital consists of several sections such 
as the internal medicin department or the pediatrics 
department. About fifteen to thirty nurses are 
working in each section. A clinical director of the 
section arranges a shift schedule of all the nurses in 
the section every month. Constituting the nurse 
schedule (Ikegami 2001), or the nurse scheduling, is 
very complex task for the clinical director. In our 
investigation, even a veteran director needs one or 
two weeks for the nurse scheduling. Then, computer 
software for the nurse scheduling has recently come 
to be used in the hospital. 

In conventional ways (Kawanaka 2002, Itoga, 
2003) using the cooperative genetic algorithm 
(CGA), a crossover operator is only employed for 
the optimization, because it does not lose 
consistency between chromosomes. A mutation 
operator is considered to lose the consistency. In 
contrast, we have proposed an effective mutation 
operator for the CGA which does not lose 
consistency of the schedule (Ohki, 2007). The CGA 
with the mutation operator has brought surprising 
effective results which has never been brought by 
the conventional algorithm. On the other hand, 
Burke performs a lot of interesting studies about the 
nurse roster at the large hospital in the Europe 
(Burke 2004).  

In this paper, we rearrange the nurse scheduling 
problem to permit the change of the schedule. This 
permission has complicated a problem and 

explosively increased computation time for the nurse 
scheduling. Now, we need a new technique to make 
the nurse scheduling speed up. We propose a new 
mutation operator to solve this problem. 

2 OVERVIEW OF NURSE 
SCHEDULING 

On the nurse scheduling, we have to consider many 
requirements (Ohki, 2007), such as duty load of each 
nurse, fairness of assignment of day time and night 
duty, intensiveness of night duty. We have arranged 
these many requirements for twelve penalty 
functions. These twelve penalty functions are 
summarized in one penalty function, E(g), for 
performing a population. 

In the CGA, the population represents the whole 
nurse schedule of one month as shown in Fig.1 
(Ohki, 2007). Each individual is defined in a 
chromosome code which shows one-month schedule 
of a nurse. The individual consists of the duty 
symbols as shown in Fig.2. The duty sequence 
consists of thirty symbols, since one month includes 
thirty days in this practical example.  

Initially, the population is randomly generated as 
satisfying the necessary number of nurses at every 
duty time slot. In this paper, the necessary number of 
nurses is specified as ten, six and five for the day 
time duty on a week day, Saturday and Sunday 
respectively, three for the semi night duty and three 

249
Uneme S., Kawano H. and Ohki M. (2008).
NURSE SCHEDULING BY COOPERATIVE GA WITH VARIABLE MUTATION OPERATOR.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - AIDSS, pages 249-252
DOI: 10.5220/0001694802490252
Copyright c© SciTePress



 

for the mid night duty respectively.  
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Figure 1: Population is composed of one-month schedules 
of each nurse. 
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Figure 2: An individual coded in chromosome. The 
symbols, D, S, M, H, T, R denote daytime duty, semi-
night duty, mid-night duty, given holiday, training and 
requested holiday respectively. 
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Figure 3: Basic optimization cycle of the CGA only 
employs with the crossover operator. 

An overview of the optimization only with the 
crossover operator is shown by Fig.3. First, two 
hundreds pairs of the individual are selected as 
parents for the crossover. One of the pair is selected 
from the population under the roulette selection 
manner. The roulette selection gives an individual 
with higher penalty. This manner tends to select the 
worse individual. Another one of the parent pair is 
randomly selected from the population. Exchanging 
parts of the individuals divided at two points of the 
chromosome, two new pairs of individual are 
generated as children. This exchanging process does 

not exchange the fixed duties, such as the meeting, 
the training and the requested holiday. These child 
pairs are temporally returned to the original nurse 
position respectively. The temporal population with 
the children is performed by the penalty function. 
After all the temporal populations have been 
performed, one pair giving the smallest penalty is 
selected for the next generation. 

3 EXTENSION OF NURSE 
SCHEDULING 

In this research, we extend the nurse schedule 
problem to permit the change of the schedule. In fact, 
one or two changes appear in the past duty days of 
the current month. We consider the following cases: 
(1) A certain nurse took a holiday on a duty date, 
(2) A certain nurse worked in a holiday fixed day, 
(3) Two nurse’s shift were changed, 
(4) Acertain nurse resigned from his/her job, 
(5) A certain nurse increased newly. 

When these rose in the past date, the number of day 
time, semi-night and mid-night duties of some 
nurses must be changed. Although these duty days 
must be fair for all nurses in the section, nursing 
level must be kept at each duty time slot. Then the 
director has to consider the change of the schedule.  

In this paper, we asume that a change has been 
occurred in the past two weeks and handle the 
optimization of coming four weeks as shown in 
Fig.4. In the optimization of the four weeks, a new 
penalty function is defined as F13. This penalty 
counts the differences between duty symbols on the 
3rd and 4th weeks of the original schedule and them 
of the newly optimizaed schedule. Therefor, the total 
penalty function, E(g), is defined as the summation 
of thirteen penalty functions.  

1st week 2nd week 3rd week 4th week

original schedule

3rd week 4th week 1st week 2nd week

next monthcurrent month

newly optimized
schedule

new penalty about 
defference F13

current month

 
Figure 4: Permission of the change of the schedule in the 
past two weeks. The red triangle denotes the schedule 
change. 

 

ICEIS 2008 - International Conference on Enterprise Information Systems

250



 

4 VARIABLE MUTATION 
OPERATOR 

We have proposed the CGA with the mutation 
operator for the nurse scheduling in the manuscript 
(Ohki, 2007). When the conventional nurse 
scheduling is handled, the technique has given 
results good enough. On the other hand, the 
extension of the nurse scheduling to permit its 
change complicates the problem and explosively 
increases computation time. The conventional 
technique is not effective enough for the extended 
problem. Then we propose a new mutation operator. 

