
A FRAMEWORK FOR MONITORING AND RUNTIME
RECOVERY OF WEB SERVICE-BASED APPLICATIONS

René Pegoraro
Computer Science Department, São Paulo State University at Bauru, UNESP, Brazil

Laboratoire d’Analyse et d’Architecture des Systèmes, LAAS-CNRS, Toulouse, France

Riadh Ben Halima, Khalil Drira, Karim Guennoun
LAAS-CNRS, University of Toulouse, 7 avenue de Colonel Roche, 31077 Toulouse, France

João Maurício Rosário
Mechanical Design Department, University of Campinas, UNICAMP, Brazil

Keywords: Web services, Self-healing, Service Oriented Architecture, Quality of Service.

Abstract: Service provisioning is a challenging research area for the design and implementation of autonomic service-
oriented software systems. It includes automated QoS management for such systems and their applications.
Monitoring, Diagnosis and Repair are three key features of QoS management. This work presents a self-
healing Web service-based framework that manages QoS degradation at runtime. Our approach is based on
proxies. Proxies act on meta-level communications and extend the HTTP envelope of the exchanged
messages with QoS-related parameter values. QoS Data are filtered over time and analysed using statistical
functions and the Hidden Markov Model. Detected QoS degradations are handled with proxies. We
experienced our framework using an orchestrated electronic shop application (FoodShop).

1 INTRODUCTION

Service-Oriented Architecture (SOA) is a collection
of services that communicate with each other to
execute business processes. A service in SOA
technology is a functional building block,
dynamically discovered and composed, loosely
coupled, and reusable. With this in mind, many
companies, like Sun (Mahmoud, 2005), IBM (New
to SOA, n.d.), Oracle (Oracle Application Server,
n.d.), focus efforts to Web service-based SOA.

W3C (Booth et al., 2004) defines a Web service
as a software system designed to support
interoperable machine-to-machine interaction over a
network. It has an interface described in a machine-
process format, specifically Web Services Definition
Language (WSDL). Other systems interact with the
Web service in a manner prescribed by its
description using Simple Object Access Protocol
(SOAP) messages, typically conveyed using HTTP

with an XML serialization in conjunction with other
Web-related standards.

We may implement a SOA by using
orchestration, choreography and other approaches,
including an invocation of Web services as service
component part of other Web service.

Web services are a well established technology.
We publish, discover, and use them in a standard
interface. But Web services may change their
functional and non-functional aspects during
runtime. These changes may engender the QoS
degradation that influences negatively the business
process.

There are many dimensions to measure QoS of
Web services, Maximilien and Singh (2004)
describe many class of them. Besides, many efforts
have been made to specify QoS for Web services
(Garcia, 2006, Ludwig, 2004, WSLA, n.d.), but
these are not yet accepted as standards.
Nevertheless, SOA style processes need to provide
levels of QoS and ways to become them more stable

201
Pegoraro R., Ben Halima R., Drira K., Guennoun K. and Maurício Rosário J. (2008).
A FRAMEWORK FOR MONITORING AND RUNTIME RECOVERY OF WEB SERVICE-BASED APPLICATIONS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 201-206
DOI: 10.5220/0001689302010206
Copyright c© SciTePress

and reliable. As QoS parameter, we compute and
experiment our framework with the Round-Trip
Delay Time (RTT). It is the more representative QoS
value for Web services, since from client’s point of
view, the RTT is the total time used in a complete
Web service operation call, starting from sending the
request until receiving the response.

This paper describes how we use the proxy
mechanism to intercept messages. This mechanism
allows the measurement of QoS and the execution of
repair actions in Web services-based applications.
These mechanism, enable our Self-Healing
Architecture (SHA). It is inserted between Web
services that allows monitoring and carrying out
repair plans. The diagnosis is achieved using
statistical functions and the Hidden Markov Model
to predict system state under partial observation and
probabilistic hypotheses. When suspecting a
deficiency, HMM signals it to decide about the
appropriate reconfiguration actions.

As an illustration, we deploy our SHA
framework within the FoodShop application that is
developed using BPEL orchestrated Web services
(Web Services Business Process, 2007). The
FoodShop is implemented in the framework of the
European WS-Diamond Project.

