
DISCOVERING VEILED UNSATISFIABLE XPATH QUERIES

Jinghua Groppe and Volker Linnemann
IFIS, University of Lübeck, Lübeck, Germany

Keywords: XML, Query languages, XPath, XPath optimization, XPath satisfiability test.

Abstract: The satisfiability problem of queries is an important determinant in query optimization. The application of a
satisfiability test can avoid the submission and the unnecessary evaluation of unsatisfiable queries, and thus
save processing time and query costs. If an XPath query does not conform to constraints in a given schema,
or constraints from the query itself are inconsistent with each other, the evaluation of the query will
return an empty result for any valid XML document, and thus the query is unsatisfiable. Therefore, we
propose a schema-based approach to filtering the XPath queries not conforming to the constraints in the
schema and the XPath queries with conflicting constraints. We present a complexity analysis of our
approach, which proves that our approach is efficient at typical cases. We present an experimental analysis
of our prototype, which shows the optimization potential of avoiding the evaluation of unsatisfiable queries.

1 INTRODUCTION

As XML becomes increasingly popular as a
language for data storage, automatic exchange and
processing, larger and larger as well as more and
more data are stored using XML, e.g. the Computer
Science Bibliography (University of Trier, 2007) the
XML data of which has currently the size 389
Megabytes. Therefore, speeding-up query
processing of XML data becomes increasingly
important. XPath (W3C, 1999)(W3C, 2003) is a
query language for XML data developed by W3C.
As well as being a standalone XML query language,
XPath is also embedded in other XML languages
(e.g. XSLT, XQuery, XLink and XPointer) for
specifying node sets in XML documents.

The satisfiability problem of XPath queries is an
important issue in XPath evaluation. An XPath
query is unsatisfiable if there does not exist any
XML document on which the evaluation of the
query returns a non-empty result. Therefore, using
the satisfiability test can avoid the submission and
the unnecessary computation of unsatisfiable XPath
queries, and thus saves users’ cost and evaluation
time. As well as for query optimization, the XPath
satisfiablity test is also important in XML access
control (Fan et al., 2004), type-checking of
transformations (Martens et al., 2004) and XPath-
based index update (Hammerschmidt et al. 2005).
Therefore, many research efforts focus on the

satisfiability test of XPath queries with or without
respect to schemas.

In the absence of schemas, the satisfiability test
can detect two kinds of errors in an XPath query Q.
The first kind of errors is that the structure properties
of Q are inconsistent with the XML data model. For
example, the XPath query Q1=/following-sibling::a is
unsatisfiable, because the root node has no sibling
node according to the XML data model. The query
Q2=//person/age is tested as a satisfiable XPath query
without respect to a schema. However, according to
a given schema, e.g. the schema in (Franceschet,
2005), the element person does not have children age.
Thus, Q2 is unsatisfiable with respect to the schema.
The second kind of errors is that the constraints from
Q itself are inconsistent with each other. For
example, Q3=a[@v>2][@v<1] is unsatisfiable since @v>2
is contrary to @v<1. Q4=//catgraph/∗[parent::∗[not(edge)]] is
satisfiable because Q4 conforms to the XML data
model, and contains no visible conflicting
constraints. However, if Q4 is rewritten to
/site/catgraph/edge[parent::catgraph[not(edge)] according to
a given schema, e.g. one in (Franceschet, 2005), and
is further optimized to /site/catgraph[not(edge)]/edge by
eliminating reverse axes, then Q4 is unsatisfiable
with respect to the schema. (We call Q4 is a query
with hidden conflicting constraints.) Thus, we can
detect more errors in XPath queries if we
additionally consider schema information.
Therefore, we focus on the satisfiability test of
XPath queries in the presence of the schemas

149
Groppe J. and Linnemann V. (2008).
DISCOVERING VEILED UNSATISFIABLE XPATH QUERIES.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 149-158
DOI: 10.5220/0001684301490158
Copyright c© SciTePress

formulated in the XML Schema language (W3C,
2004a) (W3C, 2004b).

Our schema-based approach first checks whether
or not an XPath query Q conforms to the structure,
semantics, data type and occurrence constraints
given in an XML schema definition S by evaluating
Q on S. If Q does not conform to the constraints of S,
Q cannot be evaluated completely on S, and thus Q is
unsatisfiable. If Q is evaluated completely on S, we
rewrite Q to Q’ based on the internal data structure
generated when evaluating Q on S, which integrates
the structure and semantic constraints in S. Q’ is
equivalent to but contains more information than Q
by substituting specific node tests for wildcards, by
eliminating redundant parts, by eliminating reverse
axes and by substituting non-recursive axes (e.g.
child) for recursive axes (e.g. descendant) whenever
possible, and thus can reveal more conflicting
constraints. Our approach then checks whether the
constraints in Q’ are consistent with each other, and
filters the queries with conflicting constraints.

Related Work. (Benedikt et al., 2005) theoretically
studies the complexity problem of XPath
satisfiability in the presence of Document Type
Definitions (DTDs), and shows that the complexity
of XPath satisfiability depends on the considered
subsets of XPath queries and DTDs. We present a
practical algorithm for testing the satisfiability of
XPath queries. (Hidders, 2003) checks whether the
structure properties of XPath queries are consistent
with the XML data model. (Lakshmanan et al.,
2004) examines the satisfiability test of tree pattern
queries with respect to non-recursive schemas.
(Kwong and Gertz, 2002) suggests an algorithm for
rewriting and the satisfiability test of XPath queries,
but allows only non-recursive DTDs and a subset of
the XPath axes. We support recursive schemas and
all the XPath axes. (Groppe S. et al., 2006) filters
unsatisfiable XPath queries by a set of simplification
rules, but cannot filter the XPath queries with the
hidden conflicting constraints. (Chan et al., 2004)
suggests an approach to minimize wildcards in the
absence of schemas. We can eliminate wildcards
completely in XPath queries. (Olteanu, 2002)
eliminates reverse axes in XPath queries according
to the axis symmetry of XPath. (Fan et al., 2005)
develops an algorithm to rewrite XPath queries to
regular XPath queries on recursive DTDs, but only
forward axes are considered and the reverse axes
and the axes depending on the document order are
not allowed.

Our previous contributions (Groppe J. et al.,
2006a)(Groppe J. et al., 2006b)(Groppe J. et al.,
2006c)(Groppe J. et al., 2007) filter the XPath

queries that do not conform to the constraints in an
XML Schema definition, but cannot filter the XPath
queries with hidden inconsistent constraints.
(Groppe J. et al., 2006c) supports a part of the subset
of XML Schema supported in this work, and
rewrites XPath queries according to schemas in
order to refine the given queries rather than to detect
the queries with conflicting constraints. In this work,
we rewrite the XPath queries that are not detected as
unsatisfiable queries to discover possible hidden
inconsistent constraints, and apply a set of rules to
filter the XPath queries with contradictory
constraints.

