
FLEXIBILITY, COMPLETENESS AND SOUNDNESS OF USER
INTERFACES

Towards a Framework for Logical Examination of Usability Design Principles

Steinar Kristoffersen
Østfold University College, Halden, Norway

Keywords: Logical modeling, precise analysis of usability evaluation, model checking.

Abstract: The paper is concerned with automatic usability assessment, based on heuristic principles. The objective is to
lay the ground, albeit still rather informally, of a programof assessing the usability of an interactive system
using formal methods. Further research can then extend thisinto an algebra of interactive systems.

1 INTRODUCTION

We know that the effect of poor usability is difficult to
measure precisely (Lund, 1997). How can we tell that
our usability goals have been reached? Many forms
of usability assessment exist (Holzinger, 2005), but
for recurring reasons such as lack of resources, time
and technology, the most widely encompassing and
precise methods are often ignored (Mulligan et al.,
1991).

This paper initiates work with automated usabil-
ity assessment. In order to implement model chck-
ing software based on on the guidelines, they need
to be operationalized. The goal is to reach a level
of precision by which each principle may be spec-
ified using equational logic (Baader and Nipkow,
1998). The sets of guidelines and design principles
that we have today are arguably the result of experi-
ence and well-founded theoretical reasoning, but they
have not themselves been subjected to scientific test-
ing (Nielsen, 1994). This is the another long-term ob-
jective of the research described in this paper.

2 PREVIOUS RESEARCH

Many guidelines and standards turn out to be poorly
formulated and difficult to use, upon closer inspec-
tion (Thovtrup and Nielsen, 1991). The tools that ex-
ist for automating the assessment of usability correct-
ness criteria are often not sufficiently oriented towards
efficient software development. Many tools require
dedicated mark-up or tool-chain facilitation. Others
are directed towards post-hoc evaluation. This re-

dundancy aspect may explain why they have had rel-
atively limited industrial success. Some tools have
simply been too cumbersome for designers and de-
velopers to adopt (Ivory and Hearst, 2001).

Some progress has been made in the realms of
HCI (Human-Computer Interaction) research, how-
ever. The Catchit project has taken the need for ef-
ficient integration in the software development tool-
chain seriously. It addresses evaluation in predic-
tive terms as well as development-oriented model-
ing of user behavior. Its software automatically in-
struments the source code with a monitor which de-
tects deviation from the expected work-flow (Cal-
vary and Coutaz, 2002). Most previous approaches
needed such instrumentation to be carried out manu-
ally (Coutaz et al., 1996), which is error-prone in it-
self. Catchit represents an improvement, since it does
this automatically. It needs, however, a running code-
base to instrument. This limits the usefulness of the
tool to stages in which a running version of the system
has been implemented.

Another example of an integrated user interface
design and evaluation environment, is AIDE. It sup-
ports the assessment of a precisely defined set of met-
rics related to efficiency on the keystroke-level, the
alignment and balance of elements on the screen, and
eventual violations of constraints given by the de-
signer (Sears, 1995). It can generate layouts, but is
perhaps limited in spite of its precision by this strong
focus exactly on the layout of a single dialogue. It
leaves the implementation of more broadly scoped us-
ability principles almost as an “exercise for product
developers”. We believe that it is exactly in the for-
mal modeling of deeper relations between multiple el-
ements (rather than widgets) that an improvement of

346 Kristoffersen S. (2008).
FLEXIBILITY, COMPLETENESS AND SOUNDNESS OF USER INTERFACES - Towards a Framework for Logical Examination of Usability Design
Principles.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - HCI, pages 346-351
DOI: 10.5220/0001684803460351
Copyright c© SciTePress



user experiences can be mostly improved.
One early example of an automatic tool aim-

ing at improving the usability of projects, based
on guidelines which are then compared to the ac-
tual performance of the implemented system or at
least its specification, is the KRI/AG (Löwgren and
Nordqvist, 1992). The project builds, like ours, on a
selected number of operationalized user interface de-
sign guidelines. The interface is encoded and then
subjected to automatic analysis. It does not, on the
other hand, see this as an instance of a more general
model-driven approach to software engineering, and
in spite of encouraging results from its initial trials, it
is now a near-forgotten endeavor.

