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Abstract: There is an increased imperative for pervasive service discovery architectures, to aid mobile users for time 
critical tasks in service rich ad-hoc environments. As such, there is a need for an innovative technology for 
semantically-driven pervasive service discovery by enabling semantic reasoning engines to function in an 
effective and efficient manner on resource-constrained mobile devices and by incorporating context-
awareness to provide relevant services to the user. We outline several optimisation and branch ranking 
strategies for pervasive reasoning to meet this goal and provide a performance evaluation of our approach. 

1 INTRODUCTION 

Studies such as (Roto & Oulasvirta, 2005) have 
established that mobile users typically have a 
tolerance threshold of about 5 to 15 seconds in terms 
of response time, before their attention shifts 
elsewhere, depending on their environment. Thus, 
service discovery architectures that operate in 
mobile environments must cope with the very 
significant challenges of not merely finding relevant 
services, but being able to do so rapidly in a highly 
dynamic and varying context.  

The limitations of syntactic, string-based 
matching for web service discovery coupled with the 
emergence of the semantic web implies that next 
generation web services will be matched based on 
semantically equivalent meaning, even when they 
are described differently (Broens, 2004), using 
OWL-DL  which is based on Description Logic 
(DL) (Baader, Calvanese, McGuinness, Nardi & 
Patel-Schneider, 2003). While current service 
discovery architectures such as Jini (Arnold, 
O'Sullivan, Scheifler, Waldo & Woolrath, 1999) and 
UPnP (UPnP, 2007) use either interface or string 
based syntactic matching, there is a growing 
emergence of  OWL-S semantic matchmakers such 
as CMU Matchmaker (Srinivasan, Paolucci & 

Sycara, 2005), LARKS (Sycara, Widoff, Klusch & 
Lu, 2002), IRS-III (Cabral, Domingue, Galizia, 
Gugliotta, Tanasescu et al., 2006) and DIANE 
(Küster, König-Ries & Klein, 2006) which support 
varying levels of semantic reasoning and 
approximate matching. However, they all operate on 
the basis of a centralised high-end node to perform 
reasoning.  There are in addition, architectures 
developed specifically for the pervasive service 
discovery domain which are driven by context, such 
as MobiShare (Doulkeridis, Loutas & Vazirgiannis, 
2005), COSS (Broens, 2004) and CASE (Sycara et 
al., 2002) which are either syntactic or require the 
presence of a centralised high-end node.  

This reliance on a high-end, centralised node for 
performing semantically driven pervasive service 
discovery can clearly be attributed to the fact that 
semantic reasoners used by these architectures (such 
as FaCT++ (FaCT++, 2007), RacerPro (RacerPro, 
2007) and KAON2 (KAON2, 2007)) are all resource 
intensive. Therefore, they are unsuitable for 
deployment on small resource constrained devices, 
such as PDAs and mobile phones. These small 
devices which are typical in the context of mobile 
service discovery are quickly overwhelmed when 
the search space in terms of ontology size and 
reasoning complexity increases. Alternatively, 
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KRHyper (Kleemann, 2006) is a First Order Logic 
(FOL) reasoner which implements FOL counterparts 
of standard DL optimisations (Horrocks & Patel-
Schneider, 1999) and functions on a small device. 
However, it too, suffers from out of memory 
exceptions when the reasoning task is too large and 
no response is given. Clearly, this shows that 
existing reasoning approaches cannot be directly 
ported to a mobile device in their current form.  

The reality of mobile environments is a world 
characterised by ad-hoc an intermittent connectivity 
where such reliance on remote/centralised 
processing (and continuous interaction) may not 
always be possible or desirable given the need for 
rapid processing and dynamically changing context. 
Pervasive service discovery has to necessarily be 
under-pinned by the current context to meet the all-
important criteria of relevance in constantly 
changing situations. The communication overhead 
(not to mention the infeasibility/impracticability) of 
constantly relaying contextual and situational 
changes of the user/device to a central server will 
lead to inevitable delays. Furthermore, reasoning on 
a central server about sensitive historical user 
profiling data, used to select the best service for the 
user, raises privacy concerns (Kleemann, 2006). 