The organization of this paper is as follows:
Section 2 gives an overview of SHA. Section 3
discusses the architecture modules. Section 4 shows
some experimental results. Section 5 concludes the
paper.

2 SELF HEALING
ARCHITECTURE FOR SOA

This architecture presented in figure 1, offers the
resources for the monitoring, diagnosis and recovery
for Web service-based applications. SHA monitors
the interactions among Web services, identifies QoS
degradation, plan for recovery actions and achieves
them.

Figure 1 shows the component interactions
within SHA. The Web service requester and
providers are connected to the architecture through
interfaces in Requester and Provider ports,
respectively. Five main modules compose the SHA
architecture:
1. Interceptor – it intercepts messages between

requester and providers to evaluate the QoS of
each Web service operation;

2. Measurement – it computes statistical values
from data generated by Interceptor for every
executed Web service;

3. Diagnosis – it evaluates the data generated by
Interceptor and Measurement modules to
estimate the current state of Web services. If a
state represents a misbehaviour QoS, Diagnosis
sends an alarm to Recovery Planner Module;

4. Recovery Planner – it creates and stores recovery
strategies, using the Diagnosis report;

5. Reconfiguration Manager receives requests and
invokes Web services in agreement with plans
created by Recovery Planner module.
To gather information from Web service

interactions and to act over them, the
communication links must be instrumented with
SHA. Ideally, instrumentation should be

SHA

Reconfiguration

Planner Diagnosis Measurement

Interceptor

<<database>>
Plans

<<database>>
States

<<database>>
Invocations

<<database>>
Services

HTTP
HTTP HTTP

Plan

HTTP

StateUDDI

Plan

Invocation

Plan
State StateState

Invocation

Invocation

UDDI

Alarm Stat

HTTP<<delegate>>
<<delegate>>

Measures

<<delegate>>

<<delegate>>

<<delegate>>

<<delegate>>

<<delegate>> <<delegate>><<delegate>>

Requester Provider[1..*]

Figure 1: Web service Self-Healing Architecture.

ICEIS 2008 - International Conference on Enterprise Information Systems

202

opt

[QoS degradation]

Reconfiguration :Interceptor: Requester :Measurement :Diagnosis :Invocations :States :Provider

1: invoke

9: response

4: invoke

8: response
10: newData

23: return

13: update

22: return

7: update

11: select(WS operation)

:Plans

14: update(state)

12: result(statistics)

:Planner

2: select(WS operation)

:UDDI

5: invoke

6: response

3: result(plan)

15: alarm

17: result(state)

16: select(WS operation)

20: insert(plan)
21: return

18: select(WS operation)

19: result(compatible WS)

Figure 2: Invocation of a Web service operation. The option combination fragment shows the steps to perform the recovery
strategy.

multi-platforms, simple to insert at Web servers, and
with little side effects.

As enumerated in (Rud, 2006) many ways of
instrumentations may be used in Web service
environments. We choose HTTP proxy server
because it is a technology well established in
network, easy to implement, multi-platforms, and
possible to install in almost all Web application
servers. Another motivation to implement SHA as a
proxy server is that is also well situated to
accomplish reparations plans, since it is capable to
translate a request from a client in one or more
different requests to different providers.

3 MODULES AND OPERATIONS

When the Web service-related QoS are computed
and evaluated as acceptable values, the Repair
Planner module remains stopped. The others
modules work continuously to measure and verify
the QoS parameters; and transmit the Web service
messages. Figure 2 shows the communication inside
the architecture. In the other situations, when QoS
degradation is detected, all modules operate to
perform the recovery strategy.

In Figure 2, invoke and response messages
transport the packets HTTP with SOAP messages
between requester and provider. These messages
pass through Reconfiguration and Interceptor
modules to provide reparability and diagnosticability
to application.

3.1 SHA Modules

3.1.1 Interceptor Module

This module receives the request from a requester,
measures the monitored QoS and sends it to Web
service provider. When the Web service is finished,
it receives the response from the provider, sends it to
the requester, and finally updates Invocation Log
with last QoS measures.