Ideally, any project should have some form of au-
tomatic usability evaluation support available, which
is itself easy to use, stable and transparent. We may
in some situation wish to be able to substitute dedi-
cated expertise if that is not available, but most often
it would be offered as a complementary tool.

The research projects that we outlined above have
not spawned into successful commercial products.
Looking at the formulations of usability principles
themselves, in research papers (Gould and Lewis,
1985) as well as in the HCI curriculum (Dix et al.,
1997), this should come as no surprise. They are usu-
ally left rather vague, even for a human student of the
principles, and implementing automatic tool support
on the current conceptual platform is thus very diffi-
cult.

We wish to be able to develop an improved and
partly (at least) automatic checking of usability guide-
lines adherence as an integrated element in the de-
velopment tool-chain, so that it will be able to de-
tect failure of invariants based on well-known usabil-
ity principles in an efficient manner. Hence, these
principles need to be properly operationalized. It is
therefore necessary to take a step back and look at
the specification of the criteria themselves, to prepare
the ground for an even more ambitious theoretical en-
deavor, which we outlined above. A walk-through
and discussion of the “user requirements” is therefore
warranted. In order to study the correlation of per-
ceived usability and formal assessment, the guidelines
need to be stable, well understood and operationaliz-
able. This is what we do next. The principles are or-
dered within categories of broader usability concerns,
which are learnability, flexibility, robustness and task
conformance. We deal only with two of the categories
in this paper, due to page number limitations. We are
going to deal with the remaining two categories in a
completely analogous fashion, in another paper.

3 RESULTS

In this section we will present our analysis with re-
spect to the operationalizability of the design princi-
ples. The purpose is to uncover at least one possi-
ble precise (albeit still informal, in terms of the nota-
tion that we apply) formulation of the principles, and
sketch the research problems that we believe must be
solved in order to implement a fully automatic check
of the principles.

3.1 Flexibility Principles

3.1.1 Dialog Initiative

This property indicates the difference between situ-
ations where the system initiates action, by prompt-
ing action from the user or itself acting autonomously,
and situations where the user decides what and when
to act. The former can be described as having in-
ternal and/or invisible actions implemented by the
system. In order to determine the situation thus de-
scribed, we need to look for and display the path lead-
ing ”through” states in which there is no user input
required. It can then relatively easily be quantified by
the length of such paths, the coverage of paths for the
entire network of states which we envisage constitut-
ing the application, and we can even look for cycles or
“dead-ends” of internal and/or invisible paths, which
will tell us (eventually) by deadlocks in the interactive
perspective of the user. This is a fairly operational cat-
egory of usability design criteria, it seems.

3.1.2 Multi-threading

This is a property which we see as the capability of
letting the user work with more than one task at a
time. In other words, it is characterized by presence
of states in which no other parallel non-terminating
states exist, or the complementary, states whichhave
other parallel non-terminating states. In the literature
(Dix et al., 1997), it is common to differ between in-
terleaving and concurrent multi-threading.

It still seems quite doable to formalize this notion,
except that it places rather strict demands on the mod-
eling effort, notwithstanding that the language used
for modeling in itself needs to be well designed. For
instance, we will have to be able to decide for every
state, which of the other states that might be perform-
ing in parallel. One can expect, in any system, the
search for such states to be very computationally de-
manding. This is clearly an issue for further research.

FLEXIBILITY, COMPLETENESS AND SOUNDNESS OF USER INTERFACES - Towards a Framework for Logical
Examination of Usability Design Principles

347



3.1.3 Task Migratability

Task migratability is a subtle, but important property,
It designates whether a system or subset of the system
will allow the user either to take control over a task in
a step-by-step fashion, and vice versa if the user may
request the system to perform a series of tasks as an
aggregate. Otherwise, the system is less flexible in
the sense that user interference in subtask sequences
is not allowed. In terms of operationalizing it, we will
have to search for sequences of states that cannot be
executed one by one as a series of actions by the user.