For XPath, we support all XPath axes, negation
operation, and comparison predicates. For XML
Schema, we support a significant subset of the XML
Schema language, which covers real world schemas
and includes e.g. restriction and extension as well as
all, choice and sequence groups. A detailed
description on the supported XPath subset and XML
Schema subset are given in (Groppe J. et al, 2007).
Furthermore, we write DoS for the descendant-or-self
axis, AoS for the ancestor-or-self axis, FS for the
following-sibling axis and PS for the preceding-sibling axis.

2 XML SCHEMA DATA MODEL

Based on the data model for the XML language in
(Wadler, 2000), we develop a data model for XML
Schema for identifying the navigation paths of
XPath queries on an XML Schema definition. In the
model, we write (x1,…, xm) for a sequence of entries
x1,…, xm. We use the operator + to concatenate two
sequences, e.g. (x1) + (y1, y2) = (x1, y1, y2). Let s be a
sequence, we write s[k] for the k-th entry of s, and
write |s| for the length of s, i.e. the number of entries
in s. Furthermore, we also call a node in an XML
Schema definition an XSchema node.

An XML Schema definition is a set of nodes of
type Node. There are four specific Node types in an
XML Schema definition, which are associated with
instance element, instance attribute, instance text
and instance root nodes of the XML Schema
definition: iElement, iAttribute, iText and iRoot.
Accordingly, we define four functions with signature
Node→Boolean to test the type of a node: isiElement,
isiAttribute , isiText and isiRoot.

Definition 1 (Instance Nodes). The instance nodes
of an XML Schema definition are
• <schema> (which is the instance root node)
• <element name=N> (which is an instance element node),
• <attribute name=N> (which is an instance attribute node),
• attribute node type=T of nodes <element type=T>, which

ICEIS 2008 - International Conference on Enterprise Information Systems

150

we denote as @<type=T> (which is an instance text node,
if T is a built-in simple type),

• <simpleType> (which is an instance text node),
• <complexType mixed=‘true’> (which is an instance text

node)
• <simpleContent> (which is an instance text node) and
• <complexContent mixed=‘true’> (which is an instance text

node).

Definition 2 (Succeeding Node). A node N2 in an
XML Schema definition is a succeeding node of a
node N1 in the XML Schema definition if
• N2 is a child node of N1, or
• N1=<element type=N> and N2=<simpleType name=N>, or
• N1=<attribute type=N> and N2=<simpleType name=N> , or
• N1=<element type=N> and N2=<complexType name=N>, or
• N1=<element ref=N> and N2=<element name=N>, or
• N1=<attribute ref=N> and N2=<attribute name=N>, or
• N1=<group ref=N> and N2=<group name=N>, or
• N1=<attributeGroup ref=N> and N2=<attributeGroup

name=N>, or
• N1=<restriction base=N> and N2=<simpleType name=N>, or
• N1=<extension base=N> and N2=<simpleType name=N>, or
• N1=<extension base=N> and N2=<complexType name=N>.

Figure 1 defines the data model of XML
Schema, which consists of a group of functions
represented in comprehension notation (Wadler,
2002). The functions child(N) and succeeding(N) relate
an XSchema node to a set of XSchema nodes. The
functions iChild-helper(N), iChild(N), iAttributeChild(N), iText-
helper(N) and iTextChild(N) relate an XSchema node to a
set of sequences of XSchema nodes. If y∈iChild(N),
then y[1]=N and y[|y|] is an instance child node of N.
Other nodes in y are the intermediate nodes visited
when searching for y[|y|] of y[1], some of which may
be the declaration nodes of model groups, which
control the occurrence of y[|y|], and the occurrence
order of y[|y|] and its instance sibling nodes in an
instance XML document. Taking as example the
XML Schema definition city.xsd in Figure 2 in
Section 3.1, iChild(D8) = {(D8, D2, D3, D4), (D8, D2, D3,
D5)}. iChild-helper(N) returns all the node sequences
visited before the instance child nodes and instance
attribute nodes of N, e.g. in Figure 2, iChild-helper(D5) =
{(D5), (D5, D2), (D5, D2, D3)}. Different from the XML
data model, where a node has only one parent node,
in XML Schema definitions, a node may have
several instance parent nodes. Thus, iPS(x) for finding
the instance preceding sibling nodes and iFS(x) for
finding the instance following sibling nodes relate a
sequence x of nodes to a set of sequences of nodes,
where x[1] is the instance parent node of x[|x|]. Let
y∈iPS(x), then y[1]=x[1], and y[|y|] is both an instance
child node or an instance text node of y[1] and an
instance preceding sibling node of x[|x|]. A detailed
description on iPS(x), iFS(x) and the data model is
given in (Groppe J. et al, 2007).

• child(N) = {N1 | N1 is a child node of N}
• succeeding(N) = {N1 | N1 is a succeeding node of N}
• iChild-helper(N) = ∪i=0

∞ Si, where S0 = {(N)},
Si = {y+(N1) | y∈Si-1 ∧ N1∈succeeding(y[|y|]) ∧

¬isiElement(N1) ∧ ¬isiAttribute(N1)}
• iChild(N)={y+(N1) | (y=(N) ∧ isiRoot(N) ∧ N1∈child(N) ∧

isiElement(N1)) ∨ (y∈iChild-helper(N) ∧ N1∈succeeding(y[|y|]) ∧
isiElement(N1))}

• iAttributeChild(N) = {y+(N1) | y∈iChild-helper(N) ∧
N1∈succeeding(y[|y|]) ∧ isiAttribute(N1)}

• iText-helper(N) = ∪i=0
∞ Ri, where R0 = {(N)},

Ri = {y+(N1) | y∈Ri-1 ∧ N’= y[|y|] ∧ ¬isiText(N’) ∧ ¬isiAttribute(N’) ∧
N’≠<complexType> ∧ (N’≠<element type=T> ∨
(N’=<element type=T> ∧ ¬built-in(T))) ∧ N1∈succeeding(N’) }

• iTextChild(N) = {y | (y∈iText-helper(N) ∧ isiText(y[|y|])) ∨
(y=z+(N1) ∧ z∈iText-helper(N) ∧ N’= z[|z|] ∧ ¬isiText(N’) ∧ isiText(N1)
∧ ((N’=<element type=T> ∧ N1=attributeNode(N’, type=T)) ∨

(N’=<complexType> ∧ N1∈succeding(N’))))}
• iPS(x) = {y | (y∈iChild(x[1]) ∨ y∈iTextChild(x[1])) ∧ y[|y|]≠@<type=T>
∧ y[y]≠<simpleType> ∧ y[y]≠ <simpleContent> ∧ (

