
WEB 2.0 MASHUPS FOR CONTEXTUALIZATION, FLEXIBILITY,
PRAGMATISM AND ROBUSTNESS

Thorsten Hampel
Department of Knowledge and Business Engineering, University of Vienna, Rathausstr. 19/9, A-1010 Vienna, Austria

Tomáš Pitner
Masaryk University, Faculty of Informatics, Botanická 68a, 602 00 Brno, Czech Republic

Jonas Schulte
Heinz Nixdorf Institute, University of Paderborn, Fuerstenallee 11, 33102 Paderborn, Germany

Keywords: Mashup, Mistel, Web 2.0, Web Service, Flexible Integration.

Abstract: In current Web 2.0 developments the word “mashups” stands for a totally new way of flexible application
bringing together several Web 2.0 services. Mashups form a serious new trend in web development by con-
textualizing existing services and bringing customizable applications to the user. Out of this, a new style
of web-based applications arises. To get a better understanding of the phenomena of mashups, this paper
observes and interprets the way the development of web based applications and appropriate background sys-
tems changed. It presents several state of the art Web 2.0 technologies and points out why the evaluation of
Web 2.0 applications currently moves from web-based APIs to web services. We will present a short taxon-
omy of mashups as flexible, pragmatic, and robust web applications. Further, their new form of flexibility and
customization will be illustrated with the help of our mistel Framework.

1 INTRODUCTION

A first look at the so-called Web 2.0 movements un-
veils a large number of different understandings and
definitions. People often think of social software and
community developments such as “power to the peo-
ple”. Others mainly confer informal semantics such
as tags or folksonomies. An extensive overview of
folksonomies, their characteristics, and semantics in
communities is given in (Michlmayr, 2005).

“Mashups” a new buzzword within the Web 2.0
context originally is used in the scope of music and
means remix; in the context of Web 2.0 mashup
means reusing and conflating existing technologies
to develop a new style of applications. Anymore
mashup also stands for the requirement changes of
the Web 2.0, which needs faster reusability and in-
tegrability than ever before.

As far as a new understanding for the new web
and therefore for the next generation of the Internet
can be, so important (we think) it is to be aware of the

new web not to be a collection of single services, but
a network (mashup) of highly interoperable services.
No longer users are served only by a single service,
they can profit from a network of services. Shaped
transparently for the user, the application consists of
different network services, which are contextualized
and integrated dynamically to the users needs.

Therefore our understanding for the next genera-
tion web (we still call that for a better understanding
Web 2.0) is about:

• contextualization of services along the users
needs,

• flexible interoperability of services, and

• robust and secure service integration.

Most of the above-mentioned issues are attributed
to Service Oriented Architectures (SOA) (Bih, 2006).
There is a plethora of definitions of the service con-
cept in IT, ranging from very abstract ones, such
as “a functional unit” (IBM), to more concrete ones
“self-contained stateless business function that ac-

107
Hampel T., Pitner T. and Schulte J. (2008).
WEB 2.0 MASHUPS FOR CONTEXTUALIZATION, FLEXIBILITY, PRAGMATISM AND ROBUSTNESS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - SAIC, pages 107-112
DOI: 10.5220/0001693201070112
Copyright c© SciTePress



cepts one or more requests and returns one or more
responses through a well defined standard interface”
(Wikipedia).

The discussion of web services (Gurguis and Zeid,
2005; Schranz, 1998) stands now for more than five
years for the same idea: offering flexible and self-
describable web based services. Since then is the con-
cept of services applied in many areas including ba-
sic system infrastructure, such as storage service, net-
work monitoring, user identity management and au-
thentication, and geoinformation services.

Popular Web 2.0 services grow very quickly,
therefore a robust, scalable architecture, and, at the
same time, a simple, easy-to-use user interface is
needed. Thus, architectural styles and patterns sup-
porting non-functional requirements, such as the Rep-
resentational State Transfer (REST) are highly wel-
come.

In this paper we explore the leading Web 2.0 tech-
nologies to point out why the evolution moves from
web-based APIs to web services and why mashups
offer a new technology for developing flexible, prag-
matic, and robust web applications. We compare
different models of integration to emphasize func-
tionalities and technologies that refine the concept of
mashups. We will concentrate primarily on the tech-
nological aspects while business and legal issues are
discussed in (Drášil et al., 2008).

