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Abstract: The satisfiability problem of queries is an important determinant in query optimization. The application of a 
satisfiability test can avoid the submission and the unnecessary evaluation of unsatisfiable queries, and thus 
save processing time and query costs. If an XPath query does not conform to constraints in a given schema, 
or constraints from the query itself are inconsistent with each other, the evaluation of the query will 
return an empty result for any valid XML document, and thus the query is unsatisfiable. Therefore, we 
propose a schema-based approach to filtering the XPath queries not conforming to the constraints in the 
schema and the XPath queries with conflicting constraints. We present a complexity analysis of our 
approach, which proves that our approach is efficient at typical cases. We present an experimental analysis 
of our prototype, which shows the optimization potential of avoiding the evaluation of unsatisfiable queries. 

1 INTRODUCTION 

As XML becomes increasingly popular as a 
language for data storage, automatic exchange and 
processing, larger and larger as well as more and 
more data are stored using XML, e.g. the Computer 
Science Bibliography (University of Trier, 2007) the 
XML data of which has currently the size 389 
Megabytes. Therefore, speeding-up query 
processing of XML data becomes increasingly 
important. XPath (W3C, 1999)(W3C, 2003) is a 
query language for XML data developed by W3C. 
As well as being a standalone XML query language, 
XPath is also embedded in other XML languages 
(e.g. XSLT, XQuery, XLink and XPointer) for 
specifying node sets in XML documents. 

The satisfiability problem of XPath queries is an 
important issue in XPath evaluation. An XPath 
query is unsatisfiable if there does not exist any 
XML document on which the evaluation of the 
query returns a non-empty result. Therefore, using 
the satisfiability test can avoid the submission and 
the unnecessary computation of unsatisfiable XPath 
queries, and thus saves users’ cost and evaluation 
time. As well as for query optimization, the XPath 
satisfiablity test is also important in XML access 
control (Fan et al., 2004), type-checking of 
transformations (Martens et al., 2004) and XPath-
based index update (Hammerschmidt et al. 2005). 
Therefore, many research efforts focus on the 

satisfiability test of XPath queries with or without 
respect to schemas. 

In the absence of schemas, the satisfiability test 
can detect two kinds of errors in an XPath query Q. 
The first kind of errors is that the structure properties 
of Q are inconsistent with the XML data model. For 
example, the XPath query Q1=/following-sibling::a is 
unsatisfiable, because the root node has no sibling 
node according to the XML data model. The query 
Q2=//person/age is tested as a satisfiable XPath query 
without respect to a schema. However, according to 
a given schema, e.g. the schema in (Franceschet, 
2005), the element person does not have children age. 
Thus, Q2 is unsatisfiable with respect to the schema. 
The second kind of errors is that the constraints from 
Q itself are inconsistent with each other. For 
example, Q3=a[@v>2][@v<1] is unsatisfiable since @v>2 
is contrary to @v<1. Q4=//catgraph/∗[parent::∗[not(edge)]] is 
satisfiable because Q4 conforms to the XML data 
model, and contains no visible conflicting 
constraints. However, if Q4 is rewritten to 
/site/catgraph/edge[parent::catgraph[not(edge)] according to 
a given schema, e.g. one in (Franceschet, 2005), and 
is further optimized to /site/catgraph[not(edge)]/edge by 
eliminating reverse axes, then Q4 is unsatisfiable 
with respect to the schema. (We call Q4 is a query 
with hidden conflicting constraints.) Thus, we can 
detect more errors in XPath queries if we 
additionally consider schema information. 
Therefore, we focus on the satisfiability test of 
XPath queries in the presence of the schemas 
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formulated in the XML Schema language (W3C, 
2004a) (W3C, 2004b). 