3.1.2 Measurement Module

In this section, we consider the RTT QoS parameter.
We use the algorithms presented by Jacobson &
Karels (1988) and Karn & Partridge (1991) to TCP
messages. Our implementation computes
individually in each Web service the RTT average
using the “smoothed” round-trip time estimate
(SRTT). When a Web service operation is executed,

A FRAMEWORK FOR MONITORING AND RUNTIME RECOVERY OF WEB SERVICE-BASED APPLICATIONS

203

the Interceptor module measures how long it takes,
which represents the computed RTT values. With
each new operation invocation, the Monitoring
module computes the new SRTTi from equation (1).
 iii RTTSRTTSRTT .).1(1 αα +−= − (1)

⎩
⎨
⎧

>=
≤=

NiN
Nii

;/1
;/1

α
α

 (2)

Where: RTTi denotes the last RTT measured, i
denotes the number of the last invocation of the Web
service; SRTTi denotes an average approximation of
RTTs; N denotes a constant that controls how
rapidly the SRTT adapts to change.

To help us to identify QoS degradation, we
consider two thresholds: Acceptable Round-Trip
Time (ARTT) and Retransmission Timeout (RTO).

RTO is the maximum time that SHA expect for a
response. To calculate the RTO we use the
expression (3).

 2. iii KSRTTRTO σ+= (3)

 22
1

2).().1(iiii RTTSRTT −+−= − ασασ (4)

Where: i denotes the number of the last
invocation; K denotes the constant that defines the
premature timeout proportion; σ2 denote the
variance; and α as in equation 2.

The ARTT threshold, specified in equation (5),
defines if the Web service QoS values is in
concordance with its historic relevant values. Hence,
if the RTT is greater than the ARTT, the Web
service may be in trouble.
 2/)(iii RTOSRTTARTT += (5)

3.1.3 Diagnosis Module

If this module diagnoses a state of QoS violation, it
sends an alarm signal to Recovery Planner in order
to prepare a plan to repair the process.

We consider three hypothetical states to model
QoS behaviour of Web services:
1. Working: the service is normally working
2. Partially Working: the service shows some

disagreements with the expected QoS. The
service is still being used. However, at random,
some requests will be duplicated to find other
candidates that may offer better QoS.

3. NOT Working, the service does not work or
frequently disagrees with expected QoS. This
service will be substituted as soon as possible.
Normally Web services do not provide direct

information about QoS states, but the variations
observed on QoS suggest their current states; hence,
we needed a model to estimate these states from

observed QoS. We choose Hidden Markov Model
(HMM) to model QoS behaviour of Web services. A
HMM is a discrete-time stochastic model in which
the system being modelled is assumed to be a
Markov process with non-observable states, but
variables influenced by the states are observable.

The HMM is defined as < S, A, V, B, π >, where:
S is the set of states; S = {Working, Partially

Working, NOT Working};
A is the transition probability distribution among

the states si to sj,
 aij = Pr[sj at t+1 | si at t];
V is the set of observable variables; V = {vto, va,

vok};
B is the probability distribution of observe vk

being in sj.
 bj(k) = Pr[observe vk | sj]; and
π is the initial state distribution π = {π1, ..., πN}.
Where: the observable variables are: vto if time-

out is observed (RTO < RTT); va if RTT is
acceptable, but is higher than expected (ARTT <
RTT ≤ RTO); and vok if the RTT has QoS expected
(RTT ≤ ARTT). We assigned estimated values for A
and B based in empirical observations and expected
state after specific behaviour of Web service
invocations. State diagnosed and statistics
information are updated in the State log in each Web
service invocation.

3.1.4 Recovery Planner Module

This module uses the data brought by alarm signal
and collected from Invocation and State logs.
Recovery Planner gathers information to try to
identify the better reparation strategy, and then, if
possible, it creates a recovery plan and inserts it in
the Plans database, as show in Figure 2. Each plan in
database relates a Web service with a plan to correct
it. After a plan is stored, every execution of the Web
service will use the specific plan.

In the Recovery Strategies section, we present
more details about recovery strategies plans.

3.1.5 Reconfiguration Manager Module

This module receives the requests and invokes
requested Web services through Interceptor module.