Thus there is a clear imperative that for 
semantically driven pervasive service discovery to 
meet the very real response-time challenges of a 
mobile environment, the capacity to perform 
matching and reasoning must occur on the resource 
limited device itself. Therefore, there is a need for a 
pervasive service discovery architecture, which 
more flexibly manages the trade-off between 
computation time and precision of results, depending 
on the available resources on the device.  

The remainder of the paper is structured as 
follows. In section 2 we outline our strategies for 
optimised reasoning and formally describe these in 
section 3. Section 4 provides an implementation and 
performance evaluation and conclude in section 5. 

2 APPROACH – REASONING 
FOR PERVASIVE SERVICE 
DISCOVERY 

In this section we discuss current Tableaux semantic 
reasoners and present our optimisations and ranking 
algorithms, for the Tableaux algorithm. 
 
 

2.1 Semantic Reasoners 

The effective employment of semantic languages 
such as OWL requires the use of semantic reasoners 
such as Pellet (Pellet, 2007), FaCT++ (FaCT++, 
2007), RacerPro (RacerPro, 2007) and KAON2 
(KAON2, 2007). Most of these reasoners utilise the 
Tableaux (Horrocks & Sattler, 2005) algorithm with 
standard DL optimisations (Horrocks et al., 1999), 
due to its efficiency. Tableaux reasoners reduce all 
reasoning tasks to a consistency check, in which 
disjunctions form combinations of branches in the 
reasoner. If all branches contain a clash, where a fact 
and its negation are both asserted, then clash is 
proven for all models of the knowledge base. 
Tableaux can be used to check whether an individual 
I representing a service, matches a request RQ (ie. 
I∈RQ), by negating RQ. If the clash is proven for 
all models then I∈RQ membership, is proven. In 
the next section we provide a case study to motivate 
the need for reasoning in pervasive discovery. 

2.2 Case Study – Searching for a 
Printer 

Bob wishes to print a document from his PDA and 
issues a service request to find a black and white, 
laser printer which supports a wireless network 
protocol such as Bluetooth, WiFi or IrDA. This is an 
extension of (Steller, Krishnaswamy & Newmarch, 
2006). Equations 2-3 show Bob’s request in DL 
form, while equation 4 presents a matching printer. 

 

Request ≡ WNet ∩  ∃ hasColour.{Black} 
∩  LaserPrinterOperational 

(1) 

WNet ≡ ∃ hasComm.{BT} ∪  
∃ hasComm.{WiFi} ∪  

∃ hasComm.{IrDA} 

(2) 

LaserPrinterOperational ≡ Printer ∩  
∃ hasCartridge. {Toner} ∩   
≥ 1 hasOperationContext 

(3) 

Printer(LaserPrinter1),  
hasColour (LaserPrinter1, Black), 

hasCartridge(LaserPrinter1, Toner), 
hasComm(LaserPrinter1, BT), 

hasOperationContext(LaserPrinter1, Ready) 

(4) 

 
Equation 1 defines three attributes in the request, 

the first is unfolded into equation 2, requiring 
support for either Bluetooth, WiFi or IrDA, the 
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second attribute specifies a black and white 
requirement and the third is unfolded into equation 
3, specifying a printer which has a toner cartridge 
and at least one operational context. Equation 4 
fragment defines the LaserPrinter1 individual as 
meeting the service request. A DL Tableaux excerpt 
proving the truth of LaserPrinter1 ∈  Request, shows 
a clash for all branches, as follows (only two request 
attributes included for briefity): 

 
Add: ⌐Request to Individual: 

LaserPrinter1 
⌐Request ≡ ⌐WNet ∪   

⌐∃ hasColour.{Black} 
Apply Disjunction Element:  

⌐WNet ≡ ∀ hasComm.{⌐BT} ∩   

∀ hasComm.{⌐WiFi} ∩  

∀ hasComm.{⌐IrDA} 
 Add: ⌐BT to Nominal: BT, CLASH 
Apply Disjunction Element: 

∀ hasColour.⌐{Black} 
Add: ⌐{Black} to Nominal: 

Black, CLASH 

2.3 Optimisation Strategies 

We observed that DL Tableaux reasoners leave 
scope for further optimisation to enable reasoning on 
small/resource constrained devices with a significant 
improvement to response time and avoiding 
situations such as “Out of Memory” errors 
encountered in (Kleemann, 2006). Our algorithm 
involves a range of optimisation strategies such as: 
1. associating weight values with individuals and 
disjunctions, 2. selective application of consistency 
rules, 3. ranking disjunctions, 4. ranking individuals, 
and 5. skipping disjunctions. 