Our schema-based approach first checks whether 
or not an XPath query Q conforms to the structure, 
semantics, data type and occurrence constraints 
given in an XML schema definition S by evaluating 
Q on S. If Q does not conform to the constraints of S, 
Q cannot be evaluated completely on S, and thus Q is 
unsatisfiable. If Q is evaluated completely on S, we 
rewrite Q to Q’ based on the internal data structure 
generated when evaluating Q on S, which integrates 
the structure and semantic constraints in S. Q’ is 
equivalent to but contains more information than Q 
by substituting specific node tests for wildcards, by 
eliminating redundant parts, by eliminating reverse 
axes and by substituting non-recursive axes (e.g. 
child) for recursive axes (e.g. descendant) whenever 
possible, and thus can reveal more conflicting 
constraints. Our approach then checks whether the 
constraints in Q’ are consistent with each other, and 
filters the queries with conflicting constraints. 

Related Work. (Benedikt et al., 2005) theoretically 
studies the complexity problem of XPath 
satisfiability in the presence of Document Type 
Definitions (DTDs), and shows that the complexity 
of XPath satisfiability depends on the considered 
subsets of XPath queries and DTDs. We present a 
practical algorithm for testing the satisfiability of 
XPath queries. (Hidders, 2003) checks whether the 
structure properties of XPath queries are consistent 
with the XML data model. (Lakshmanan et al., 
2004) examines the satisfiability test of tree pattern 
queries with respect to non-recursive schemas. 
(Kwong and Gertz, 2002) suggests an algorithm for 
rewriting and the satisfiability test of XPath queries, 
but allows only non-recursive DTDs and a subset of 
the XPath axes. We support recursive schemas and 
all the XPath axes. (Groppe S. et al., 2006) filters 
unsatisfiable XPath queries by a set of simplification 
rules, but cannot filter the XPath queries with the 
hidden conflicting constraints. (Chan et al., 2004) 
suggests an approach to minimize wildcards in the 
absence of schemas. We can eliminate wildcards 
completely in XPath queries. (Olteanu, 2002) 
eliminates reverse axes in XPath queries according 
to the axis symmetry of XPath. (Fan et al., 2005) 
develops an algorithm to rewrite XPath queries to 
regular XPath queries on recursive DTDs, but only 
forward axes are considered and the reverse axes 
and the axes depending on the document order are 
not allowed. 

Our previous contributions (Groppe J. et al., 
2006a)(Groppe J. et al., 2006b)(Groppe J. et al., 
2006c)(Groppe J. et al., 2007) filter the XPath 

queries that do not conform to the constraints in an 
XML Schema definition, but cannot filter the XPath 
queries with hidden inconsistent constraints. 
(Groppe J. et al., 2006c) supports a part of the subset 
of XML Schema supported in this work, and 
rewrites XPath queries according to schemas in 
order to refine the given queries rather than to detect 
the queries with conflicting constraints. In this work, 
we rewrite the XPath queries that are not detected as 
unsatisfiable queries to discover possible hidden 
inconsistent constraints, and apply a set of rules to 
filter the XPath queries with contradictory 
constraints. 

For XPath, we support all XPath axes, negation 
operation, and comparison predicates. For XML 
Schema, we support a significant subset of the XML 
Schema language, which covers real world schemas 
and includes e.g. restriction and extension as well as 
all, choice and sequence groups. A detailed 
description on the supported XPath subset and XML 
Schema subset are given in (Groppe J. et al, 2007). 
Furthermore, we write DoS for the descendant-or-self 
axis, AoS for the ancestor-or-self axis, FS for the 
following-sibling axis and PS for the preceding-sibling axis. 

2 XML SCHEMA DATA MODEL 

Based on the data model for the XML language in 
(Wadler, 2000), we develop a data model for XML 
Schema for identifying the navigation paths of 
XPath queries on an XML Schema definition. In the 
model, we write (x1,…, xm) for a sequence of entries 
x1,…, xm. We use the operator + to concatenate two 
sequences, e.g. (x1) + (y1, y2) = (x1, y1, y2). Let s be a 
sequence, we write s[k] for the k-th entry of s, and 
write |s| for the length of s, i.e. the number of entries 
in s. Furthermore, we also call a node in an XML 
Schema definition an XSchema node. 

An XML Schema definition is a set of nodes of 
type Node. There are four specific Node types in an 
XML Schema definition, which are associated with 
instance element, instance attribute, instance text 
and instance root nodes of the XML Schema 
definition: iElement, iAttribute, iText and iRoot. 
Accordingly, we define four functions with signature 
Node→Boolean to test the type of a node: isiElement, 
isiAttribute , isiText and isiRoot. 
 

