
GUI GENERATION BASED ON LANGUAGE EXTENSIONS
A Model to Generate GUI, based on Source Code with Custom Attributes

Marco Monteiro
School of Technology and Management, Polytechnic Institute of Leiria, Leiria, Portugal

Paula Oliveira, Ramiro Gonçalves
Engineering Department, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal

Keywords: Attribute-Oriented Programming, Source Code Model, GUI Generation, Data-Driven Application.

Abstract: Due to data-driven application nature and its increasing complexity, developing its user interface can be a
repetitive and time-consuming activity. Consequently, developers tend to focus more on the user interface
aspects and less on business related code. In this paper, we’re presenting an alternative approach to graphical
user interface development for data-driven applications, that allows developers to refocus on the source code
and concentrate their efforts on application core logic. The key concept behind our approach is the generation
of concrete graphical user interface from a source code based model, which includes the original source
code metadata and non-intrusive declarative language extensions that describes the user interface structure.
Concrete user interface implementation will be delegated to specialized software packages, developed by
external entities, that provides complete graphical user interfaces services to the application. When applying
our approach, we’re expecting faster graphical user interface development.

1 INTRODUCTION

In this paper we propose an alternative approach to
Graphical User Interface (GUI) development for data-
driven applications. Nowadays developers tend to
create GUI by composition of various components.
Our final goal is to allow developers to define GUI
by adding non-intrusive declarative language exten-
sions to the original source code and then acquire an
external software package to which they delegate the
implementation of the concrete GUI.

We start by introducing the research problem on
section 2, followed by a description of the proposed
model on section 3 and conclusions on section 4.

2 OVERVIEW

Currently, a large number of projects use Component
Based Development (CBD), which allows application
development by assembling a set of pre-manufactured
components. Each component is a black-box entity,
which can be deployed independently and is able to
deliver specific services (Szyperski, 1998).

GUIs are composed of various graphical elements,
such as buttons or input fields, each with its own pre-
sentation and behavior aspects that needs to be con-
sidered. Presentation concern the appearance and lay-
out of GUI elements and behavior is related to the
interaction between themselves or between them and
the underlying code. Using CBD, each GUI element
is mapped to a component and presentation or behav-
ior aspects are defined by its properties, methods and
events. Also, by using Rapid Application Develop-
ment (RAD) tools, GUI layout design is made visu-
ally through composition of components. Compared
to older processes, the advent of CBD and RAD tools
has increased GUI development productivity.

However, CBD still hasn’t redeemed its promises
of reuse and flexibility (Bruin and Vliet, 2002) and
there’s still a lot of risks, challenges and unresolved
issues in CBD (Vitharana, 2003). One of those is-
sues is related to the process of component compo-
sition and configuration. On large or very large ap-
plications, the same component can be reused several
times on different contexts, which is a major factor to
the productivity improvement accomplished by CBD.
However, as the number of instances and complexity

449
Monteiro M., Oliveira P. and Gonçalves R. (2008).
GUI GENERATION BASED ON LANGUAGE EXTENSIONS - A Model to Generate GUI, based on Source Code with Custom Attributes.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 449-452
DOI: 10.5220/0001691604490452
Copyright c© SciTePress

of components increases, developer’s time is increas-
ingly spent on the tedious tasks of composing layouts,
configuring components and maintaining consistency
in presentation and behavior aspects of the GUI com-
ponents through the entire application. Developers
tend to focus more on GUI aspects and components
internals and less on application core logic or busi-
ness related code. While there are some applications
where that makes sense, because User Interface (UI)
is the most critical factor for its success, on many oth-
ers it’s important to refocus development time and re-
sources to the core functionalities, as they’re the main
factor to the applications success. This is particularly
true for most data-driven applications1.