(y[|y|]=<complexType mixed=‘true’> ∨
 y[|y|]=<complexContent mixed=‘true’>) ∨
(x[|x|]=<complexType mixed=‘true’> ∨
 x[|x|]=<complexContent mixed=‘true’>) ∨
(x=y ∧ ∃i∈{2, 3, ..., |x|}: attribute(x[i], ‘maxOccurs’)>1) ∨
(∀i∈{1, …, k}: x[i]=y[i] ∧ x[k+1]≠y[k+1] ∧ k<min(|x|, |y|) ∧ (
 x[k]=<all> ∨ ∃i∈{2, 3, ..., k}: attribute(x[i], ‘maxOccurs’)>1 ∨
(y[k+1]<x[k+1] ∧ ∀i∈{2, 3, ..., k}: (

x[i]=<sequence maxOccurs=1> ∨ x[i]=<choice maxOccurs=1> ∨
x[i]=<group maxOccurs=1> ∨ (x[i]≠<sequence> ∧ x[i]≠<choice> ∧
x[i]≠<group> ∧ x[i]≠<all>)) ∧ x[k]≠<choice>))))}

• iFS(x) = {y | (y∈iChild(x[1]) ∨ y∈iTextChild(x[1])) ∧ y[|y|]≠@<type=T>
∧ y[y]≠<simpleType> ∧ y[y]≠ <simpleContent> ∧ (

(y[|y|]=<complexType mixed=‘true’> ∨ y
 [|y|]=<complexContent mixed=‘true’>) ∨
(x[|x|]=<complexType mixed=‘true’> ∨
 x[|x|]=<complexContent mixed=‘true’>) ∨
(x=y ∧ ∃i∈{2, 3, ..., |x|}: attribute(x[i], ‘maxOccurs’)>1) ∨
(∀i∈{1, …, k}: x[i]=y[i] ∧ x[k+1]≠y[k+1] ∧ k<min(|x|, |y|) ∧ (
 x[k]=<all> ∨ ∃i∈{2, 3, ..., k}: attribute(x[i], ‘maxOccurs’)>1 ∨
 (x[k+1]<y[k+1] ∧ ∀i∈{2, 3, ..., k}: (

x[i]=<sequence maxOccurs=1> ∨ x[i]=<choice maxOccurs=1> ∨
 x[i]=<group maxOccurs=1> ∨ (x[i]≠<sequence> ∧

x[i]≠<choice> ∧
x[i]≠<group> ∧ x[i]≠<all>)) ∧ x[k]≠<choice>))))}

Figure 1: A data model of XML Schema for evaluating
XPath queries on XML Schema definitions.

The auxiliary function attribute(N, ‘name’) retrieves
the value of the attribute ‘name’ of the node N, which
is the name of an element or attribute appearing in
an instance document. The function NT:
Node×NodeTest→Boolean, which tests an instance
XSchema node N against a node test of XPath, is
defined as:

• NT(N, label) = (isiElement(N) ∧ attribute(N, ‘name’)=label) ∨
 (isiAttribute(N) ∧ attribute(N, ‘name’)=label)

DISCOVERING VEILED UNSATISFIABLE XPATH QUERIES

151

• NT(N, ∗) = isiElement(N) ∨ isiAttribute(N)
• NT(N, text()) = isiText(N) • NT(N, node()) = true

3 EVALUATING XPATH
QUERIES

A common XPath evaluator is typically constructed
to evaluate XPath queries on XML documents. Our
approach evaluates XPath queries on XML Schema
definitions rather than on the instance documents of
schemas in order to test the satisfiability of XPath
queries with respect to schemas. Thus, we name our
XPath evaluator XPath-XSchema evaluator.

3.1 Schema Paths

Instead of computing the node set of XML
documents specified by an XPath query Q, our
XPath-XSchema evaluator computes a set of schema
paths to the possible resultant nodes, when Q is
evaluated by a common XPath evaluator on instance
XML documents. If Q cannot be evaluated
completely, the schema paths of Q are computed to
an empty set of schema paths.

 The schema paths are in practice a log of the
process of searching for the relevant nodes described
by XPath queries from an XML schema definition.
In order to better understand the definition of
schema paths (see Definition 3), we first outline how
the XSchema-XPath evaluator searches for relevant
nodes in an XML Schema definition to construct the
schema paths. Similar to a common XPath evaluator,
our approach starts the search from the root node of
the schema. The search continues from an XML
Schema node typically to its succeeding nodes in the
case of a forward axis, or its preceding nodes in the
case of a reverse axis. The search passes the nodes in
the schema, which are not instance nodes. The
search continues until an instance node specified by
the current location step is retrieved, and the
corresponding node sequence visited is logged in the
schema paths.

 In the presence of recursive schemas, it may
occur that our evaluator revisits a node of the
schema without any progress in the processing of the
query. We call this a loop. For the purpose of
detecting a loop, we log the information related with
the part of the XPath query, which has been
processed. The schema paths for the XPath
expressions in a predicate, which are computed in
the same way, are attached to the context node of the
predicates. We also need a parameter in the schema
path to indicate the relation between expressions in a

predicate. In an XML Schema definition, an instance
node might have several instance parent nodes in
that multiple elements might contain some identical
sub-elements and each element is declared only once
in a schema. Since we cannot retrieve the parent
nodes unambiguously from only the XML Schema
definition, we need to log the information of the
parent nodes in the schema path.

Definition 3 (Schema Paths). A schema path the
type of which we denote by schema_path is a
sequence of pointers to either the schema path
records <XP, S, b, z, lp, f>, or the schema path records
<o, f>, or schema path records <e> where

• XP is an XPath expression,
• S is a set of sequences of XSchema nodes,
• b is a label and b ∈ {child, parent, FS, PS, self,

attribute},
• z is a set of pointers to schema path records,
• lp is a set of schema paths,
• f is a set of sets of schema paths ,
• e is a predicate expression self::node()=C, where C

is a literal, i.e. a number or a string, and
• o is a keyword and o ∈ {=, or, and, not}.

Let Q be an XPath query, which is the input of
our XPath-XSchema evaluator, and Q=XPe/XPc/XPr,
where XPe is the part, which has been evaluated; XPc
is the part, which is being evaluated; XPr is the part,
which has not been evaluated so far by the XPath-
XSchema evaluator. In a schema path record, XP is
dependent on XPe. XP is needed for the detection of
loop schema paths. S is a set of sequences of
XSchema nodes and computed from the XML
Schema data model. The last node Nl in each
sequence s of S is an instance node, which is visited
by the our evaluator when evaluating XPc, and which
is also a context node to compute the following
nodes. The first node Nf of s is an instance parent
node of Nl, and other nodes in s are ones that are
visited when searching for Nl of Nf, some of which
may be the nodes of model groups and are useful for
consistency checking of occurrence constraints and
sequences. b is a label associated with the schema
node Nl, indicating an XPath axis, from which the
node Nl is generated. b is needed for rewriting. The
field z in a schema record R is a set of pointers to the
schema path records in which the last schema node
of the node sequences is the instance parent node of
the last schema node of the node sequences of the
record R. Note whenever an instance XSchema node
is the first node of a loop, the node has more than
one possible instance parent node, and thus there are
several sequences of nodes and pointers in a schema
path record. lp represents loop schema paths; f
represents the schema paths computed from the

ICEIS 2008 - International Conference on Enterprise Information Systems

152

predicates that test the last node of S, which is the
context node of the predicates. The schema paths
can consist of predicate expressions, i.e.
{(<self::node()=C>)}. o represents operators like =, or, and
and not to indicate the operation on the schema paths
of predicates.