Definition 1 (Instance Nodes). The instance nodes 
of an XML Schema definition are 
• <schema> (which is the instance root node) 
• <element name=N> (which is an instance element node), 
• <attribute name=N> (which is an instance attribute node), 
• attribute node type=T of nodes <element type=T>,  which 
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we denote as @<type=T> (which is an instance text node, 
if T is a built-in simple type), 

• <simpleType> (which is an instance text node), 
• <complexType mixed=‘true’> (which is an instance text 

node)  
• <simpleContent> (which is an instance text node) and 
• <complexContent mixed=‘true’> (which is an instance text 

node). 
 

Definition 2 (Succeeding Node). A node N2 in an 
XML Schema definition is a succeeding node of a 
node N1 in the XML Schema definition if 
• N2 is a child node of N1, or  
• N1=<element type=N> and N2=<simpleType name=N>, or 
• N1=<attribute type=N> and N2=<simpleType name=N> , or 
• N1=<element type=N> and N2=<complexType name=N>, or 
• N1=<element ref=N> and N2=<element name=N>, or 
• N1=<attribute ref=N> and N2=<attribute name=N>, or 
• N1=<group ref=N> and N2=<group name=N>, or 
• N1=<attributeGroup ref=N> and N2=<attributeGroup 

name=N>, or 
• N1=<restriction base=N> and N2=<simpleType name=N>, or 
• N1=<extension base=N> and N2=<simpleType name=N>, or 
• N1=<extension base=N> and N2=<complexType name=N>. 
 

Figure 1 defines the data model of XML 
Schema, which consists of a group of functions 
represented in comprehension notation (Wadler, 
2002). The functions child(N) and succeeding(N) relate 
an XSchema node to a set of XSchema nodes. The 
functions iChild-helper(N), iChild(N), iAttributeChild(N), iText-
helper(N) and iTextChild(N) relate an XSchema node to a 
set of sequences of XSchema nodes. If y∈iChild(N), 
then y[1]=N and y[|y|] is an instance child node of N. 
Other nodes in y are the intermediate nodes visited 
when searching for y[|y|] of y[1], some of which may 
be the declaration nodes of model groups, which 
control the occurrence of y[|y|], and the occurrence 
order of y[|y|] and its instance sibling nodes in an 
instance XML document. Taking as example the 
XML Schema definition city.xsd in Figure 2 in 
Section 3.1, iChild(D8) = {(D8, D2, D3, D4), (D8, D2, D3, 
D5)}. iChild-helper(N) returns all the node sequences 
visited before the instance child nodes and instance 
attribute nodes of N, e.g. in Figure 2, iChild-helper(D5) = 
{(D5), (D5, D2), (D5, D2, D3)}. Different from the XML 
data model, where a node has only one parent node, 
in XML Schema definitions, a node may have 
several instance parent nodes. Thus, iPS(x) for finding 
the instance preceding sibling nodes and iFS(x) for 
finding the instance following sibling nodes relate a 
sequence x of nodes to a set of sequences of nodes, 
where x[1] is the instance parent node of x[|x|]. Let 
y∈iPS(x), then y[1]=x[1], and y[|y|] is both an instance 
child node or an instance text node of y[1] and an 
instance preceding sibling node of x[|x|]. A detailed 
description on iPS(x), iFS(x) and the data model is 
given in (Groppe J. et al, 2007). 

• child(N) = {N1 | N1 is a child node of N} 
• succeeding(N) = {N1 | N1 is a succeeding node of N} 
• iChild-helper(N) = ∪i=0

∞ Si, where S0 = {(N)}, 
Si = {y+(N1) | y∈Si-1 ∧ N1∈succeeding(y[|y|]) ∧  

¬isiElement(N1) ∧ ¬isiAttribute(N1)} 
• iChild(N)={y+(N1) | (y=(N) ∧ isiRoot(N) ∧ N1∈child(N) ∧  

isiElement(N1)) ∨ (y∈iChild-helper(N) ∧ N1∈succeeding(y[|y|]) ∧  
isiElement(N1))} 