No matter how or where data comes from, as long
as applications devices uses the GUI paradigm, data
presentation and manipulation follows some patterns
that are easily recognizable. For example, there are
two typical ways of presenting data: record views and
grid views. Record views allows the presentation of
all attributes of only one entity instance, while grid
views usually presents the most relevant attributes of
various instances simultaneously (Figure 1).

Figure 1: Grid and Record View.

The main goal for the solution we’re proposing is
to improve GUI development by capturing the pre-
sentation and behavior aspects of these patterns and
therefore reducing or eliminating the need to config-
ure every different view. Analogous principles are
used by solutions like Cascade Style Sheets (CSSs),
templates, specialized or custom frameworks and au-
tomatic GUI generation.

2.1 Automatic GUI Generation

Proposed solutions to generate GUI automatically are
mainly model-based systems, that attempt to formally
describe the tasks, data, and users that an application
will have, and then use this formal models to guide the
generation of the GUI. Some systems automatically
design the GUI and others provide design assistance
to developers (Nichols and Faulring, 2005). Despite

1In this article, we consider data-driven applications as
applications that allow users to access and manipulate large
amounts of complex data, located on data repositories.

a lot of research, model-based automatic GUI gen-
eration still hasn’t become common in GUI develop-
ment, in part because building models is an abstract
process and better results are often achievable by a
human designer in less time (Myers et al., 2000). Ab-
stract models can be complex to build and maintain,
thus keeping models and applications concrete GUI
synchronized can be problematic.

2.2 Attribute Oriented Programming

Attribute oriented programming is a program-level
marking technique, that allows developers to mark
language elements (e.g. classes, methods, and proper-
ties) in the source code, to indicate that they maintain
application or domain specific semantics. By hiding
the implementation details of those semantics from
source code, attributes increase the level of program-
ming abstraction and reduce programming complex-
ity, resulting in simpler and more readable programs
(Wada and Suzuki, 2005). Attributes can change ap-
plication runtime behavior by transforming its logic,
with the assistance of a supporting generation en-
gine. Dependencies on the underlying middleware
are thus replaced by attributes, acting as weak refer-
ences (Rouvoy and Merle, 2006). With the advent of
.Net attributes and Java annotations, attribute oriented
programming is now an widespread technique, used
in broad-range domains like logging, web services,
persistence or security, but also on specific domains
like fault-tolerance (Schult and Polze, 2002) or sys-
tem level modeling and simulation environment (La-
palme et al., 2004).

In the context of data-driven applications, at-
tributes can be used to address the problem of object-
relational impedance mismatch, which occurs due to
the fact that object-oriented and relational paradigms
represent information in manners that are quite differ-
ent from each other (Lodhi and Ghazali, 2007). Ob-
ject Relational Mapping (ORM) tools, deals with the
impedance mismatch problem by providing mappings
between the object model and the relational model,
which are usually defined by external configuration
resources. However, on tools like Hibernate Anno-
tations, Castle ActiveRecord or DevExpress Persis-
tent Objects for .Net, mapping configuration is imple-
mented directly on the source code, using attributes.
This approach allows developers to concentrate only
on the object-oriented paradigm and delegate to ORM
tools the responsibility of handling persistence issues.
This leads us to the following question ”why don’t we
apply the same principles to handle presentation is-
sues”? That was the question that droves us to study
and propose the solution presented in next section.

ICEIS 2008 - International Conference on Enterprise Information Systems

450

3 PROPOSED MODEL

The key concept behind our approach is the automatic
generation of concrete GUIs from source code based
models, as opposed to specialized GUI models used
by most automatic GUI generation tools. In 2004, Je-
linek (Jelinek and Slavik, 2004) also used annotated
source code to generate GUI, but using a tree-rewrite
based language. Our model will use a mainstream
language (C#), with the purpose of reusing available
components and therefore simplifying concrete GUI
development. Source code based models main ad-
vantage is the proximity between the model and the
code we want to execute, improving the integration
and interaction between application core logic and ap-
plication GUI. Also, the process of model creation is
quicker and simpler, because part of the model is al-
ready defined by original source code. However, mix-
ing business and GUI related code in the same mod-
ule, it’s against separation of concerns principle. To
minimize this problem, the model will be defined by
new language elements (attributes) that are declara-
tive only, meaning that they will not interfere with
original structures or execution flows. Also, to avoid
cluttering of source code with GUI related details, it’s
important to restrict the scope of the model so that it’ll
describe only structural information about the GUI.