Reconfiguration Manager Module is in charge of
offering the healing capability allowing, when
necessary, carry out the reconfiguration actions
planned by Planner module. When a requester
invokes a Web service, this module is the first to
execute in SHA. Reconfiguration module receives
the request, and if there is a plan in database for this
service, executes it. More specifically,

ICEIS 2008 - International Conference on Enterprise Information Systems

204

Reconfiguration module receives the HTTP/SOAP
message; translate all reference from original
destination – server, service, and operation – to
destination specified in plan and send this message
to specified destination.

3.2 Recovery Strategies

In the context of this paper, recovery strategies are
plans to try to sustain QoS level of a SOA process,
using two types of recovery plans: substitute and
duplications.

3.2.1 Substitution

The substitution recovery approach is suitable for
recovery when exist a compatible Web service with
acceptable QoS to substitute a Web service that
presents QoS misbehaviours or QoS degradation that
may lead the service to misbehaviour.

3.2.2 Duplication

When a Web service has not been showing
acceptable values of QoS, but works even in a
precarious fashion, we can use duplication to
discover the QoS of others compatible Web services
Ludwig (2004). In this scenario, we could invoke the
current service and invoke in parallel a compatible
service with unknown QoS. The Web service
showing the best QoS after some invocations will be
chosen to substitute the original. SHA implements
duplication as double substitution, in fact,
Reconfiguration module creates two threads, one to
invoke the original service and another to invoke the
new candidate to substitution. This mechanism uses
the results of the fastest as response to requester; the
other results are used just to update the statistical
and probable states of each Web service.

4 EXPERIMENTAL RESULTS

To experiment SHA, we carry out two experiments,
one that concern to time consuming by SHA and
another in a Web service orchestration.

4.1 Time Consuming inside SHA

When we insert SHA into a Web service application,
the times consumed in message exchange between
Web services enlarges. To identify the impact of
SHA in an application, we made time measures in a
simple Web service environment. Three similar

computers in a local LAN composed the test: one
client, one with the Web service, and one to
accommodate SHA. The Client and SHA are
implemented in Java 5. The client Web service just
sums of two integers. It was deployed in Apache
Tomcat 5 with Axis 1.4. Table 1 shows the RTT
average of Web service invoked 5000 times in each
situation. In Table 1, execution time increases when
the SHA is hosted in the client computer and even
more when SHA is alone.

Table 1: Average of RTT measures and their relations.
The second line shows a deployment without SHA (base
for relations).

Comput. 1 Comput. 2 Comput. 3 Time
(ms)

Relation

Client Web
service

8.5 1.0

Client +
SHA

 Web
service

15.6 1.8

Client SHA Web
service

19.6 2.3

4.2 FoodShop

The food shop prototype used has become the
standard test bed in the frame of Ws-Diamond
Project and it involves characteristics, as
asynchronous and synchronous invocations,
compositions using BPEL, and simple Web services.
The description following comes in Deliverable 1.1
from European WS-Diamond Project (IST-516933).

The food shop example is concerned with a
FoodShop Company that sells and delivers food.
The company has an online Shop and several
Warehouses located in different areas that are
responsible for stocking imperishable goods and
physically delivering items to customers.

Customers interact with the FoodShop Company
to place their orders. In case of perishable items, that
cannot be stocked, or in case of out-of-stock items,
the FoodShop Company must interact with several
Suppliers.

4.3 Execution Environment,
Deployment and Results

To illustrate and improve the developed framework,
we deploy SHA within the FoodShop application.
We deploy the FoodShop Web services in four
virtual machines: one for the Shop, one for the
Warehouse, and two for the Suppliers. The first
Supplier is the currently used by the application
process while the second is the substitute one. We

A FRAMEWORK FOR MONITORING AND RUNTIME RECOVERY OF WEB SERVICE-BASED APPLICATIONS

205

deploy the client in a fifth virtual machine, and the
SHA in a sixth one. For this case, we choose to
centralize the SHA, which centralizes the interaction
management.