Example 1. Our XPath-XSchema evaluator
evaluates an XPath query Q = /city//neighbour
[name][not(parent::state//city)]/parent::neighbour on the XML
Schema definition city.xsd of Figure 2 and computes
the schema paths in Figure 3. A detailed, step by
step explanation to an example of computing schema
paths is given in (Groppe J. et al., 2007).

(D1) <schema>
(D2) <complexType name='cityT'>
(D3) <sequence>
(D4) <element name='name' maxOccurs='1' type='string'/>
(D5) <element name='neighbour' maxOccurs='20' type='cityT'/>
(D6) </sequence>
(D7) </complexType>
(D8) <element name='city' maxOccurs='1' type='cityT'/>
(D9) </schema>

Figure 2: An XML Schema definition city.xsd.

(R1) {(</, {(/)}, -, -, -, -> ,
(R2) </city, {(D1, D8)}, child, {R1}, -, ->,
(R3) </city/neighbour, {(D8, D2, D3, D5), (D5, D2, D3, D5)}, child, {R2, R3},
(R4) {(</city/neighbour, {(D5, D2, D3, D5)}, child, {R3}, -, ->)} ,
(R5) {{(<-, {(D8, D2, D3, D5), (D5, D2, D3, D5)}, self, {R2, R3}, -, ->,
(R6) <name, {(D5, D2, D3, D4)}, child, {R5}, -, ->)},
(R7) {(<‘not’, ∅>)}}>
(R8) <Q, {(D8, D2, D3, D5), (D5, D2, D3, D5)}, parent, {R2, R3}, -, ->) }

Figure 3: Schema paths of query Q.

3.2 Computing Schema Paths

We use the semantics technique to describe our
XPath-XSchema evaluator, and define the following
notations. Let z be a pointer in a schema path and d
is a field of a schema path record, we write z.d to
refer to the field d of the record to which the pointer
z points. Let p be a schema path, then p[k] indicates
the k-th pointer (or the record to which the k-th
pointer points) of the schema path p, and |p| be the
size of the schema path p, i.e. the number of
pointers. Let S be a set of sequences of XSchema
nodes, then S(1) indicates an arbitrary sequence of
nodes in S. We use the operator / to express the
concatenation of two XPath expressions, e.g.
XP1/XP2.

The semantics of the XPath-XSchema evaluator
is specified by a function L:
XPath×schema_path×XPath→Set(schema_path) in Figure 4,

which takes two XPath expressions and a schema
path as the arguments and yields a set of new
schema paths. The first XPath expression is one that
is evaluated on a given XML Schema definition in
this function, and the second XPath expression is the
part XPe of the given XPath query Q, which has been
evaluated so far when the function is called. XPe is
bound to the XP field of a schema path record, and
this field is needed for the detection of a loop. The
schema path in this function signature is one of the
schema paths computed from XPe. L is defined
recursively on the structure of XPath expressions.

For evaluating each location step of an XPath
expression, our XPath-XSchema evaluator first
computes the axis and the node-test a::n of the
location step by iteratively taking the last schema
node from a node sequence of the last schema path
record from each schema path p in the path set as the
context node. For each resultant node r selected by
a::n, L first computes a node sequence s based-on the
data model of the XML Schema in Figure 1. The
function L then constructs a pointer e to a new
schema path record, i.e. e→<XP, {s}, b, z, -, -> and
extends p to p’ by adding the pointer e at the end of
the given schema path p, denoted by p’=p+e. If no
node is selected by the current location step, the
function L computes an empty set of schema paths.

In the case of recursive schemas, a loop is
identified whenever the XPath-XSchema evaluator
revisits an instance node N of the XML Schema
definition without any progress in the processing of
the query. In order to avoid an infinite evaluation,
we do not continue the evaluation after the node N,
once a loop has been detected. We detect loops in
the following way: let e=<XP, {s}, b, z, -, -> be a new
schema path record generated when computing L(a::n,
p, xp). If there exists a record p[k] in p such that
S(1)[|S(1)|]=s[|s|] ∧ S=p[k].S ∧ p[k].XP=XP, a loop is
detected and the loop path segment is lp = (e, p[k+1], …,
p[|p|]). lp is integrated to the field of the loop schema
paths in the schema path record p[k], where the loop
occurs. A loop might occur when an XPath query
contains the recursive axis descendant, ancestor,
preceding or following, which are boiled down to the
recursive evaluation of the axis child or parent
respectively. For computing L(descendant::n, p, xp), we
first compute pi, where pi∈L(child::node(), pi-1, xp) ∧ pi-

1∈L(child::node(), pi-2, xp) ∧…∧ p1=L(child::node(), p, xp). If no
loop is detected in the path pi, then let pi’=pi and
Lr(self::n, pi’, xp) is computed in order to construct a
possible new path from pi. If a loop path segment
(pi[|pi|], pi[k+1], …, pi[|pi|-1]) is detected in the path pi, then
the schema path record pi[k], from which the loop
starts, is modified by integrating the new detected

DISCOVERING VEILED UNSATISFIABLE XPATH QUERIES

153

loop schema path, the new sequence of nodes and
the new parent pointer. Note that all the schema
paths, which contain the pointer to the schema path
record, are also aware of this modification. When a
loop is detected, instead of setting pi’=pi, pi’ is set to
empty, i.e. if a loop is detected in pi, pi will not
contribute to the further computation of schema
paths anymore.

The schema paths L(q, fp, -) of a predicate q are
added into the field of the predicate schema paths of
the record. fp logs the context node of the predicate
such that we compute the schema paths of the
predicate from fp. When L(q, fp, -) is computed to
empty, the main schema paths are computed to an
empty set. Checking of data-type and occurrence
constraints is presented in (Groppe J. et al., 2007).