From this discussion and tentative definition is
seems to be fully viable to determine the number of
states, which qualify as being of one category or the
other. We will face two related problems, though,
namely that any conceptual “state” can be arbitrarily
modeled in terms of significance and granularity and
the “number of” sub-states of what the designer per-
ceives as a logical state, may as such not be particu-
larly pertaining to user perception of multi-threading.
This is an issue for further research, but for now we
defer that to the modeling strategy. As will be further
elaborated in the discussion, this is also the case for
many other criteria.

3.1.4 Substitutivity

This is the property of allowing the user to decide
upon a suitable format for representing input as well
as output. For our purposes, it may, to keep it distinct
from the two next categories and decidable in a formal
analysis, be seen as characterized by the presence of
input actions that (do not) have multiple translations
of values to different representations. We can than
search for states comprising output or input actions
that have multiple presentations of the same values,
including the difference between user inputting and
computing a value.

Alan Dix writes about how “Equal opportunity
blurs the distinction between input and output at the
interface (Dix et al., 1997)” and this illustrates several
problems of operationalizing the judgment of whether
a system fulfills thesubstitutivity-criteria. Some types
systems, archetypically the well-known spreadsheet,
allows input as well as system-computed output, lit-
erally in the same cell. It is computationally exhaus-
tive to search for states from which new values can
either be computed or inputted, in a “simple” appli-
cation like this, based on a simulation. The notion of
typical user behavior may be necessary to constrain
the search strategies. Other alternatives may be dis-
covered as we extend our research into this domain.

3.1.5 Customizability

We see the criteria of customizability as (at least)
twofold, but first and foremost as different from sub-
stitutivity by being related to variance of assemblages,
rather than a translation or multi-modality of formats
(particularly in the input/output regions). It dual na-
ture can be associated with who mobilizes the cus-
tomization, which is always on the user’s behalf, of
course. In the first instance, users modify the connec-
tion between components or script their behavior to
make them fit their intentions. This is what we call
adaptability. In the other instance, we are concerned
with making the system “intelligent”enough to make
the necessary adaptations, and we denote thisadap-
tivity.

It turns out to be difficult in practice to make a
system adaptive (or tailorable) in any sense of the
word, but that is not our concern here. We offer a
definition which can be operationalized in a formal
analysis of the system. A search for adaptability can
then be seen as looking for states from which the ac-
tions can be modified by the user, and still lead to the
“same next state”. On the opposite site of system pre-
emptiveness, we have a search for adaptivity, which
is when we look for states from where the actions
are modified by the system, depending of user input,
but not causedby it. And this reveals another im-
portant unresolved research problem in the domain of
formal analysis of HCI, namely how to distinguished
between causal chains of events which are intended
by the user and those which are intended by the pro-
grammers. In runtime, they may be difficult to sepa-
rate. Again, this is an issue for further research.

3.2 Task Conformance Principles

3.2.1 Task Adequacy

The criteria oftask adequacyasks if tasks are mapped
into action in a way that the user finds satisfying. We
cannot decide this on a subjective level, of course. We
need to relate somehow to requirements. Within the
set of pre-suppositions thus given, we find that this
is a criteria of great importance, since it asks if there
are rules in the system which do not correspond to
requirements, i.e., is the systemsound. This gives us,
at least in logical terms, a precise definition.

The problem of this criteria is, to begin with, the
relationship between the requirement specifications
and the system/user interface specification (model).
Looking at it the way we do turns the usability re-
search in a new conceptual direction, since it implies
that it is (in logical terms) the requirement specifica-

ICEIS 2008 - International Conference on Enterprise Information Systems

348



tions which constitute the model (i.e., the world) and
the user interface specification (executable), is a set of
theorems. The research agenda is then set, to device a
useful logical approach for evaluating theorems about
a given set of requirements. This is something that we
think will be very useful.

3.2.2 Task Completeness

As a consequence of the inverse perspective of the
user interface versus the requirements, introduced
above, we can re-interpret the idea oftask complete-
nessas well. The question becomes if there are rela-
tions in the model, i.e., requirements, which we have
not mapped to theorems, i.e., rules which govern tran-
sitions between states. In logical lingo, we want to be
able to ask if the system iscomplete.

The challenges of this criteria is of course close
matching the ones which pertain to task adequacy.