Weighted individuals and disjunctions can be 
established using a weighted queue. Disjunctions 
with the highest weight are branched on first. 

Application of consistency rules to only a subset 
CX of individuals, and only branching on 
disjunctions related to those individuals, reduces the 
size of the consistency problem. This subset can be 
established using the universal quantifier construct 
of the form ∀ R.C = { ∀ b.(a, b)∈R →b∈C} 
(Baader et al., 2003), where R denotes a role relation 
and C denotes a class concept. It implies that all 
object fillers of role R, are of type C, resulting in 
adding the role filler type C to all objects for the 
given role R. Since this can give rise to an 
inconsistency, we define the subset CX as limited to 
the original individual I being checked for 
membership to the request RQ and all those 

individuals which relate to this individual I, via roles 
R specified in universal quantifiers.  

Disjunctions and individuals in weighted queues, 
can be ranked by recursively checking an unapplied 
disjunction or element for a potential future clash. If 
a pathway to a clash is found, the weighted values of 
all individuals and disjunctions involved in this path 
are increased. Disjunctions can also be applied or 
skipped, according to whether they relate to the 
request type RQ, or not, respectively.  

3 TABLEAUX OPTIMISATION 
AND RANKING ALGORITHMS 

In this section we formally describe each 
optimisation strategy from the previous section.  

3.1 Weighted Queue 

A queue contains a weighted object and weight 
value object value pair. Let WOi and WVi denote 
these objects, where i denotes the current object. Let 
Q denote the queue where Q = {WO1, WO2.. WOn}. 
Let WOnext denote the next WO to be returned by the 
queue. Each WV object is associated with an integer 
weight value representing the current weight of the 
object, let IVi denote this value. Let MV denote the 
highest IV in the queue. MV = max(IV[1..n]) and IV 
has the range 0 ≤ IV[1..n] ≤ MV. Let NW denote a 
normalised decimal weight value where 0 ≤ NW ≤ 1, 
calculated on the fly, with: NWi = IVi / MV. 

Let Qind denote the individual queue and let Qdisj 
denote the disjunction queue. Let WOind and WOdisj 
denote individuals and disjunctions, respectively, as 
weighted objects, such that Qind = {WOind

1, WOind
2.. 

WOind
n} and Qdisj

 = {WOdisj
1, WOdisj

2 .. WOdisj
n} 

where n may be different for each queue Q. Each 
WOind

i contains a separate Qdisj. Weighted objects 
WOi in any queue Q are ordered by their NWi in 
descending order [1..0] and several WOi objects can 
have the same NWi. When a WOdisj

 is applied it is 
removed from the queue and there are no more 
disjunctions to apply when Qdisj ≡ {}. In a Qdisj the 
next disjunction is WOdisj

next = WOdisj
1. 

The individual queue Qind has a floating weight 
threshold value, let WT denote this value. WT is 
initially set to the highest weight in the queue, WT = 
max(NW[1..n]). Let WTS denote the set of individuals 
WOind

i, with NWi ≥ WT. The next individual 
WOind

next is the next element in WTS, which is 
repeatedly iterated over. When all WOind

i elements 
in WTS contain a Qdisj

i ≡ {}, WT is set to the next 
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highest weight NW, in Qind, NW = max(NW[1..n]) < 
WT. 

