
THE PROTÉGÉ - PROMETHEUS APPROACH TO SUPPORT
MULTI-AGENT SYSTEMS CREATION

Marina V. Sokolova1,2 and Antonio Fernández-Caballero1

1 Universidad de Castilla-La Mancha, Departamento de Sistemas Informáticos &
Instituto de Investigación en Informática de Albacete, Campus Universitario s/n, 02071-Albacete, Spain

2 Kursk State Technical University, ul.50 let Oktiabrya, 94, Kursk, 305040, Russia

Keywords: Ontologies, Intelligent agents, Mapping, Prometheus, Protégé.

Abstract: The integration of two existing and widely accepted tools, Protégé Ontology Editor and Knowledge-Base
Framework, and Prometheus Development Kit, into a common approach, aiming to include the principal
stages of MAS development life cycle and offering a general sequence of steps facilitating application
creation, is proposed in this paper. The approach is successfully being applied to situation assessment
issues, which has concluded in an agent-based decision-support system for environmental impact
evaluation.

1 INTRODUCTION

Creation, deployment and post implementation of a
multi-agent system (MAS) as a software product is a
complex process, which passes through a sequence
of stages forming its life cycle (Marik and
McFarlane, 2005; Vasconcelos et al., 2001). Every
step of the life cycle process has to be supported and
provided by means of program tools and
methodologies. In case of MAS development, in our
opinion there is still no solution to a unified
approach to cover all the stages. However, there are
some works dedicated to this issue (de Wolf and
Holvoet, 2005; Konichenko, 2005). For instance, de
Wolf and Holvoet have presented a methodology in
the context of standard life cycle model, with accent
to decentralization and macroscopic view of the
process. Within tools and frameworks the authors
mention Jade (Bellifemine, Poggi and Rimassa,
1999), Repast (Repast, 2003) and an environment
for coordination of situated multi-agent systems
(Schelfthout and Holvoet, 2004). The authors offer
their approach on the assumption that the research
task has already been defined, omitting the problem
definition and domain analysis stages of the MAS
development process.

The software development in case of MAS is
based on the following steps (Konichenko, 2005):
(1) domain and system requirements analysis; (2)

design; (3) implementation; (4) verification; (5)
maintenance.

System analysis and design stages are supported
by well known alternative agent-oriented software
engineering methodologies, including MaSE
(DeLoach, Wood and Sparkman 2001), Gaia
(Wooldridge, Jennings and Kinny 2000), MASDK
(Gorodetsky et al., 2005), Prometheus (Padgham and
Winikoff, 2002), Tropos (Giunchiglia, Mylopoulos
and Perini, 2002) among others.

The MAS, after being coded and tested, is ready
to be deployed and be further modified or changed,
depending from requirements. The existing
methodologies do not or only briefly extend over the
first stage, as they work under the condition that the
developer has already defined the problem and
determined the goals and the tasks of the system.
However, this stage is a crucial one and has to be
carefully examined and planned. Indeed, the whole
deployed system functionality and efficiency
depends on how precisely the problem was defined
and the domain ontology was elaborated.

In this work we introduce our approach to MAS
life-cycle support, in which we focus both on
creation ontological background and system design
and deployment.

The paper is organized as follows. In section 2
the meta-ontology creation realized in Protégé is
described and in section 3 the MAS design made in
PDT is introduced. In section 4 our intention to

442
V. Sokolova M. and Fernández-Caballero A. (2008).
THE PROTÉGÉ - PROMETHEUS APPROACH TO SUPPORT MULTI-AGENT SYSTEMS CREATION.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - AIDSS, pages 442-445
DOI: 10.5220/0001685304420445
Copyright c© SciTePress

implement the ideas of the integrated methodology
for practical issue is briefly explained.