The paper is structured as follows: Primarily, we
identify why are the Web 2.0 services different from
the traditional view of Web services in the Section 2.
The technological foundation of service and system
integration is outlined in the Section 3 providing a
comparison between static web-based APIs, SOAP-
and REST-based web services by in addition pointing
out the benefits of using web services. The next Sec-
tion 4 focuses on development of services and inte-
grated systems including mashups. After presenting
the state-of-the-art in open system integration (4.1),
the shortcomings of current solutions and techniques
are highlighted in 4.2. Since Web 2.0 mashups are an
enhancement of traditional web services, 4.3 presents
the requirements and visions for creating mashups.
As the ultimate goal, self-descriptive services are de-
scribed and accompanied by a proposed implementa-
tion in 4.4. The paper is concluded in Section 5.

2 WHAT IS NEW TO WEB 2.0
SERVICES?

Once might ask what is really new to the Web 2.0
movements regarding the well-known web service
idea? New is not the basic idea nor the used tech-

nology (e.g. SOAP and XML); new are its attributes
of:

• a broad and successful usage of different web ser-
vices as part of any class of Web 2.0 applications
(e.g. Google maps is widely used and therefore
generates complete new classes of applications),

• a pragmatic integration of web services on differ-
ent levels of semantics and complexity (e.g. web
services can be on a high semantic level, such as
semantic web services (Narayanan and Mcilraith,
2002; Patil et al., 2004) or on a very low semantic
level, such as screen scraping), and

• a new quality in the integration of web services.
Services are integrated in a way that they offer a
new quality of interoperability and interactivity to
the users.

Results of these new attributes is real system conver-
gence. Different parts of applications serve as a flex-
ible, highly customizable, and contextualizable appli-
cations to the users. As a result the Web 2.0 move-
ments significantly increase the stability and usabil-
ity for many well-known technologies. This leads to
a larger number of successful new applications and
robust technologies. The following contribution will
discuss the above-mentioned criteria for web services
in the focus of contextualization and system conver-
gence. Different stages of service integration will be
presented and analyzed, from the high-level web ser-
vice integration up to simple forms of application in-
tegration. As part of different levels of service com-
plexity, also different ways of using web services will
be discussed in detail. As a special focus of the pa-
per various security aspects of web services will be
presented. Our goal is to shape a new understanding
of mashups as the accelerators for the Web 2.0 move-
ment.

3 FROM APIs TO WEB SERVICES
- THE TECHNOLOGY BEHIND

Web-based systems are in general characterized by
orientation to network. However, the architectural
and interaction models, protocols, and data exchange
formats vary significantly among different types of
web-based systems.

3.1 Web-based API

Networks of web-based systems can be build upon a
tight coupling via a Web-based API, enabling to in-
tegrate the functionality of a remote service or sys-

ICEIS 2008 - International Conference on Enterprise Information Systems

108



tem providing an interface specific for the given pro-
gramming language and the service integrated. For a
typical contemporary programming language, such an
API has a form of object-oriented library encapsula-
tion the remote service functionality. An integration is
thus technically easy but inflexible, being closely tight
to the respective programming environment; actually
not gaining any advantage of the service-orientation.
Despite of these disadvantages, many successful Web
2.0 services (like Delicious, Flickr, and others) offer
such an API.

3.2 SOAP-based Web Services

To provide a more flexible, platform and language
neutral interfacing, current Web Services provide a
description of the service using the Web Services De-
scription Language (WSDL) that can be used to au-
tomatically generate clients interacting with the web
service. This allows an easy modification of existing
applications if the interface of a web service changes.

In Web services, SOAP (Consortium, 2008)
serves as a protocol for messaging between a Web
service and its clients. Being based on XML, it rep-
resents a platform neutral foundation for wide sys-
tem interoperability with looser coupling than a web-
based API. Nowadays, SOAP-based Web services
are, despite of their complexity, the industry standard
for implementing a service-oriented architecture in an
enterprise environment. They also quickly replaced
older interoperability efforts like CORBA, based on
distributed objects rather than on services.

However, for integration services on Web 2.0, they
might not always be the right option, as they do not
warranty scalability in a whole web dimension. An
alternative usable for web scale services requires even
simpler use, less overhead, and better scalability than
SOAP-based Web Services. REST architectural style
may be the right concept for such Web Services.

3.3 REST Web Services

REST (REpresentational State Transfer) was coined
by R. T. Fielding (Fielding, 2000). Fielding’s goal
was to specify a set of architectural constraints
(also called architectural style) ensuring better perfor-
mance and scalability within distributed hypermedia
systems fully based on successful HTTP protocol.

1. It uses the concept of resource instead of service.
A user, group, calendar item, map, or a document
are examples of a resource in the REST sense.

2. Resource are identified by unique URIs (typi-
cally URLs), and may have one or more Rep-
resentations that can be textual (like plaintext),

(semi)structured data (XML), or multimedia (like
images), among others.