3.2 Selectively Apply Consistency 
Rules 

Individuals are iteratively added to the weighted 
individual queue Qind, as follows. Let CX denote the 
set of individuals which were last added to Qind. 
Originally, CX = {X}. Loop individuals in set CX. 
Let Y denote the current individual from the CX. Let 
AV denote a universal quantifier expression and let 
AVS denote the set of all universal quantifiers for 
individual Y such that AVS = {AV1, AV2...AVm}. 
Let Ri denote the relation to which AVi relates to 
and let RS denote a set of all distinct R relations to 
which any AVi in the set AVS, relates. Let OS 
denote the a set containing those individuals which 
are objects O of any role Rj in RS, for the individual 
Y, such that OS = {O1, O2..Omn}. Add all of the 
elements in OS to the weighted individual queue 
Qind and increment the weight value WV of these 
individuals by 1. Set CX = OS. 

3.3 Rank Individuals and Disjunctions 

The following algorithm is used by both the rank 
individual and rank disjunction strategies to 
establish a path of individuals and disjunctions to a 
potential clash. Let CS denote this path. The path 
may be via conjunction/disjunction elements and 
role fillers of universal quantifiers. When ranking 
individuals let C denote the last applied non-clashing 
disjunction element, let WOind denote the individual 
to which the disjunction relates, let CS = {} and 
execute ClashDetect once. When ranking 
disjunctions, execute ClashDetect once, for each 
disjunction WOdisj

i in the disjunction queue Qdisj
ii, of 

each individual WOind
ii in the individual queue Qind 

and let WOind = WOind
ii, C = WOdisj

i and CS = {}. If 
the algorithm returns a non-empty clash path set CS 
≠ {}, increment the weight value WV for all the 
elements (individuals and disjunctions) within CS by 
1. The pseudo code for ClashDetect is given below: 

 
ClashDetect:  
Inputs(WOind, C, CS), Outputs(Set). 
If C is primitive, negation, normal or 
value, then: 

If WOind has type negation of C, 
then: 
CS = WOind + CS. return CS. 

Else:  
UCS{} = unfold(C).  
for each UC in UCS:  

CS = ClashDetect(WOind, 
UC, CS). 

If CS is not null,  
then: return CS. 

If C is a disjunction, then: 
For each disjunction element E  

in C: 
CSNEW{} = ClashDetect(WOind, 

E, CS).  
If CSNEW is null,  

then: return null. 
CS = CS + CSNEW. 

If C is a conjunction, then: 
Create CSS (a set). 
For each conjunction element E in C: 

CSNEW{} = ClashDetect(WOind,  
E, CS). 

CSS = CSS + CSNEW. 
CS = SelectBestCS(CSS).  
Return CS. 

If C is a universal quantifier,  
then: 
AVR = Role of C. 
AVC = Role filler type of C. 
OS{} = all the objects of  

WOind for role AVR. CSS = {}. 
For each individual O in OS: 

CSNEW{} = ClashDetect(O,  
AVC, CS). 

CSS = CSS + CSNEW. 
CS = SelectBestCS(CSS).  
Return CS + WOind. 
 
Note SelectBaseCS selects the best clash 

pathway which has fewest disjunctions and depends 
on types which were added by the earliest branches. 

3.4 Disjunction Skipping 

The following strategy determines whether 
disjunctions are applied to create a new branch or 
skipped. Let C denote the service request type 
definition, which is a conjunction. Let DC = {T1, 
T2.. Tn} denote a set of valid class types. Let DI 
denote any disjunction being added to the 
disjunction queue Qdisj, by the reasoner or other 
optimisation strategy. DI is of the form DI = {D1, 
D2..Dm}, where Di is a disjunction element. Let 
NNDi denote Di in non-negated form (as a positive 
term). If DC contains any NND[1..m] from the 
disjunction DI, then DI is added to Qdisj with a 
weighting of 1, otherwise it is skipped.  

The set DC is filled using the following 
population algorithm. Where C (service request) is a 
conjunction or disjunction list of the form C = {E1, 
E2..Eo}, let Ej denote an element of the list. Let 
NNEj denote Ej in non-negated form. Add all 
elements NNE[1..o] to DC, set DC = DC + NNEj  
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Table 1: Optimisation strategies enabled in each test. 