• L(e1|e2, p, -) = L(e1, p, -) ∪ L(e2, p, -)
• L(/e, p, -) = L(e, p1, /), where p1=(</, {(/)}, -, -, -, - >)
• L(e1/e2, p, xp) = {p2 | p2∈L(e2, p1, xp/e1) ∧ p1∈L(e1, p, xp)}
• L(self::n, p, xp) = {p+<xp/self::n, S, self, p[|p|].z, -, -> |

S=p[|p|].S ∧ NT(S(1)[|S(1)|], n)}
• L(child::n, p, xp) = {p+<xp/n, {s}, child, p[|p|], -, -> |

NT(s[|s|], n) ∧ S=p[|p|].S ∧ isiElement(S(1)[S(1)]) ∧
((s∈iChild(S(1)[|S(1)|]) ∧ n≠text()) ∨

 (s∈iTextChild(S(1)[|S(1)|] ∧ (n=text() ∨ n=node())))}
• Lr(self::n, p, xp) = {p | NT(S(1)[|S(1)|], n) ∧ S=p[|p|].S}
• L(descendant::n, p, xp) = {p’ | p’∈∪i=1

∞Lr(self::n, p’i, xp) ∧ (
(pi’=pi ∧ pi∈L(child::node(), pi-1, xp) ∧ ∀k∈{1, …, |pi|-1}: (

pi[k].XP≠pi[|pi|].XP ∨ (S1(1)[|S1(1)|]≠S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧
 S2=pi[|pi|].S)) ∧ pi-1∈L(child::node(), pi-2, xp) ∧…∧
p1∈L(child::node(), p, xp))

∨
(p’i=⊥ ∧ (pi[k]→<pi[k].XP, pi[k].S∪ pi[|pi|].S, pi[k].z∪pi[|pi|].z,

pi[k].lp∪{(pi[|pi|], pi[k+1], ..., pi[|pi|-1])}, pi[k].f>) ∧ ∃k∈{1, ..., |pi|-1}: (
pi[k].XP=pi[|pi|]XP ∧ S1(1)[|S1(1)|]=S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧
S2=pi[|pi|].S) ∧ pi∈L(child::node(), pi-1, xp) ∧
pi-1∈L(child::node(), pi-2, xp) ∧ … ∧ p1∈L(child::node(), p, xp)))}

• L(parent::n, p, xp) = {p + <xp/parent::n, S, parent, Z1.z, -, -> |
S=Z1.S ∧ Z1∈p[|p|].z ∧ NT(S(1)[|S(1)|], n) }

• L(ancestor::n, p, xp) = { p’ | p’∈∪i=1
∞Lr(self::n, p’i, xp) ∧ (

(pi’=pi ∧ pi∈L(parent::node(), pi-1, xp) ∧ ∀k∈{1, …, |pi|-1}: (
pi[k].XP≠pi[|pi|].XP ∨ (S1(1)[|S1(1)|]≠S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧
S2=pi[|pi|].S)) ∧ pi-1∈L(parent::node(), pi-2, xp) ∧…∧
p1∈L(parent::node(), p, xp))

∨
(p’i=⊥ ∧ (pi[k]→<pi[k].XP, pi[k].S∪ pi[|pi|].S, pi[k].z∪pi[|pi|].z,

pi[k].lp∪{(pi[|pi|], pi[k+1], ..., pi[|pi|-1])}, pi[k].f>) ∧ ∃k∈{1, ..., |pi|-1}: (
pi[k].XP=pi[|pi|]XP∧ S1(1)[|S1(1)|]=S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧
S2=pi[|pi|].S) ∧ pi∈L(parent::node(), pi-1, xp) ∧
pi-1∈L(parent::node(), pi-2, xp) ∧ … ∧ p1∈L(parent::node(), p, xp)))}

• L(DoS::n, p, xp) = L(self::n, p, xp) ∪ L(descendant::n, p, xp)
• L(AoS::n, p, xp) = L(self::n, p, xp) ∪ L(ancestor::n, p, xp)
• L(FS::n, p, xp) = {p+<xp/FS::n, {s}, FS, p[|p|].z, -, -> | s∈iFS(s1) ∧

NT(s[|s|], n) ∧ s1∈p[|p|].S}
• L(following::n, p, xp) = L(AoS::node()/FS::node()/DoS::n, p, xp)
• L(PS::n, p, xp) = {p+<xp/PS::n, {s}, PS, p[|p|].z, -, -> | s∈iPS(s1) ∧

NT(s[|s|], n) ∧ s1∈p[|p|].S}
• L(preceding::n, p, xp) = L(AoS::node()/PS::node()/DoS::n, p, xp)
• L(attribute::n, p, xp) = {p+<xp/attribute::n, {s}, attribute, p[|p|], -, -> |

s∈iAttribute(S(1)[|S(1)|]) ∧ NT(s[|s|], n) ∧ S=p[|p|].S}
• L(e[q], p, xp) = {(p’[1], p’[2], …, p’[|p’|-1]) + <p’[|p’|].XP, p’[|p’|].S,
p’[|p’|].z, p’[|p’|].lp, p’[|p’|].f∪L(q, fp, -)> | p’∈L(e, p, xp) ∧ L(q, fp, -)≠∅ ∧
fp=(<-, p’[|p’|].S, self, p’[|p’|].z, -, ->)}
• L(e[q1]…[qn], p, xp) = {(p’[1], p’[2], …, p’[|p’|-1]) + <p’[|p’|].XP, p’[|p’|].S,
p’[|p’|].z, p’[|p’|].lp, p’[|p’|].f∪L(q1, fp, -)∪…∪L(qn, fp, -)> | p’=L(e, p, xp)
∧L(q1, fp, -)≠∅∧…∧L(qn, fp, -)≠∅∧fp=(<-, p’[|p’|].S, self, p’[|p’|].z, -, ->)}
• L(q1 and q2, fp, -) = {(<‘and’, L(q1, fp, -)∪L(q2, fp, -)>) |

L(q1, fp, -)≠∅ ∧ L(q2, fp, -)≠∅}
• L(q1 or q2, fp, -) = {(<‘or’, L(q1, fp, -)∪L(q2, fp, -)>) | L(q1, fp, -)≠∅ ∨

L(q2, fp, -)≠∅}
• L(q1 = q2, fp, -) = {(<‘=’, L(q1, fp, -)∪L(q2, fp, -)>) | L(q1, fp, -)≠∅ ∧

L(q2, fp, -)≠∅}
• L(not(q), fp, -) = {(<‘not’, L(q, fp, -)>)}
• L(q=C, fp, -) = L(q[self::node()=C], fp, -), where q≠self::node()
• L(self::node()=C, fp, -) = {(<self::node()=C>)}

Figure 4: The function L: XPath×schema_path×XPath→Set
(schema_path).

3.3 Analyzing Complexity

Different from instance XML documents the
topology of which is a tree, an XML Schema
definition is a directed graph. In the directed graph
leading to the worst-case complexity, each node has
directed edges to all nodes. Thus, we assume that in
an XML Schema definition S in the worst case, each
node in S is an instance node and each node is a
succeeding node of all the nodes. In an XPath query
Q in the worst case, each location step in Q selects all
the instance nodes in S.

Let a be the number of location steps in an XPath
query Q. Let N be the number of nodes in an XML
Schema definition S. In the worst case, from each
schema path p, at most O(∑k=1N N!/(N-k)!) schema paths
are computed with length from |p|+1 to |p|+N, and thus
at most O((∑k=1NN!/(N-k)!)a)=O((N!∗3)a) schema paths are
computed, each of which contains at most O(a∗N)
pointers to schema records, for Q. Therefore, the
worst case complexity of our approach in terms of
run time and space is O(a∗N∗(N!∗3)a).