• iAttributeChild(N) = {y+(N1) | y∈iChild-helper(N) ∧  
N1∈succeeding(y[|y|]) ∧ isiAttribute(N1)} 

• iText-helper(N) = ∪i=0
∞ Ri, where R0 = {(N)},  

Ri = {y+(N1) | y∈Ri-1 ∧ N’= y[|y|] ∧  ¬isiText(N’) ∧ ¬isiAttribute(N’) ∧  
N’≠<complexType> ∧ ( N’≠<element type=T> ∨ 
(N’=<element type=T> ∧ ¬built-in(T) )) ∧ N1∈succeeding(N’) } 

• iTextChild(N) = {y | (y∈iText-helper(N) ∧ isiText(y[|y|])) ∨ 
(y=z+(N1) ∧ z∈iText-helper(N) ∧ N’= z[|z|] ∧ ¬isiText(N’) ∧ isiText(N1) 
∧ ((N’=<element type=T> ∧ N1=attributeNode(N’, type=T)) ∨  

(N’=<complexType> ∧ N1∈succeding(N’))))} 
• iPS(x) = {y | (y∈iChild(x[1]) ∨ y∈iTextChild(x[1])) ∧ y[|y|]≠@<type=T>  
∧ y[y]≠<simpleType> ∧ y[y]≠ <simpleContent> ∧ ( 

(y[|y|]=<complexType mixed=‘true’> ∨  
 y[|y|]=<complexContent mixed=‘true’>) ∨  
(x[|x|]=<complexType mixed=‘true’> ∨  
 x[|x|]=<complexContent mixed=‘true’>) ∨   
(x=y ∧ ∃i∈{2, 3, ..., |x|}: attribute(x[i], ‘maxOccurs’)>1 ) ∨ 
(∀i∈{1, …, k}: x[i]=y[i] ∧ x[k+1]≠y[k+1] ∧ k<min(|x|, |y|) ∧ ( 
 x[k]=<all> ∨ ∃i∈{2, 3, ..., k}: attribute(x[i], ‘maxOccurs’)>1 ∨ 
(y[k+1]<x[k+1] ∧ ∀i∈{2, 3, ..., k}: ( 

x[i]=<sequence maxOccurs=1> ∨ x[i]=<choice maxOccurs=1> ∨ 
x[i]=<group maxOccurs=1> ∨ (x[i]≠<sequence> ∧ x[i]≠<choice> ∧  
x[i]≠<group> ∧ x[i]≠<all>)) ∧  x[k]≠<choice>))))} 

• iFS(x) = {y | ( y∈iChild(x[1]) ∨ y∈iTextChild(x[1]) ) ∧ y[|y|]≠@<type=T> 
∧ y[y]≠<simpleType> ∧ y[y]≠ <simpleContent> ∧ ( 

(y[|y|]=<complexType mixed=‘true’> ∨ y 
 [|y|]=<complexContent mixed=‘true’>) ∨  
(x[|x|]=<complexType mixed=‘true’> ∨  
 x[|x|]=<complexContent mixed=‘true’>) ∨ 
(x=y ∧ ∃i∈{2, 3, ..., |x|}: attribute(x[i], ‘maxOccurs’)>1) ∨ 
(∀i∈{1, …, k}: x[i]=y[i] ∧ x[k+1]≠y[k+1] ∧ k<min(|x|, |y|) ∧ (  
 x[k]=<all> ∨ ∃i∈{2, 3, ..., k}: attribute(x[i], ‘maxOccurs’)>1 ∨ 
 (x[k+1]<y[k+1] ∧ ∀i∈{2, 3, ..., k}: ( 

x[i]=<sequence maxOccurs=1> ∨ x[i]=<choice maxOccurs=1> ∨ 
     x[i]=<group maxOccurs=1> ∨ (x[i]≠<sequence> ∧ 

x[i]≠<choice> ∧ 
x[i]≠<group> ∧ x[i]≠<all>)) ∧ x[k]≠<choice>))))} 

Figure 1: A data model of XML Schema for evaluating 
XPath queries on XML Schema definitions. 