4 DISCUSSION

It is by now evidently clear that we need to sepa-
rate between concepts more clearly, and give some
of them a more exact interpretation in relation to the
domain of user interaction. The most important are
listed here:

• Significant state. This is a state that is modeled. A
“real” program during execution will have a vast
number of states that we do not need to model,
since they have no bearing on the properties that
we wish to analyze. Our theorems only describe
significant states, by definition.

• Visible state. This is a state that makes itself
known to the user as the state that is reached.

• Published rule. This is a rule that is visible at the
state from which the rule can applied, or earlier.

• Published state. This is a state that is visible at a
state from which a rule can be applied, which will
lead to the state, or earlier.

• Aggregate action. A “macro” of state-changes,
which are in themselves atomic in the sense that
they can be performed individually or in other ag-
gregate actions.

• Compound action. A “procedure” of state-
changes, in which individual statements are not
independently meaningful.

At the very first point of reflection, it becomes
clear that the usability guidelines and principles that
one aims to assert in some formal fashion, will need
to be operationalizable at an entirely different level

from what we know today. This turns out to be hard,
though, as noted by Farenc et al. (Farenc et al., 1999).
An effort such as the one described in his paper con-
tributes to advance this situation, by attempting to re-
specify usability design principles in a form that may
be decidable “even by” computers. One should be
careful not to expect to be able to capture every aspect
of each rule in this way, however. Our attempts at for-
malizing design ambitions may make them more triv-
ial. Clearly, we do not expect such an effort to elimi-
nate the competencies of a human evaluator and see it
instead as a complement and a first stab at tool support
for usability engineering. Lack of precision is not, of
course, an advantage, on the other hand (Doubleday
et al., 1997), and one should arguably be doubtful of
design principles that cannot at least be examplified
or seem to detect simple instances of non-adherence.

When we know about the divergence caused by
the evaluator effects (Hertzum and Jacobsen, 2003),
and the time and resources needed to do robust usabil-
ity testing, tool support for investigation the the HCI
(Human-Computer Interaction) aspects is clearly war-
ranted. Some systems for usability testing exist, rely-
ing on guidelines and standards, which turn out to be
hard to use even on their own (Thovtrup and Nielsen,
1991). The tools for automating the assessment of us-
ability correctness criteria is often not efficiently in-
tegrated with software development, or facilitate only
post-hoc evaluation (Ivory and Hearst, 2001). This in-
troduces redundancy aspects, which may explain why
they have had relatively limited industrial success.

Usability engineering is often limited to infor-
mal user testing and ad-hoc observations (Holzinger,
2005), which, apart from the problems of divergence
and user/expert involvement needed, suffer from the
lack of generalizability and predictive force. Thus,
a “theory of usability” is needed. Many such at-
tempts to make a formal argument of usability is re-
lated to GOMS (Goals-Operators-Methods-Selection
rules) or similar rational or at least goal-oriented mod-
els (Gray et al., 1992). There has been reasonable
correlation of GOMS-based predictions with experi-
ments established in the literature (Gray et al., 1992).
Unfortunately, creating such models is labor-intensive
and error-prone. Using it for evaluation requires a
low-level specification or finished software which can
be run to elicit a task model which is sufficiently high-
fidelity, since the GOMS family of model represents
user actions down to the level of singular keystrokes
(John and Kieras, 1996). Ideally, the formal model-
ing of user interfaces, which are input to the evalua-
tion, should be exactly the same specification as the
one used for the design in the first place. It makes it
more likely that it will actually be used, since it does

FLEXIBILITY, COMPLETENESS AND SOUNDNESS OF USER INTERFACES - Towards a Framework for Logical
Examination of Usability Design Principles

349



not create redundant specification work. More impor-
tantly, however, a multi-purpose specification would
make it possible to conduct continuous evaluation of
usability aspects. Indeed, it could be built into the
software development environment.