3. HTTP protocol methods (like POST, GET, PUT,
and DELETE) correspond to basic operations on
resources.

Notably, the state of the processing flow (“session”)
between the service provider and consumer is not kept
at the server – the communication is stateless. There-
fore, it supports robustness and scalability because
the communication between server and client consists
only of exchanging representations of resources and
thus may be proxied and/or cached.

Vinoski (Vinoski, 2007) notes namely that REST
architectural style with its uniform HTTP interface as
an important constraint significantly simplifies devel-
opment of large service distributed applications and
leads to more scalable and robust ones. While SOAP
service definition language (WSDL) inherently binds
data formats together with interface constraints, in
REST the data formats are necessarily orthogonal
to interfaces. REST thus introduces self-describing
messages based on standard formats (typically but
not limited to open web formats) negotiated between
client and server.

The REST architectural style simplicity and ease-
of-use led to large popularity of REST among
Web 2.0 service developers. Many of the present
Web 2.0 services (ProgrammableWeb.com, 2008)
prefer a REST-based API instead of a SOAP-based
one. Some services employing both SOAP- and
REST-based interface (like Amazon(Goth, 2004))
show that simpler REST-based service gaining about
80 % of the total traffic clearly outperform their SOAP
counterparts.

4 DEVELOPING WEB SERVICES
AND MASHUPS

This section focusses on generating networks of web
services, so called mashup applications. After ex-
plaining the shortcomings of today’s web services
in Section 4.2, Section 4.3 presents the definition
of a mashup and the key advantages. In order to
automatically build networks of services, the self-
descriptiveness of web services is required as de-
scribed in Section 4.4.

4.1 Web Service Integration

In the past four years several frameworks and con-
cepts for an “Open Service Integration” for Computer
Supported Cooperative Work (CSCW) applications

WEB 2.0 MASHUPS FOR CONTEXTUALIZATION, FLEXIBILITY, PRAGMATISM, AND ROBUSTNESS

109



appeared. The range of these concepts and frame-
works spreads from simple ones, requiring manual
user interaction to select services from an UDDI in-
ventory to those, that try to find and dock with newly
available services fully automatically.

The authors of (Lima-Gomes et al., 2005a; Lima-
Gomes et al., 2005b) offer a Loosely-coupled Envi-
ronment for Integrating Collaborative Applications
called LEICA. This framework consists of three
different components: session management, event-
notification service, and adapter for each used col-
laborative application. The session management ex-
changes information with the adapters to configure
each session. After exchanging all necessary data,
the systems communicate using events, which are dis-
tributed through the event notification service. As a
result, in LEICA each application is still independent
and no data is exchanged directly between systems.

In (Anzures-Garcı́a et al., 2006) the authors pro-
pose a SOA-based architecture for collaborative ap-
plications. Their architecture includes a component
for managing sessions and for group awareness. Due
to its service-oriented structure, it is possible to in-
clude new services as web services. The disadvantage
of this architecture is that existing applications can-
not be used offhand as part of this service oriented ar-
chitecture. Instead, Computer Supported Cooperative
Work (CSCW)-Services need to be explicitly devel-
oped for this architecture in order to use the provided
services.

When applications and services rely on services
that are subscribed dynamically and on-demand many
other aspects, e.g. monitoring of Service Level
Agreements (SLA) for web services have to be con-
sidered. In (Keller and Ludwig, 2003) the authors
present the Web Service Level Agreement (WSLA)
framework, which is targeted at defining and moni-
toring SLAs for web services. The WSLA framework
is part of IBM’s web service toolkit. Obviously such
developments are so successful, since the number of
available web services is increasing rapidly and thus
automatic finding, monitoring and coupling of web
services becomes essential.

4.2 Current Shortcomings and
Limitations

The searchability of web services is a significant ben-
efit in comparison to web-based APIs since potential
consumers can find unknown services and providers.
However, the concept of the UDDI (Clement et al.,
2002) directory is not completely practicable, because
the supported search bases on WSDL files which in-
cludes plain text comparison and lacks of semantics.

A search returns all web services whose description
contains the searched keywords. Obviously, a de-
scription can be on the one hand extensive and not
only point out the key functionality of the associated
web service and on the other hand same terms can be
used in different contexts. As an example, searching
for the keyword “weather” finds 3% of all registered
web services at a popular web service repository like
Salcentral.com (Patil et al., 2004). Since the search
has to build on WSDL files and thereby to base on
text-search, the used terms have to be set in relation
to the semantic context.