2 REQUIREMENTS IN PROTÉGÉ

Ontology creation may be viewed as a crucial step in
MAS design as it determines the system knowledge
area and potential capabilities (Guarino and Giaretta,
1995). In the first part of this article a model of
distributed meta-ontology that serves as a
framework for MAS design is proposed. Its
components - private ontologies - are described in
extensive with respect to an application area and in
terms of the used semantics (Sokolova and
Fernández-Caballero, 2007).

The model of the meta-ontology that we have
created consists of five components, or private
ontologies: the “Domain Ontology”, the “Task
Ontology”, the “Ontology of MAS”, the “Interaction
Ontology” and the “Agent Ontology”.

In first place, the “Domain Ontology”, includes
the objects of the problem area, relations between
them and their properties.

OD = < C, I, P, V, Rs, Rl> (1)

where the sets C and I are classes and their
individuals; P are class properties; V are the
properties values; Rs are some marginal levels for
values (restrictions); Rl states rules to receive new
individuals for the concrete class.

The “Task Ontology” contains information about
tasks and respective methods, about the pre-task and
post-task conditions, and informational flows for
every task. The “Task Ontology” has the following
model:

OT=<T, M, In, Ot, R> (2)

where T is a set of tasks to be solved in the MAS,
and M is a set of methods or activities related to the
concrete task, In and Ot are input and output data
flows, R is a set of roles that use the task.
Component R is inherited from the “Ontology of
MAS” through the property belong to role. The tasks
are shared and accomplished in accordance with an
order. The “Ontology for MAS” architecture is
stated as:

OA=<L, R, IF, Or> (3)

where L corresponds to the logical levels of the
MAS (if required), R is a set of determined roles, IF
is a set of the corresponding input and output
information represented by protocols. Lastly, the set

Or determines the sequence of execution for every
role (orders).

The interactions between the agents include an
initiator and a receiver, a scenario and the roles
taken by the interacting agents, the input and output
information and a common communication
language. They are stated in the “Interaction
Ontology” as:

OI=<In, Rc, Sc, R, In, Ot, L> (4)

Actually, as In and Rc Initiator and Receiver,
respectively, of the interaction we use roles. The
component Sc corresponds to protocols. R is a set
of roles that the agents play during the interaction.
In and Ot are represented by informational
resources, required as input and output, respectively.
Language L determines the agent communication
language (ACL).

In our approach BDI agents, which are
represented by the “Agent Ontology”, are modelled.
Hence, every agent is described as a composition of
the following components (Georgeff et al., 1998):

Agent = <B, D, I> (5)

Every agent has a detailed description in
accordance with the given ontology, which is
offered in a form of BDI cards, in which the pre-
conditions and post-conditions of agent execution
and the necessary conditions and resources for the
agent successful execution are stated. Evidently, B,
D and I stand for Believes, Desires and Intentions,
respectively.

Thus, the “Agent Ontology” incorporates the
following components: B is related to “Domain
Ontology”, which determines information data
resources, necessary for every agent (its believes), D
includes methods stored in the “Task Ontology”
(agent desires), and I calls for intentions necessary
for every activity or task specification. There is also
a collaborator, in case there are two or more agents
needed to solve the task.

Private ontologies mapping is made through slots
of their components. So, the “Agent Ontology” has
four properties: has intentions - which contains
individuals of the methods M class from the “Task
Ontology”; has believes - which contains individuals
from the “Domain Ontology”; has desires - which
contains individuals from the “Task Ontology”; has
type - which contains variables of String type.

There is a real connection between the “Task
Ontology” (OT) and the “Domain Ontology” (OD)
through believes. The OT, in turn, refers to the
“Ontology of MAS” (OA), which is formally
described by four components. The first two are:

THE PROTÉGÉ - PROMETHEUS APPROACH TO SUPPORT MULTI-AGENT SYSTEMS CREATION

443

level value and order; contain values of Integer type,
which determine the logical level number and the
order of execution for every role. Roles (R) are the
individuals of the named ontology. The next two
properties: has input and has output refer to
individuals of “Interaction Ontology” (OI); in
particular, to protocols, which manage
communications. Their properties are of type String:
has scenario, language, roles at scenario.