LOGOS is one alternative specification language
for interactive user interfaces (Paternó and Faconti,
1993), which could be seen as aiming to fill this role.
It is more akin to a general design language than the
syntax of the keystroke-level GOMS. This could also
be seen as its biggest downside also, since it becomes
almost as complex to make the specification as the
actual programming of the user interface. It is simi-
lar enough to a full-blown programming language for
an even more overlapping representation in the form
of running code to be a tempting alternative in many
projects, and the advantages of formal specification is
lost if it is not robustly simple and abstract enough for
the designer to be able to verify that the model is ac-
curate. Still, it is not an executable specification, so
the work entailed by making the test aid is easily per-
ceived as redundant. We believe that a declarative ap-
proach is needed, and preferably one that can rely on
model-checking of the logical properties of the speci-
fication.

Approaches used in formal research in HCI, such
as GOMS and LOGOS, are not widely used in the
industry. Some argue they have fundamental prob-
lems, which means they only succeed in narrow do-
mains and will not realistically be useful in actual
design projects (Bannon and Bødker, 1991). In this
paper, instead, we see the problem as being the lack
of proper operationalization of the underlying usabil-
ity design principles. As a first step toward resolving
that, we have offered a re-specification of a subset of
the most commonly taught usability principles (Dix
et al., 1997). Additionally, we think for further work
that creating or extending a formal modeling language
so that it is not only suited for describing interactive
user interfaces in a platform-independent fashion, but
also testing its logical properties in a precise way, is
absolutely necessary.

5 CONCLUSIONS

It is important to remind ourselves that we do not take
for granted that implementing the principles in accor-
dance with any of the definitions above, isa priori,
in itself, virtuous or necessary (although it seems rea-
sonable) to achieve usability. We see this as an em-
pirical question, which needs to be assessed indepen-
dently. It will, however, be a much more doable as-
sessment in the first place, if as we have suggested, a

precise and formal definition of what each principle
entails. Moreover, the availability of a tool which can
identify fulfillment or breakage of consistency criteria
will be necessary for any quantitative assessment of
the correlation between practice and theory. A subjec-
tive or example-dependent qualification of each prin-
ciple may be sufficient for teaching the notion com-
prised by each principle, but it will not do as a point
of departure for experiments of a more quantitative
nature. We believe that the latter will be a strong sup-
plement to the existing body of work.

Another equally important contribution of the re-
search presented in this paper is that it documents
shortcomings of modeling techniques when their ob-
jective has not been taken properly into account. We
know that many of the more generic frameworks for
describing user interfaces are not suitable for the dual
task of development and formal analysis. In many re-
spects that we have touched upon in this paper, they
are not suited for formal validation of usability de-
sign principles. There are many drawbacks. The vol-
ume and verbose nature of the specifications make
them hard to write and understand for the “human
model checker,”who at least has to be able to check
the model checker. We are of course aware of the
irony in this, but improvement of practice must be
seen as desirable even if it is stepwise rather than to-
tal, in our opinion.

It will, as we see it, be a great advantage compared
to most other automatic usability evaluation methods
based on models, if one can devise an approach which
does not need be ”made to match” an existing artifact,
i.e. a dedicated format or tool. These approaches
suffer from an ”impedance mismatch” problem, by
which we mean that the representation of the artifact
intended for checking may itself be an inaccurate im-
age (or it may not be one-to-one). By definition, us-
ing a declarative product from the software life-cycle
product chain itself, will make our ”substrate” corre-
spond more accurately with the manifest artifact that
one aims to implement in the next instance, namely
the dynamic user interface. Th result may still not
be exactly what the users wanted, but at least we can
check it properly and know that it represents correctly
the artifact, since the relationship between themis
one-to-one. On the other hand, this may represent an
issue for further research into the specification of the
search strategies that perform the model checking.

Finally, we need to state that in our opinion the
possibility of a nice framework and associated toolkit
for logical and precise analysis of usability principles
in an interactive application, does not pre-empt the
need to work closely with users. Notwithstanding the
internal validity of our contribution, which is to some

ICEIS 2008 - International Conference on Enterprise Information Systems

350



extent only depending on our efforts to formulate an
abstract world, the usefulness of such a framework
depends wholly on the “real world”. Thus, we look
forward to being able to compare the predictions of
a formal analysis with traditional usability evaluation
of the same systems. Only when correlation on this
level has been established, of course, one may con-
clude that this type of approach is really viable.