In order to test our framework, we inject delays
in the execution time of a Supplier Web service. The
Measurement module computes the new QoS values,
and informs the Diagnosis module about the system
state. The HMM-based diagnosis detects the QoS
degradation and sends a report to the Planner
Module, which generates a recovery plan.
Reconfiguration module will use the plan and
reroute next requests to the new Supplier thanks to
the proxy.

In our experiments, we fix K = 2 for two raisons.
The first is the Chebyshev Inequality (equation 6).

 2

11]Pr[
K

KSRTTRTO ii −≥+< σ (6)

With K=2, we conclude that more than 75% of
responses are valid responses (non-timeout). The
second is on the basis on an already large scale
monitoring experiment on the French Grid’5000
(www.grid5000.fr). The statistical study of the
logged QoS values, shows that 96% of responses are
valid with K=2.

5 CONCLUSIONS AND FURTHER
WORK

In this paper, we presented a self-healing
architecture that manages QoS in a Web service-
based application. The presented approach relays on
different modules for monitoring, diagnosis and
recovering QoS degradation. We illustrate our
approach with the FoodShop application. The first
experiment is achieved while using virtual machines
and we are working on a large-scale experiment
under the Grid5000. We will focus on the
distribution of the SHA while centralizing and
coordinating the diagnosis and the recovery actions,
based on the knowledge of the structural architecture
of the applications and the dependencies between
service invocations.

The recovery action requires a Web service
with offer the same functionalities as the deficient
one. Actually, we deal with a predefined list of
similar and equivalent services. We need to improve
this component while using ontology for specifying
and searching the substitute services.

ACKNOWLEDGEMENTS

This work was supported by CAPES – Brazilian
Council of Research and LAAS-CNRS, France,
through collaboration research project CAPES-
COFECUB.

REFERENCES

Booth, D., Haas , H., McCabe , F., Newcomer , E.,
Champion, M., Ferris , C., Orchard, D. (Eds.) (2004,
February 11). Web Services Architecture. W3C
Working Group Note. Retrieved March 22, 2007,
from http://www.w3.org/TR/2004
/NOTE-ws-arch-20040211/.

Garcia, D. Z. G., & Toledo, M. B. F., A (2006). Web
Service Architecture Providing QoS Management. In
Proceedings of the 12th Brazilian symposium on
Multimedia and the Web, Natal, Rio Grande do Norte,
Brazil, 35–44.

Jacobson, V., & Karels, M. (1988, August). Congestion
Avoidance and Control (revised). In Proc. ACM
SIGCOMM'88, 314-329.

Karn, P., Partridge, C. (1991). Improving Round-Trip
Time Estimates. In Reliable Transport Protocols.
ACM Trans. Comput. Syst. 9(4), 363-373.

Ludwig, H. (2004). Web services QoS: external SLAs and
internal policies or: how do we deliver what we
promise? In Proc. of the Fourth International
Conference on Web Information Systems Engineering
Workshops (WISEW'03), 115-120. Springer.

Mahmoud, Q. H. (2005, April). Service-Oriented
Architecture (SOA) and Web Services: The Road to
Enterprise Application Integration (EAI). Retrieved
November 21, 2007, from http://java.sun.com
/developer/technicalArticles/WebServices/soa/.

Maximilien, E. M., Singh, M.P. (2004, September-
October). A framework and ontology for dynamic
Web services selection, In Internet Computing, IEEE,
8(5), 84- 93.

New to SOA and Web services (n.d.). Retrieved
November 3, 2007, from http://www.ibm.com
/developerworks/webservices/newto/.

Oracle Application Server 10g (n.d.). Retrieved November
12, 2007, from http://www.oracle.com
/technology/products/ias/.

Rud, D., Schmietendorf, A., Dumke, R. (2006).
Performance Modeling of WS-BPEL-Based Web
Service Compositions. IEEE Services Computing
Workshops (SCW'06) 140-147.

Web Services Business Process Execution Language v2.0
(2007, April 11). Retrieved November 20, 2007,
from http://docs.oasis-open.org/wsbpel/2.0/OS
/wsbpel-v2.0-OS.html.

Web Service Level Agreements (WSLA) Project (n.d.).
Retrieved November 12, 2007, from
http://www.research.ibm.com/wsla/.

ICEIS 2008 - International Conference on Enterprise Information Systems

206