The “Interaction Ontology” slots named has
initiator and has receiver are the individuals of the
“Agent Ontology” (Agent). Thus, agents are linked
to the proper protocols within the MAS. The OD, by
means of its individuals - which contain data records
- is connected to Agent , which uses the knowledge
on the domain area as its believes. This way, the
proposed meta-ontological model realized in Protégé
covers the first steps of the software development
life cycle.

3 SYSTEM DESIGN WITH
PROMETHEUS
DEVELOPMENT TOOL

In order to validate the next step of our approach, we
introduce a running example, consisting in an agent-
based decision support system (ADSS) dedicated to
monitoring environmental pollution information,
analyzing this data, simulating with respect to health
consequences and making decisions for responsible
system users. The general view of the Classes
belonging to the domain of interest includes regions,
which are characterized with some environmental
pollution, and morbidity level.

The accent is made on regions (Sokolova and
Fernández-Caballero, 2007). The MAS is a logical
three layer architecture. The first layer is aimed for
meta-data creation, the second one is responsible for
hidden knowledge discovery, and the third level
provides real-time decision support making, data
distribution and visualization. This architecture
satisfies all the required criteria for decision support
systems.

The first level is named Information fusion and it
acquires data from diverse sources, and pre-
processes the initial information to be ready for
further analysis. The second layer is named Data
Mining and there are three roles at this level,
dedicated to knowledge recovering through
modelling, and calculation impact of various
pollutants upon human health. The third level,
Decision Making, carries out a set of procedures

including model evaluation, computer simulation,
decision making and forecasting, based on the
models created in the previous level. The main
function of this level is to provide a user - actually, a
person who makes decisions - with the possibility to
run online real-time “what - if” scenarios. The end-
user, that is to say the person making decisions,
interacts with the MAS through a System-User
Interaction protocol, which is responsible for
human-computer interaction. The user chooses the
indicator that he wants to examine and initiates a
computer simulation.

The system resembles a typical organizational
structure. The agents are strictly dedicated to work
with the stated sets of data sources. They solve the
particular tasks and are triggered when all the
necessary conditions are fulfilled, and there are
positive messages from previously executed agents
(Weiss, 2000). The system includes a set of roles,
correlated with the main system functions and a set
of agents related to each role.

4 IMPLEMENTATION IN JACK

The system design in the Prometheus design tool
ends with generation of the skeleton code for JACK
Intelligent Agents™ that facilitates further coding,
testing and deployment.

The JACK Design Tool provides a visual
interface, which supports application creation
directly created in Jack Development Environment
imported from Prometheus. This last possibility
supports our proposal. Therefore, we propose to
implement the coding, testing and deployment stages
of the MAS development process within the JACK
Development Environment.

5 CONCLUSIONS

The integration of two existing and widely accepted
tools, Protégé Ontology Editor and Knowledge-Base
Framework, and Prometheus Development Kit, into
a common methodology has been introduced in this
paper. To provide the following stages with tools,
we have tested different methodologies, and finally
decided to use the Prometheus Development Tool,
which offers a wide range of possibilities for MAS
planning and implementation, namely the system
architecture, the system entities, their internals and
communications within the system and with outer
entities.

ICEIS 2008 - International Conference on Enterprise Information Systems

444

The integrated approach covers all the stages of
MAS planning and implementation, supporting them
with tools and frameworks. The proposed fusion of
methodologies, Protégé and Prometheus, was chosen
because of the wide range of functions offered and
their conformance to international standards.
However, other combinations of agent-oriented tools
could be used, whenever it helps getting the same
result and support during MAS development,
deployment and maintenance.

ACKNOWLEDGEMENTS

Marina V. Sokolova is the recipient of Postdoctoral
Scholarship 0000253836, Program II.E (Becas
MAE) awarded by the Agencia Española de
Cooperación Internacional of the Spanish Ministerio
de Asuntos Exteriores y de Cooperación.