Test # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Selective Consistency × × × × × ×  × ×       
Rank Disjunctions    × ×    × × ×  ×   × 
Rank Individuals  × ×   ×   × ×   × × × 
Skip Disjunctions × × × ×   ×   ×    ×  

 
Recursively reapply this DC population 

algorithm on each E[1..o] by setting C = Ej. If Ej is a 
primitive or nominal type, unfold each Ej and NNEj 
into a new set UCS, such that UCS = {UC1, 
UC2..UCp}, and then also recursively reapply this 
population algorithm on each unfolded type UCk by 
setting C = UCk.  

4 PERFORMANCE EVALUATION 

We implemented the optimisation strategies defined 
in section 3, in the Pellet v1.5 reasoner. We selected 
Pellet because it is open source while the other 
reasoners were not, allowing us to provide a proof of 
concept and compare performance with and without 
the strategies enabled. 

The evaluation was performed on a HP iPAQ 
hx2700 PDA, with Intel PXA270 624Mhz 
processor, 64MB RAM, running Windows Mobile 
5.0 with Mysaifu Java Virtual Machine (JVM), J2SE 
allocated 15mb of memory.  

We implemented the scenario outlined in section 
2.3 to create ontologies containing 141 classes, 126 
roles and 337 individuals. Due to the resource 
intensive nature of XML parsing, we pre-parsed 
OWL XML files into text files of triples and 
postpone XML parsing to future work.  

We executed a single consistency check to 
compare matching individual LaserPrinter1, against 
the service request, 15 times using various randomly 
selected combinations of our strategies, as shown in 
table 1, where test 11 represents normal Tableaux 
execution (no optimisations). Tests 1-11 provided 
the expected positive matching result and 12-15 did 
not complete due to lack of memory.  

Figure 1 illustrates the performance of each 
successful test in terms of time (seconds). 
Consistency time involves application of consistency 
rules and branching, to perform the Tableaux 
consistency check for LaserPrinter1 ∈  Request. 
This also encompasses the overhead cost for 
performing the optimisations, which is also shown 
separately. The total includes consistency time as 
well as the time required for preparing the reasoner 
(eg loading triple text files into the reasoner). 

As observed in Figure 1, the our optimisation 
strategies considerably reduce the consistency time 
required to find a clash for all models of the query 
compared to test 11 which represents normal 
execution of Tableaux. We found that consistency 
time was influenced by the number of branches and 
rules applied.  

Figure 2 presents a breakdown of how much time 
each strategy contributed to the overhead cost.  Tests 
8, 9 and 10 suffered particularly costly optimisation 
overhead, due to ranking disjunctions. This was 
because either selective consistency or skip 
disjunctions, or both, were disabled, resulting in 
more disjunctions to rank. 

Test 5, 7 and 2 show that selective consistency 
and skip disjunctions are the most effective 
optimisations, especially when used together, and 
have low overheads. Rank disjunction and individual 
strategies were found to reduce the number of 
branches applied, but did not provide any 
performance improvement due to the high overhead. 

Our performance tests show that some of our 
optimisations and ranking algorithms are very 
effective in improving Tableaux reasoning 
performance on resource limited devices, compared 
with no optimisations. This makes mobile reasoning 
feasible on resource constrained devices. 

5 CONCLUSION AND FUTURE 
WORK 

Our optimisation strategies were shown to 
significantly improve the performance of reasoning 
tasks on small resource constrained devices, making 
deployment on these devices feasible. Some 
strategies performed well, while others require 
future work and we implementing a greater number 
of scenarios to test our strategies more thoroughly. 
We will also leverage our weighted approach, to 
adaptively skip branches which have a lower weight, 
when resources are low. This will provide a result 
with a level of uncertainty rather than “Out Of 
Memory” errors, to better manage the trade-off 
between resource availability and result precision. In 
addition, although we demonstrated the use of  
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Figure 1: Processing time taken to perform each test. 
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Figure 2: Optimisation strategy overhead breakdown. 

context-aware attributes in our scenario, we will use 
context to pre-emptively rank the pool of 
discoverable services based on user preferences and 
current user context, before a request takes place. 
These services will be matched first as they are more 
likely to meet the user’s needs. 
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