The XML Schema definitions of the worst case
are rare. A query of the worst case is typically not
used. Therefore, it makes sense to investigate the
complexity of our approach in typical cases.
According to the schema and queries in
(Franceschet, 2005), we assume that the typical
cases are characterized as follows: each node in an
XML Schema definition S has only a small number
of succeeding nodes compared with the number N of
nodes in S; for each location step in the XPath query
Q, the number of nodes visited is on the average less

ICEIS 2008 - International Conference on Enterprise Information Systems

154

than a constant C, and thus less than C schema paths
are computed for each location step. Therefore, the
complexity of runtime and space of our approach is
O(a∗N∗C) for the typical cases.

4 REWRITING XPATH QUERIES

If an XPath query Q is computed to a non-empty set
of schema paths by our evaluator on an XML
Schema definition, the XPath query is only maybe
satisfiable, since the satisfiability test in the
supported subset of XPath is undecidable (Benedikt,
et al., 2005) and our evaluator does not check
whether or not two or more location steps in Q
contradict each other. In this section, we present
filtering the queries with conflicting constraints by
rewriting the queries to the empty expression ⊥
based on their schema paths.

4.1 Mapping Schema Paths to
(Regular) XPath Queries

The function M(L) in Figure 5 maps a set of schema
paths L={p1, …, pm} to an XPath query Q’. The function
M(p) maps a schema path p=(r1, …, rn) to a sub-
expression e of the query Q’. The function M(r) maps
a schema path record r to a pattern of the sub-
expression e. The patterns are concatenated in order
with ‘/’ to form the sub-expression
e=M(p)=M(r1)+‘/’+…+‘/’+M(rn), where we use ‘+’ to denote
concatenation of strings. Disjunctions of the sub-
expressions form the mapped query Q’=M(L)=M(p1)+‘ |
’+…+‘ | ’+M(pn). In order to compute a pattern from a
schema path record <XP, S, b, z, lp, f>, <o, f> or <e>, we
need the following functions: location(S, b) computes
the axis and the node-test of a pattern; loops(lp)
computes the union of loop patterns. Let us assume
that B is a pattern, then we define B* as a loop
pattern, in which the Kleene star denotes an arbitrary
repetition of the pattern B. As an example, if B=a,
then B*=(⊥ | a | a/a | a/a/a |…).

Let L be a set of schema paths, p be a schema
path and r be a schema path record, such that L={p1,…,
pm} and p=(r1,..., rn), where p∈L. The semantics of the
mapping function M, which maps a set of schema
paths to a (regular) XPath expression, is defined in
Fig 6. Note that in the mapping functions of Fig. 6,
the two fields XP and z in a schema path record r are
left out since they do not contribute to the
computation of the mapping.

If we use the function Mr(<S, b, lp, ->), we get a
regular XPath expression with loop patterns using

the Kleene star ∗, which is not a standard XPath
operator; if we use the function M(<S, b, lp, ->), we get
a standard XPath expression without loop patterns.

• M(L) = M(p1)+‘ | ’+ …+‘ | ’+M(pm)
• M(p) = M(r1)+M(r2)+‘/’+…+‘/’+M(rn), if N=‘/’ ∧ N=S(1)[|S(1)|] ∧ S= r1.S
• M(p) = M(r1)+‘/’+…+‘/’+M(rn), if N≠‘/’ ∧ N=S(1)[|S(1)|] ∧ S= r1.S
• M(<S, b, -, ->) = location(S, b)
• M(<S, b, -, {L1, ..., Ln}>) = M(<S, b, -, ->)+‘[’+M(L1)+‘]’+…+‘[’+M(Ln)+‘]’
• M (<S, b, lp, ->) = ‘descendant::’+attribute(N, ‘name’), where

b=‘child’ ∧ N=S(1)[|S(1)|]
• M (<S, b, lp, ->) = ‘ancestor::’+attribute(N, ‘name’), where

b=‘parent’ ∧ N=S(1)[|S(1)|]
• Mr(<S, b, lp, ->) =loops(lp)+location(S,b)
• M(<S, b, lp, {L1,..., Ln}>) = M(<S, b, lp, ->)+‘[’+M(L1)+‘]’+…+‘[’+M(Ln)+‘]’
• Mr(<S, b, lp, {L1,..., Ln}>) = Mr(<S, b, lp, ->)+‘[’+M(L1)+‘]’+…+‘[’+M(Ln)+‘]’
• M(<‘not’, {L}>) = ‘not’+‘(’+ M(L)+‘)’
• M(<‘or’, {L1, L2}>) = M(L1)+‘ or ’+M(L2)
• M(<‘=’, {L1, L2}>) = M(L1)+‘ = ’+M(L2)
• M(<self::node()=C>) = ‘self::node()=C’
• location (S, -) = ‘/’, where S(1)[|S(1)|]= ‘/’
• location(S, b) = b+‘::’+attribute(N, ‘name’), where

(isiElement(N) ∨ isiAttribute(N)) ∧ N=S(1)[|S(1)|]
• location(S, b) = b+‘::text()’, where isiText(N) ∧ N=S(1)[|S(1)|]
• location(S, b) = b+‘::node()’ where N= ‘/’ ∧ N=S(1)[|S(1)|]
• loops(lp) = loops({p1,…, pk})=‘((‘+M(p1)+‘/)*’+‘ | ’…‘ | ’ + ‘(’+M(pk)+‘/)*)’

Figure 5: Functions mapping schema paths to a (regular)
XPath expression.

Proposition 1. Let L be a set of schema paths, Qr be
the regular XPath expression mapped from L, and Q
be the standard XPath expression mapped from L.
The evaluation of Q returns the same node set as Qr
for any valid XML document (Groppe J. et al.,
2006c).

4.2 Optimizing Mapped XPath Queries

The mapped XPath query can be optimized by
eliminating redundant parts, reverse axes and
recursive axes. For this optimization, we develop a
set of rewriting rules. Different from the rewriting
rules in (Olteanu et al., 2002), which eliminates
reverse axes based on the symmetry of the XPath
axes, we eliminate reverse axes mainly based on the
symmetry of the schema paths. The reverse axes,
which are remaining after eliminating redundant
parts, can be eliminated using the ruleset in (Olteanu
et al., 2002).

Let a be an axis, n be a nodetest, e be a pattern
and q be a qualifier. The rewriting rules, which
eliminate reverse axes and redundant parts in the
XPath expression mapped from a set of schema
paths, are defined as follows.