This work is supported in part by the Spanish
Ministerio de Educacion y Ciencia TIN2004-07661-
C02-02 and TIN2007-67586-C02-02 grants, and the
Junta de Comunidades de Castilla-La Mancha
PBI06-0099 grant.

REFERENCES

Bellifemine, F., Poggi, A., Rimassa, G. (1999). Jade - A
FIPA-compliant agent framework. Proceedings of the
Practical Applications of Intelligent Agents, pp. 97-
108.

DeLoach, S.A., Wood, M.F., and Sparkman, C.H. (2001).
Multiagent systems engineering. International Journal
of Software Engineering and Knowledge Engineering,
11, 231-258.

de Wolf, T., Holvoet, T. (2005) Towards a full life-cycle
methodology for engineering decentralised multi-agent
systems. Proceedings of the Fourth International
Workshop on Agent-Oriented Methodologies, pp. 1-
12.

Georgeff, M., Pell, B., Pollack, M., Tambe, M.,
Wooldridge, M. (1998). The Belief-Desire-Intention
model of agency. Intelligent Agents V: Agent
Theories, Architectures, and Languages. Lecture Notes
in Computer Science, 1555, pp. 1-10.

Giunchiglia, F., Mylopoulos, J., Perini, A. (2002). The
Tropos software development methodology:
Processes, models and diagrams. Third International
Workshop on Agent-Oriented Software Engineering,
pp. 162-173.

Gorodetsky, V., Karsaev, O., Konushy, V., Mirgaliev, A.,
Rodionov, I., Yustchenko, S. (2005). MASDK
software tool and technology supported. International
Conference on Integration of Knowledge Intensive
Multi-Agent Systems, pp. 528-533.

Guarino, N., Giaretta, P. (1995), Ontologies and
knowledge bases: Towards a terminological
clarification. In: Towards Very Large Knowledge
Bases, IOS Press 1995, pp. 25-32.

Konichenko A.V. (2005). Distribution Information
Systems Design Management. Rostov-Don Press,
Russia.

Marík, V., McFarlane, D. (2005). Industrial adoption of
agent-based technologies. Intelligent Systems, 20, pp.
27–35.

Padgham, L., Winikoff, M. (2002). Prometheus: A
pragmatic methodology for engineering intelligent
agents. Proceedings of the Workshop on Agent
Oriented Methodologies (Object-Oriented
Programming, Systems, Languages, and
Applications), pp. 97-108.

Repast home page. (2003). http://repast.sourceforge.net.
Schelfthout, K., Holvoet, T. (2004). ObjectPlaces: an

environment for situated multi-agent systems.
Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent
Systems, pp. 1500-1501.

Sokolova, M.V., Fernández-Caballero, A. (2007). A multi-
agent architecture for environmental impact
assessment: Information fusion, data mining and
decision making. 9th International Conference on
Enterprise Information Systems, ICEIS 2007, vol.
AIDSS, pp. 219-224.

Sokolova, M.V., Fernández-Caballero, A. (2007). An
agent-based decision support system for ecological-
medical situation analysis. 2nd International Work-
conference on the Interplay between Natural and
Artificial Computation. Lecture Notes in Computer
Science, 4528, pp. 511-520.

Vasconcelos, W.W., Robertson, D.S., Agusti, J., Sierra,
C., Wooldridge, M., Parsons, S., Walton, C., Sabater,
J. (2001). A lifecycle for models of large multi-agent
systems. Proceedings of the Second International
Workshop on Agent-Oriented Software Engineering.
Lecture Notes in Computer Science, 2222, pp. 297-
318.

Weiss, G. (2000). Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence. The
MIT Press.

Wooldridge, M., Jennings, N.R., Kinny, D. (2000). The
Gaia methodology for agent-oriented analysis and
design. Journal of Autonomous Agents and Multi-
Agent Systems, 3, 285-312.

THE PROTÉGÉ - PROMETHEUS APPROACH TO SUPPORT MULTI-AGENT SYSTEMS CREATION

445