METEOR's Annotation Framework

Consumer

Provider

WSDL files
annotated with Ontologies 

Figure 1: WSDL Files Annotated with Ontologies.

Patil et al. have extended WSDL with semantic
annotations (Patil et al., 2004) in the METEOR-S
Framework to handle the missed out descriptiveness
of web services (see Figure 1). Setting the description
in a semantic context by using ontologies improves
the search quality and reduces the number of not
suitable search hits. The description of a web
service applies to its input / output (data semantics)
as well as its functionality or business workflow
processed by the web service (functional semantics).
A search which can differ between data semantics
and functional semantics is desirable to improve
the search quality by a more precise selection of
eligible services. Furthermore, in the context of the
METEOR-S Framework the execution semantics
as well as the QoS semantics have been identified
which describe the correctness and verification
of the execution as well as the performance and
cost parameters associated with the service. Since
ontologies will increase over time, it was necessary
to develop a semi-automated process of annotating
web services with ontologies. The METEOR-S
Framework addresses the requested semi-automatism
and scalability by implementing adequate algorithms
for semantic annotation and categorization of web
services.

ICEIS 2008 - International Conference on Enterprise Information Systems

110



Web 2.0 application as a
mashup of services

robust

contexulizable

pragmatic

flexible

service A
se

rv
ic

e 
B

service C

Figure 2: Web 2.0 Application as a Mashup of Services.

4.3 Integration in Web 2.0

A Web 2.0 application being a mashup unions differ-
ent web services in order to provide more functional-
ity for a client interacting with this Web 2.0 applica-
tion. As an example, the mashup application capsu-
lates the interaction with a service A for searching in
a digital library with a service B for storing or linking
documents in a CSCW system. Hence, the mashup
application offers to clients the whole functionality to
search for digital literature as well as storing docu-
ments in a CSCW system by interacting only with one
application. The interaction with one single applica-
tion has a big benefit for the service consumer, since
searching for literature and making these documents
available for e.g. other students should be one step
without a media breach.
Figure 2 depicts our definition of mashups. The key
idea of developing Web 2.0 applications as mashups
of services is that they are pragmatic and contextuliz-
able by combining different web services in order to
higher the value of using the services. In particular,
often the value of using the combined services is sig-
nificantly higher than using services separately. Since
the Web 2.0 application can add, remove, or exchange
arbitrary services of their mashup, they provide high-
est flexibility for services. Web 2.0 applications can
hold themselves a set of useable web services provid-
ing the same functionality. If integrated services are
not running or not available, the Web 2.0 application
can use other services proceeding the same business
workflow. This interchangeability of web services in-
creases the robustness of services being mashups.

Note that the semantic annotation of web services
presented in Section 4.2 enables the contextualization
and generation of meaningful and pragmatic compo-
sition of several web services. However, to com-
pletely implement the composition, more information
(for example security aspects) than provided by the
WSDL file is required. Section 4.4 addresses this is-
sue.

1

2

3

service
consumer

service
provider

authentication

negotiation

service usage

Figure 3: Negotiation Process Between Service Provider
and Service Consumer.

4.4 The Ultimate Ambition:
Self-descriptive Web Services

As mentioned above, our understanding of mashups
does not only means to reuse existing web services but
also remixing services of different applications. The
following steps describe a communication cycle be-
tween service provider and service consumer in mis-
tel:
1. The first step contains security aspects like au-

thentication and authorization, since not every ser-
vice consumer is allowed to use all available ser-
vices of any service provider.

2. In the second step both actors, the service provider
and the service consumer, negotiate about the ser-
vice usage. This means, that the service provider
describes the web service functionalities.

3. After successful service negotiation the consumer
uses the service by invoking its methods.

Figure 3 depicts the communication process in three
phases. The difference between a normal web ser-
vice invocation and the mistel web services is the ne-
gotiation process in step two with its enhanced self-
explanation capabilities. In fact a service provider
may also act as a service consumer and vice versa.

We have chosen a similar approach with defining
a common API for collaborative systems called the
CowAPI. The goal is a to allow a loose coupling of
collaborative systems into an application. Because of
the varying functionality of different groupware sys-
tems we defined some functional areas:
• Users: Create, Query, and Manipulate Users
• Groups: Create, Query, and Manipulate Groups,

Group Membership Files: Create Files and Con-
tainers, get inventory of containers

WEB 2.0 MASHUPS FOR CONTEXTUALIZATION, FLEXIBILITY, PRAGMATISM, AND ROBUSTNESS

111



• Calendars: Create and manage appointments

A system implementing the CowAPI could imple-
ment all functional areas or a subset. The explain
functionality allows to return the supported function-
ality. Because of the standardized API it is now pos-
sible to exchange systems without needing to rewrite
any code. The CowAPI could be used as a media-
tor service to connect different backend groupware
servers or could be made directly available within any
groupware system.