• e/attribute::n1/parent::n2[q] ≡ e[q][attribute::n1]
• e/child::n1/parent::n2[q] ≡ e[q][child::n1]

DISCOVERING VEILED UNSATISFIABLE XPATH QUERIES

155

• e1/child::n1/e2/parent::n3[q] ≡ e1[q][child::n1/e2],
where e2 contains only the axes FS and PS

• e/attribute::n1[parent::n2[q]] ≡ e1[q]/attribute::n2
• e1/child::n1[parent::n2[q]] ≡ e1[q]/child::n1
• e1/child::n1/e2[parent::n3[q]] ≡ e1[q]/child::n1/e2,

where e2 contains only the axes FS and PS
• e1[attribute::n1/parent::n2[q]] ≡ e1[q][attribute::n1]
• e1[child::n1/parent::n2[q]] ≡ e1[q][child::n1]
• e1[child::n1/e2/parent::n3[q]] ≡ e1[q][child::n1/e2],

where e2 contains only the axes FS and PS
• e/self::n[q] ≡ e[q] • e[q][q] ≡ e[q] •
e[q]/q ≡ e/q
• e[true()] ≡ e • [not(false())] ≡ [true()] • [q
or true()] ≡ [true()]
• [q or false()] ≡ [q] • [q and true()] ≡ [q]
• e*/parent::n ⊆ ancestor::n • e*/child::n ⊆ descendant::n

Note that in the rules, e*/child::n is the pattern
mapped by Mr[<S, b, lp, ->] and descendant::n is the
pattern mapped by M[<S, b, lp, ->], when b=‘child’. As
shown in Proposition 1, although descendant::n
retrieves a superset of the node set retrieved by
e*/child::n, the entire XPath query returns the same
node set for all valid XML documents when using
either descendant::n or e*/child::n.

4.3 Filtering XPath Queries with
Conflicting Constraints

We apply the rules in Figure 6 to the queries
rewritten from schema paths to filter the queries,
which contain conflicting constraints. Although the
rule set can be directly applied to given queries,
application of the rules to the rewritten queries,
which exclude redundant parts, wildcards, reverse
axes and recursive axes, can filter more unsatisfiable
queries.

Let e (e1, e2… respectively) be an XPath
expression. If a sub-expression of an XPath query is
reduced to the empty expression ⊥, the XPath query
is reduced to ⊥.

• ⊥ | ⊥= ⊥ • e/⊥ = ⊥ • ⊥/e = ⊥
 • e[⊥] = ⊥ • ⊥[e] = ⊥
• ⊥ and e = ⊥ • ⊥ or ⊥=⊥ • e1[not(e2)]/e2=⊥ •
e1[not(e2)][e2]=⊥
• e1[not(e2)][e2/e3]=⊥ • e[@t=c1][@t=c2]=⊥ if
c1≠c2
• e[@t<c1][@t=c2]=⊥ if c1≤c2 • e[@t<c1][@t>c2]=⊥ if
c1≤c2
• e[@t<c1][@t≥c2]=⊥ if c1≤c2 • e[@t≤c1][@t=c2]=⊥
if c1<c2
• e[@t≤c1][@t>c2]=⊥ if c1≤c2 • e[@t≤c1][@t≥c2]=⊥
if c1<c2

Figure 6: Rules for filtering queries with conflicting
constraints.

5 PERFORMANCE ANALYSIS

We have implemented a prototype of our approach
in order to verify the correctness of our approach
and to demonstrate the optimization potential by
avoiding the evaluation of unsatisfiable XPath
queries. (Groppe J. et al., 2007) presents a
comprehensive performance analysis on detecting
the unsatisfiable XPath queries that do not conform
to the constraints in an XML Schema definition, i.e.
the schema paths of the queries are computed to the
empty set, and experimental results show that our
approach can achieve a speedup up to several orders
of magnitudes over common XPath evaluators when
detecting unsatisfiable XPath queries. Therefore, this
performance analysis focuses on the unsatisfiable
XPath queries, which conform to the constraints
imposed by a schema, but contain hidden conflicting
constraints. Our approach first computes the schema
paths of the queries by evaluating the queries on an
XML Schema definition, then rewrites these queries
based on the schema paths in order to make hidden
conflicting constraints visible, and finally applies the
rules to the rewritten queries to filter the queries
with conflicting constraints. We study the detection
of the unsatisfiable XPath queries by our approach
and the evaluation of these unsatisfiable queries by
common XPath evaluators.

The test system for all experiments is an Intel
Core 2 CPU T5600 processor, where we disable one
CPU, 1.83 Gigahertz with 2 Gigabytes RAM,
Windows XP as operating system and Java VM
version 1.6.0. We use the XQuery evaluators Saxon
version 8.0 (//saxon.sourceforge.net) and Qizx version
0.4pl (//www.xfra.net/quizxopen) to evaluate the XPath
queries on XML data. We use the XPathMark
benchmark (Franceschet, 2005) as the source of our
experimental data, and generate data from 0.116
Megabytes to 11.597 Megabytes by using the data
generator of (Franceschet, 2005). An XML Schema
definition benchmark.xsd (Groppe J. et al., 2007) is
manually adapted according to the DTD benchmark.dtd
(Franceschet, 2005) and the instance documents in
order to integrate as many constructs of the XML
Schema as possible and to specify more specific data
types for values of elements and attributes, which
are all declared as #PCDATA in benchmark.dtd.

The queries Q1-Q15 in Table 1 conform to the
semantics, structure, data-type and occurrence
constraints given in benchmark.xsd, but contain hidden
conflicting constraints. Thus, the schema paths of
these queries are computed to a non-empty set.
Queries Q1’-Q15’ in Table 1 are the rewriting of
queries Q1-Q15 based on their schema paths. The

ICEIS 2008 - International Conference on Enterprise Information Systems

156

rewritten queries disclose the hidden conflicting
constraints. Furthermore, the queries Q1-Q15 are also
designed to contain as many constructs of the XPath
language as possible in order to test how the
different constructs of the XPath language influence
the processing performance. We present the average
results of ten executions of these queries.

Table 1: Queries Q1-Q15 and rewritten queries Q1’-Q15’.

Original and rewritten Queries
Q1 /site/catgraph[not(edge)]/∗
Q1’ /site/catgraph[not(edge)]/edge
Q2 /site/catgraph[not(edge)]/self::node()/∗
Q2’ /site/catgraph[not(edge)]/edge
Q3 /site/regions/europe[(@area or ∗/name) and not(item)]
Q3’ /site/regions/europe[item/name][not(item)]
Q4 /site/regions/europe/∗[parent::∗[not(item)]]
Q4’ /site/regions/europe[not(item)]/item
Q5 //europe/∗[parent::∗[not(item)]]
Q5’ /site/regions/europe[not(item)]/item
Q6 /site/closed_auctions/closed_auction/buyer

[@∗][not(@person)]
Q6’ /site/closed_auctions/closed_auction/buyer

[@person][not(@person)]
Q7 /site/closed_auctions/closed_auction/buyer[@∗]/

self::∗[not(@person)]
Q7’ /site/closed_auctions/closed_auction/buyer

[@person][not(@person)]
Q8 //buyer[@∗][not(@person)]
Q8’ /site/closed_auctions/closed_auction/buyer

[@person][not(@person)]
Q9 /site/people/person/profile[@∗>50][@income<10]
Q9’ /site/people/person/profile[@income>50][@income<10]
Q10 /site/people/person/profile[@∗>50]/interest

/parent::∗[@income<10]
Q10’ /site/people/person/profile[@income>50][@income<10]