The proposed model, explores some conceptual
similarities between data-driven applications GUI and
object-oriented languages. On the applications, there
are GUI elements such as textboxs or grids that pro-
vide data for the user to read or write. Objects can
also provide data to external entities, through struc-
tures like C# properties. Application users perform
operations by activating events on GUI elements, like
clicking on a button. Objects also perform operations
using methods, which are accessible to external enti-
ties through its interface. It’s possible to map source
code structures into GUI elements, using source code
metadata. GUI elements are chosen according to
the language element kind, data type or accessibility.
However, as original metadata is not enough to de-
scribe the GUI completely, language extensions (cus-
tom attributes) were added to enrich the metadata with
structural information about GUI. Analyzing the ex-
ample in Figure 2, we can verify that GUI elements
were generated according to: the kind of language el-
ement, where methods (e.g. Sell) maps into buttons
and properties into labels, textboxs or checkboxs; the
data type, where string properties (e.g. Title) and
boolean properties (e.g. Rented) generates different
type of GUI elements; the accessibility, where read-
only properties (e.g. ISBN) are mapped differently of
read and write properties. The Show attribute (which

is our model first attribute) affected the GUI by allow-
ing to define what language elements are meant to be
available (e.g. Keywords property is hidden, because
it doesn’t have a Show attribute) and defining which
text is used to describe it.

public class Book {
[Show]
public string ISBN
{ get {...} }

[Show("Book Title")]
public string Title
{ get {...}
set {...} }

[Show("Is Rented")]
public bool Rented
{ get {...} set {...} }

public string Keywords
{ get {...} set {...} }

[Show("Sell this book")]
public void Sell() {...}
public void RentBook() {...} }

Figure 2: GUI generation from extended source code.

3.1 System Architecture

To prove the viability of the proposed model, a proto-
type system was developed on Microsoft .Net Frame-
work using C# language. This system conceptual ar-
chitecture (Figure 3), is composed of three parts or
layers: the GUILX Model, the Binding Framework
and Smart Templates.

GUILX Model

Smart
Template (A)

GUILX ExtensionsBusiness Code (C#)

Binding Framework

Smart
Template (B)

Smart
Template (Z)...

Figure 3: Conceptual architecture.

The language extension model, which we’ve called
the GUILX Model2, incorporates both the original
source code (the business code) and language exten-
sions or attributes, as referred on section 3. By prin-
ciple, these extensions only includes structural GUI
information. Concrete GUI details, if applied, should
be defined outside the source code model by Smart
Templates. However, the GUILX Model must be rich
enough to ensure that a functional prototype (even if a
very simple one) can be created. Language definition

2GUILX is the acronym for Graphical User Interface
Language eXtensions.

GUI GENERATION BASED ON LANGUAGE EXTENSIONS - A Model to Generate GUI, based on Source Code with
Custom Attributes

451

is still in progress, but besides the Show attribute it
also includes the Query attribute, that’s applied only
to method parameters. Methods that have at least one
parameter marked with the Query attribute, are in-
tercepted by GUILX system, so that final application
may ask user to input parameter values before method
execution (check Figure 4).

[Show("Rent this book")]
public void Rent(
[Query("How many Days?", QueryKind.allways)]
int Days)
{
...

}

Before Method
Execution

Figure 4: Example of ”Query” attribute.