5 CONCLUSIONS

The usage of web services providing access to al-
ready developed applications had increased the num-
ber of application fields in comparison to static web-
based APIs. However, a single web service often does
not offer the complete functionality requested by con-
sumers. As a consequence, networks of services of-
fer a higher value for consumers since they gain more
functionality or can use more complex business work-
flows by interacting with one single Web 2.0 appli-
cation being a mashup of various services. Mashups
feature pragmatism, robustness, and contextualization
since they can add, remove, or exchange specific web
services of their network.

To enable an automatic generation of mashups, on
the one hand semantic annotations are desirable in or-
der to identify those services whose composition of-
fers a higher value for consumers. On the other hand
web services must be able to describe themselves in
detail. Hence, a negotiation phase will be performed
before a service can be added to the mashup.

ACKNOWLEDGEMENTS

The research has been supported by the German
Research Foundation (DFG), project MISTEL. For
further information please refer to www.dfg.de and
www.systemkonvergenz.de. Moreover the research
has been partially supported by the Czech National
Program Information Society, project E-learning in
the Semantic Web Context, No. 1ET208050401.

REFERENCES

Anzures-Garcı́a, M., Paderewski-Rodrı́guezguez, P., and
Hornos, M. J. (2006). Soa-based generic architecture
for cscw systems. In Proceedings of First Interna-
tional Conference on Ubiquitous Computing (ICUC),
Alcalá de Henares, Spain.

Bih, J. (2006). Service oriented architecture (soa) a new
paradigm to implement dynamic e-business solutions.
Ubiquity, 7(30):1–1.

Clement, L., Hately, A., von Riegen, C., and Rogers, T.
(2002). Uddi version 3.0 published specification.

Consortium, W. (2008). Soap version 1.2 – w3c recommen-
dation 27 april 2007.

Drášil, P., Hampel, T., Pitner, T., and Steinbring, M.
(2008). Get ready for mashability! concepts for web
2.0 service integration. In ICEIS 2008 Proceedings,
Barcelona, Spain. INSTICC.

Fielding, R. T. (2000). Architectural styles and the design
of network-based software architectures. PhD the-
sis, University of California, Irvine. Chair-Richard N.
Taylor.

Goth, G. (2004). Critics say web services need a rest. IEEE
Distributed Systems Online, 5(12).

Gurguis, S. A. and Zeid, A. (2005). Towards autonomic web
services: achieving self-healing using web services.
SIGSOFT Softw. Eng. Notes, 30(4):1–5.

Keller, A. and Ludwig, H. (2003). The wsla framework:
Specifying and monitoring service level agreements
for web services. J. Netw. Syst. Manage., 11(1):57–
81.

Lima-Gomes, R., de Jesús Hoyos-Rivera, G., and Courtiat,
J.-P. (2005a). Leica: Loosely-coupled environment
for integrating collaborative applications. In DEXA
Workshops, pages 635–639. IEEE Computer Society.

Lima-Gomes, R., de Jesús Hoyos-Rivera, G., and Courtiat,
J.-P. (2005b). Loosely-coupled integration of cscw
systems. In Kutvonen, L. and Alonistioti, N., editors,
DAIS, volume 3543 of Lecture Notes in Computer Sci-
ence, pages 38–49. Springer.

Michlmayr, E. (2005). A case study on emergent semantics
in communities. In Proceedings of the Workshop on
Social Network Analysis, International Semantic Web
Conference (ISWC).

Narayanan, S. and Mcilraith, S. (2002). Simulation, verifi-
cation and automated composition of web services. In
Proceedings of the 11th International Conference on
World Wide Web, pages 77–88, New York, NY, USA.
ACM Press.

Patil, A., Oundhakar, S., Sheth, A., and Verma, K. (2004).
Meteor-s web service annotation framework. In Pro-
ceedings of the Thirteenth International World Wide
Web Conference (WWW2004), New York, USA. LS-
DIS Lab, University of Georgia.

ProgrammableWeb.com (2008). Programmableweb –
mashups, apis, and the web as platform.

Schranz, M. W. (1998). Engineering flexible world wide
web services. In SAC ’98: Proceedings of the 1998
ACM symposium on Applied Computing, pages 712–
718, New York, NY, USA. ACM.

Vinoski, S. (2007). Rest eye for the soa guy. IEEE Internet
Computing, 11(1):82–84.

ICEIS 2008 - International Conference on Enterprise Information Systems

112