[interest]
Q11 /site/people/person/profile[@∗>50][@∗<99][@income<10]
Q11’ /site/people/person/profile[@income>50][@income<99]

[@income<10]
Q12 /site/people/person/profile[@∗>50][@∗<99][@∗>30]

[@income<10]
Q12’ /site/people/person/profile[@income>50][@income<99]

[@income>30][@income<10]
Q13 /site/people/person/profile[@∗>50][@∗<99][@∗>30]

[@∗>40][@income<10]
Q13’ /site/people/person/profile[@income>50][@income<99]

[@income>30][@income>40][@income<10]
Q14 //profile[@∗>50][@income<10]
Q14’ /site/people/person/profile[@income>50][@income<10]
Q15 //profile[@∗>50][@∗<99][@∗>30][@income<10]
Q15’ /site/people/person/profile[@income>50][@income<99]

[@income>30][@income<10]

Figure 7 presents the time of filtering the
unsatisfiable queries Q1-Q15 by our approach,
consisting of three times: the time of computing
schema paths, i.e. evaluating Q1-Q15 on benchmark.xsd;
the time of rewriting Q1-Q15 based on the schema
paths, i.e. mapping schema paths to an XPath query
Q and optimizing Q by the rules in Section 4.2; the
time of filtering XPath queries with conflicting
constraints by the rules in Section 4.3. The overhead
of filtering unsatisfiable queries is mainly evaluating
XPath queries on the schema. Among 15 queries, Q5,
Q8, Q14 and Q15 are queries with recursive axes,
which we call recursive queries; others do not
contain recursive axes, which we call non-recursive
queries. Non-recursive queries can be evaluated very
fast and are on the average 7.2 faster than the
recursive queries. The overhead of rewriting and
rule application is very low. The time of rewriting
and rule application is 32.6% of the time of
computing schema paths for the non-recursive
queries, the time ratio is 2.6% for the recursive
queries, and the time ratio is 11% for all the queries.

Figure 8 and Figure 9 present the speedup
achieved by our approach over Saxon and Qizx
when the evaluation of Q1-Q15 returns an empty
result. The results show that our approach can detect
unsatisfiable queries efficiently. At a data size of 6
Megabytes, our approach is 199 times (and 39.6
times) faster on the average when evaluating the
non-recursive queries, and 35.6 times (and 10 times)
faster on the average when evaluating the recursive
queries, than Saxon (and Qizx). At a data size of 12
Megabytes, our approach is 392 times (and 80 times)
faster on the average when evaluating the non-
recursive queries, and 69.5 times (and 20 times)
faster on the average when evaluating the recursive
queries, than Saxon (and Qizx).

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

Ti
m

e
in

 S
ec

on
ds

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

Query

computation of schema paths rewriting rule application

Figure 7: Filtering queries Q1-Q15 by our approach.

DISCOVERING VEILED UNSATISFIABLE XPATH QUERIES

157

Figure 8: Speedup by our approach over Saxon when
evaluating Q1-Q15.

Figure 9: Speedup by our approach over Qizx when
evaluating Q1-Q15.

6 CONCLUSIONS

We have proposed a data model for the XML
Schema language, which identifies the navigation
paths of XPath queries on XML Schema definitions.
Based on the data model, we have developed an
XPath-XSchema evaluator, which evaluates XPath
queries on an XML Schema definition in order to
filter the queries not conforming to the constraints
imposed by the schema and in order to rewrite
queries. When an XPath query does not conform to
the constraints in the schema, our evaluator
computes an empty set of schema paths, i.e. the
XPath query is unsatisfiable. If a non-empty set of
schema paths is computed for an XPath query, we
rewrite the query from its schema paths, and apply
the rules of conflicting constraints to the rewritten
queries to further filter the queries with conflicting
constraints.

The experimental results of our prototype show
that the application of our approach can significantly
optimize the evaluation of XPath queries by filtering
unsatisfiable XPath queries. A speed-up factor up to
several orders of magnitudes is possible.

REFERENCES

Benedikt, M., Fan, W., Geerts, F., 2005. XPath
satisfiability in the presence of DTDs. In PODS’05.

Chan, C.Y., Fan, W., Zeng, Y, 2004. Taming XPath
queries by minimizing wildcard steps. In VLDB’04.

Fan, W., Chan, C., Garofalakis, M., 2004. Secure XML
querying with security views. In SIGMOD’04.

Fan, W., Yu, J.X., Lu, H., Lu, J., Zeng, Y., 2005. Query
translation from XPath to SQL in the presence of
recursive DTDs. In VLDB’05.

Franceschet, M., 2005. XPathMark – An XPath
benchmark for XMark. Research report PP-2005-04,
University of Amsterdam.

Groppe, S., Böttcher, S., Groppe, J, 2006. XPath query
simplification with regard to the elimination of
intersect and except operators. In XSDM’06 in
association with ICDE’06.

Groppe, J., Groppe, S., 2006a. Filtering unsatisfiabile
XPath queries. In ICEIS’06.

Groppe, J., Groppe, S., 2006b. A prototype of a schema-
based XPath satisfiability tester. In DEXA’06.

Groppe, J, Groppe, S., 2006c. Satisfiability-test, rewriting
and refinement of users’ XPath queries according to
XML Schema definitions. In ADBIS’06.

Groppe, J., Groppe, S., 2007. Filtering unsatisfiable XPath
queries. Data Knowl. Eng. 64(1):134 – 169.

Hammerschmidt, B.C., Kempa, M., Linnermann, V.,
2005. The index update problem for XML data in
XDBMS. In ICEIS’05.

Hidders, J., 2003. Satisfiability of XPath expressions. In
DBPL’03.

Kwong, A., Gertz, M. 2002. Schema-based optimization
of XPath expressions. Techn. Report, University of
California.

Lakshmanan, L., Ramesh, G., Wang, H., Zhao, Z., 2004.
On testing satisfiability of tree pattern queries. In
VLDB’04.

Martens, W., Neven, F., 2004. Fronties of tractability for
typechecking simple XML transformations. In
VLDB’04.

Olteanu, D., Meuss, H., Furche, T., Bry, F., 2002. XPath:
looking forward. XML-Based Data Management
(XMLDM), EDBT Workshops.

University of Trier, 2007. Computer Science
Bibliographie. dblp.uni-trier.de/, 17th July 2007.

Wadler, P., 2002. Two semantics for XPath. Tech. Report.
W3C, 2004a. XML Schema part 1: Structures second

edition. W3C Recommendation.
www.w3.org/TR/xmlschema-1.

W3C, 2004b. XML Schema part 2: Datatypes second
edition”, W3C Recommendation.
www.w3.org/TR/xmlschema-2.

W3C, 1999. XPath version 1.0. W3C Recommendation.
www.w3.org/TR/xpath/.

W3C, 2003. XPath Version 2.0. W3C Working Draft.
www.w3.org/TR/xpath20/.

ICEIS 2008 - International Conference on Enterprise Information Systems

158