Solution architecture is designed to delegate the im-
plementation of concrete GUI, to external software
package, which we’ve called Smart Templates. The
idea is allowing developers to define a GUILX Model
and then adquire a Smart Template that’s suitable for
the application GUI. Smart Templates are specialized
frameworks, developed by external entities that pro-
vide complete GUI services to the GUILX Model.
There can be Smart Templates developed by different
suppliers, for different devices and using completely
different methods. One can generate GUI automat-
ically, other can generate GUI partially and another
can create GUI from manual definitions.

The Binding Framework is responsible for
the interoperability between Smart Templates and
GUILX Model, so that these two layers don’t in-
teract directly, thus keeping them independent from
each other. It allows the Smart Template to query the
GUILX Model metadata, to create object instances
and to invoke methods of that objects. Also, it serves
as a controller, maintaining the execution context for
the GUI elements, thus controlling navigation through
entire application.

4 CONCLUSIONS

Proposed model provides an alternative approach to
create application GUI, allowing developers to refo-
cus on business code development and delegate com-
plete GUI creation to external software packages,
called Smart Templates. Although GUILX language
definition is still in an embryonic state, preliminar
results already produces functional prototypes, thus
proving the viability of our solution. Compared to

other methods of automatic GUI generation, we be-
lieve our solution is easier to use because it simplifies
the process of GUI model creation. Instead of rely-
ing on specialized abstract models, it uses a source
code based model, which is partially defined by infor-
mation already present on the original metadata and
complemented by the GUILX language extensions.

REFERENCES

Bruin, H. and Vliet, H. (2002). The future of component-
based development is generation.

Jelinek, J. and Slavik, P. (2004). Gui generation from an-
notated source code. In TAMODIA ’04: Proceedings
of the 3rd annual conference on Task models and di-
agrams, pages 129–136, New York, NY, USA. ACM
Press.

Lapalme, J., Aboulhamid, E. M., Nicolescu, G., Charest,
L., Boyer, F. R., David, J. P., and Bois, G. (2004).
Esys.net: a new solution for embedded systems mod-
eling and simulation. SIGPLAN Not., 39(7):107–114.

Lodhi, F. and Ghazali, M. A. (2007). Design of a simple
and effective object-to-relational mapping technique.
In SAC ’07: Proceedings of the 2007 ACM symposium
on Applied computing, pages 1445–1449, New York,
NY, USA. ACM.

Myers, B., Hudson, S., and Pausch, R. (2000). Past,
present, and future of user interface software tools.
ACM Transactions on Computer-Human Interaction
(TOCHI), 7(1):3–28.

Nichols, J. and Faulring, A. (2005). Automatic interface
generation and future user interface tools. ACM CHI
2005 Workshop on The Future of User Interface De-
sign Tools.

Rouvoy, R. and Merle, P. (2006). Leveraging component-
oriented programming with attribute-oriented pro-
gramming. In Proceedings of The 11th ECOOP In-
ternational Workshop on Component-Oriented Pro-
gramming, Nantes, France. Monday, July 3, 2006 at
ECOOP 2006, (July 3-7, 2006).

Schult, W. and Polze, A. (2002). Aspect-oriented pro-
gramming with c# and .net. Object-Oriented Real-
Time Distributed Computing, 2002.(ISORC 2002).
Proceedings. Fifth IEEE International Symposium on,
pages 241–248.

Szyperski, C. (1998). Component Oriented Programming.
Springer.

Vitharana, P. (2003). Risks and challenges of component-
based software development. Communications of the
ACM, 46(8):67–72.

Wada, H. and Suzuki, J. (2005). Modeling turnpike fron-
tend system: a model-driven development framework
leveraging uml metamodeling and attribute-oriented
programming. In Proceedings of The 8th ACM/IEEE
International Conference on Model Driven Engineer-
ing Languages and Systems, Montego Bay, Jamaica.
ISBN: 978-3-540-29010-0.

ICEIS 2008 - International Conference on Enterprise Information Systems

452