REFERENCES

Baader, F. and Nipkow, T. (1998).Term rewriting and all
that. Cambridge University Press, New York, NY,
USA.

Bannon, L. J. and Bødker, S. (1991).Beyond the interface:
encountering artifacts in use, pages 227–253. Cam-
bridge University Press, New York, NY, USA.

Calvary, G. and Coutaz, J. (2002). Catchit, a development
environment for transparent usability testing. InTA-
MODIA ’02: Proceedings of the First International
Workshop on Task Models and Diagrams for User In-
terface Design, pages 151–160. INFOREC Publishing
House Bucharest.

Coutaz, J., Salber, D., Carraux, E., and Portolan, N. (1996).
Neimo, a multiworkstation usability lab for observing
and analyzing multimodal interaction. InCHI ’96:
Conference companion on Human factors in comput-
ing systems, pages 402–403, New York, NY, USA.
ACM.

Dix, A., Finlay, J., Abowd, G., and Beale, R. (1997).
Human-computer interaction. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA.

Doubleday, A., Ryan, M., Springett, M., and Sutcliffe, A.
(1997). A comparison of usability techniques for eval-
uating design. InDIS ’97: Proceedings of the 2nd con-
ference on Designing interactive systems, pages 101–
110, New York, NY, USA. ACM.

Farenc, C., Liberati, V., and Barthet, M.-F. (1999). Au-
tomatic ergonomic evaluation: What are the limits?
In Proceedings of the Third International Conference
on Computer-Aided Design of User Interfaces, Dor-
drecht, The Netherlands. Kluwer Academic Publish-
ers.

Gould, J. D. and Lewis, C. (1985). Designing for usability:
key principles and what designers think.Commun.
ACM, 28(3):300–311.

Gray, W. D., John, B. E., and Atwood, M. E. (1992). The
precis of project ernestine or an overview of a valida-
tion of goms. InCHI ’92: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 307–312, New York, NY, USA. ACM.

Hertzum, M. and Jacobsen, N. E. (2003). The evaluator ef-
fect: A chilling fact about usability evaluation meth-
ods.International Journal of Human-Computer Inter-
action, 15(1):183–204.

Holzinger, A. (2005). Usability engineering methods for
software developers.Commun. ACM, 48(1):71–74.

Ivory, M. Y. and Hearst, M. A. (2001). The state of the art
in automating usability evaluation of user interfaces.
ACM Comput. Surv., 33(4):470–516.

John, B. E. and Kieras, D. E. (1996). The goms fam-
ily of user interface analysis techniques: comparison
and contrast. ACM Trans. Comput.-Hum. Interact.,
3(4):320–351.

Löwgren, J. and Nordqvist, T. (1992). Knowledge-based
evaluation as design support for graphical user inter-
faces. InCHI ’92: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages
181–188, New York, NY, USA. ACM.

Lund, A. M. (1997). Another approach to justifying the cost
of usability. interactions, 4(3):48–56.

Mulligan, R. M., Altom, M. W., and Simkin, D. K. (1991).
User interface design in the trenches: some tips on
shooting from the hip. InCHI ’91: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 232–236, New York, NY, USA. ACM.

Nielsen, J. (1994). Enhancing the explanatory power of
usability heuristics. InCHI ’94: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 152–158, New York, NY, USA. ACM.

Paternó, F. and Faconti, G. (1993). On the use of lotos to de-
scribe graphical interaction. InHCI’92: Proceedings
of the conference on People and computers VII, pages
155–173, New York, NY, USA. Cambridge University
Press.

Sears, A. (1995). Aide: a step toward metric-based inter-
face development tools. InUIST ’95: Proceedings of
the 8th annual ACM symposium on User interface and
software technology, pages 101–110, New York, NY,
USA. ACM.

Thovtrup, H. and Nielsen, J. (1991). Assessing the usability
of a user interface standard. InCHI ’91: Proceedings
of the SIGCHI conference on Human factors in com-
puting systems, pages 335–341, New York, NY, USA.
ACM.

FLEXIBILITY, COMPLETENESS AND SOUNDNESS OF USER INTERFACES - Towards a Framework for Logical
Examination of Usability Design Principles

351