We have examined the extended nurse 
scheduling using the conventional mutation. The 
conventional mutation operator whose mutation 
interval is defined as 150 generations works most 
effective. Since the mutation interval is fixed, the 
mutation is executed at the same frequency anytime. 
When the optimization stagnates long time, the 
mutation should be executed. In contrast, when the 
optimization goes steadily, the mutation should not 
be executed. An optimization speed is defined as 
follows to explain progress of the optimization, 

                   ∑
−

=

−=
1

0
)(1)(

gN

ig

igE
N

gA ,                    (1) 

                )()1()( gAgAgV −−= ,                      (2) 

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

1 0 2 0 0 1 0 7 0 0 1 1 2 0 0 1 1 7 0 0 1 2 2 0 0 1 2 7 0 0 1 3 2 0 0
g e n e r a t i o n  g

pe
na

lty
 E

 &
 a

ve
ra

ge
 A

0

0 . 5

1

1 . 5

2

op
tim

iz
at

io
n 

sp
ee

d 
V

 
(a)10200-13200 

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

3 8 4 0 0 0 3 8 4 5 0 0 3 8 5 0 0 0 3 8 5 5 0 0 3 8 6 0 0 0 3 8 6 5 0 0 3 8 7 0 0 0
g e n e r a t i o n  g

pe
na

lty
 E

 &
 a

ve
ra

ge
 A

0

0 . 5

1

1 . 5

2

op
tim

iz
at

io
n 

sp
ee

d 
V

 
(b)384000-387000  

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

9 9 3 6 0 0 9 9 4 1 0 0 9 9 4 6 0 0 9 9 5 1 0 0 9 9 5 6 0 0 9 9 6 1 0 0 9 9 6 6 0 0
g e n e r a t i o n  g

pe
na

lty
 E

 &
 a

ve
ra

ge
 A

0

0 . 5

1

1 . 5

2

op
tim

iz
at

io
n 

sp
ee

d 
V

 
(c) 993600-996600 

Figure 5: The total penalty function, E(g), the average, 
A(g), and the optimization speed, V(g) in the beginning (a), 
the middle (b) and  the end (c) of the optimization using 
the conventional mutation operator respectively. 

where Ng denotes the number of generations for 
average. Examples of the value of the total penalty 
function, E(g), the average, A(g), and the 
optimization speed, V(g), are shown in Fig.5. 
Though the optimization goes well, the mutation is 
executed too early in some cases. In some other 
cases, though the optimization has already stagnated, 
the mutation is executed too late. 

We propose the variable mutation operator to 
improve such an obstruction. The new operator 
mutates the schedule when the optimization speed 
satisfies the following condition, 

ε<)(gV , 
where ε  denotes a threshold value. This condition 
means that the optimization has stagnated. 

In some cases, the optimization does not advance 
for several generations after the mutation, as shown 
in Fig.5. The mutation does not work during Gg 
generations after the mutation is executed once. We 
call such generations the guard interval. The 
mutation is executed in the appropriate generation 
by means of such a technique. 

5 PRACTICAL EXPERIMENTS 

Here, we set a problem as follows. Let the number 
of nurses and the number of duty days be twenty-
three and twenty-eight respectively. We handle a 
case when one change has been occurred in the past 
two weeks. This situation is one of typical and 
practical case in Japanese hospital which we have 
investigated. 

First, we have considered about the guard 
interval. We tried the extended nurse scheduling by 
using the variable mutation operator under several 
conditions as shown in Fig.6. This result shows that 
the guard interval can be easily decided in wide 
range. Here, we decide it as fifty. 

Next, we have considered about the threshold, ε . 
The variable mutation operator with the guard 
interval, 50, and the threshold, 0.1, has given the 
best result as shown in Fig.6, (d). We have tried 
several thresholds less than 0.1 as shown in Fig.7. 
This result shows that the threshold can be easily 
decided in wide range less than 0.1. The variable 
mutation operator with any values of threshold has 
given better results than the conventional one. 

Finally, we have examined the extended nurse 
scheduling using the variable mutation operator.  
The mutation is executed in appropriate generations 
as shown in Fig.8. This means that the variable 
mutation operator works effectively. 
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(b) Gg =20 
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(c) Gg =30 

380

385

390

395

400

405

100 200 300 400 500 600 700 800 900 1000
generation g [10^ 3]

pe
na

lty

ε=0.1
ε=0.25
ε=0.3
ε=0.4
ε=0.5
conventional

 
(d) Gg =50 

Figure 6: Comparison among optimization results with 
several values of the guard interval. We have tried the 
optimization under each condition ten times. We took 
average of each ten trials. 

6 CONCLUSION 

In this paper, we have extended the nurse scheduling 
problem to permit the change of the schedule. This 
extension complicates the problem and explosively 
increases computation time. To improve this 
difficulty, the new mutation operator with variable 
interval is proposed. The variable mutation operator 
has several parameters which can be defined in wide 
range. This means that the new technique possesses 
high versatility. 
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Figure 7: Results of the variable mutation operator with 
the threshold less than 0.1. We have tried the optimization 
under each condition ten times. We took average of each 
ten trials. 
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(b) 01.0],606000,603000[ =∈ εg  

Figure 8: The total penalty function, E(g), the average, 
A(g), and the optimization speed, V(g), of the optimization 
using the variable mutation operator respectively. 
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