The auxiliary function attribute(N, ‘name’) retrieves 
the value of the attribute ‘name’ of the node N, which 
is the name of an element or attribute appearing in 
an instance document. The function NT: 
Node×NodeTest→Boolean, which tests an instance 
XSchema node N against a node test of XPath, is 
defined as: 
 

• NT(N, label) = ( isiElement(N) ∧ attribute(N, ‘name’)=label )   ∨  
        ( isiAttribute(N) ∧ attribute(N, ‘name’)=label )       
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• NT(N, ∗) = isiElement(N) ∨ isiAttribute(N) 
• NT(N, text()) = isiText(N)    • NT(N, node()) = true 

3 EVALUATING XPATH 
QUERIES 

A common XPath evaluator is typically constructed 
to evaluate XPath queries on XML documents. Our 
approach evaluates XPath queries on XML Schema 
definitions rather than on the instance documents of 
schemas in order to test the satisfiability of XPath 
queries with respect to schemas. Thus, we name our 
XPath evaluator XPath-XSchema evaluator. 

3.1 Schema Paths 

Instead of computing the node set of XML 
documents specified by an XPath query Q, our 
XPath-XSchema evaluator computes a set of schema 
paths to the possible resultant nodes, when Q is 
evaluated by a common XPath evaluator on instance 
XML documents. If Q cannot be evaluated 
completely, the schema paths of Q are computed to 
an empty set of schema paths. 

   The schema paths are in practice a log of the 
process of searching for the relevant nodes described 
by XPath queries from an XML schema definition. 
In order to better understand the definition of 
schema paths (see Definition 3), we first outline how 
the XSchema-XPath evaluator searches for relevant 
nodes in an XML Schema definition to construct the 
schema paths. Similar to a common XPath evaluator, 
our approach starts the search from the root node of 
the schema. The search continues from an XML 
Schema node typically to its succeeding nodes in the 
case of a forward axis, or its preceding nodes in the 
case of a reverse axis. The search passes the nodes in 
the schema, which are not instance nodes. The 
search continues until an instance node specified by 
the current location step is retrieved, and the 
corresponding node sequence visited is logged in the 
schema paths.  

   In the presence of recursive schemas, it may 
occur that our evaluator revisits a node of the 
schema without any progress in the processing of the 
query. We call this a loop. For the purpose of 
detecting a loop, we log the information related with 
the part of the XPath query, which has been 
processed. The schema paths for the XPath 
expressions in a predicate, which are computed in 
the same way, are attached to the context node of the 
predicates. We also need a parameter in the schema 
path to indicate the relation between expressions in a 

predicate. In an XML Schema definition, an instance 
node might have several instance parent nodes in 
that multiple elements might contain some identical 
sub-elements and each element is declared only once 
in a schema. Since we cannot retrieve the parent 
nodes unambiguously from only the XML Schema 
definition, we need to log the information of the 
parent nodes in the schema path. 
 

Definition 3 (Schema Paths). A schema path the 
type of which we denote by schema_path is a 
sequence of pointers to either the schema path 
records <XP, S, b, z, lp, f>, or the schema path records 
<o, f>, or schema path records <e> where 
 

• XP is an XPath expression, 
• S is a set of sequences of XSchema nodes, 
• b is a label and b ∈ {child, parent, FS, PS, self, 

attribute}, 
• z is a set of pointers to schema path records, 
• lp is a set of schema paths, 
• f is a set of sets of schema paths ,  
• e is a predicate expression self::node()=C,  where C 

is a literal, i.e. a number or a string, and 
• o is a keyword and o ∈ {=, or, and, not}. 
 

Let Q be an XPath query, which is the input of 
our XPath-XSchema evaluator, and Q=XPe/XPc/XPr, 
where XPe is the part, which has been evaluated; XPc 
is the part, which is being evaluated; XPr is the part, 
which has not been evaluated so far by the XPath-
XSchema evaluator. In a schema path record, XP is 
dependent on XPe. XP is needed for the detection of 
loop schema paths. S is a set of sequences of 
XSchema nodes and computed from the XML 
Schema data model. The last node Nl in each 
sequence s of S is an instance node, which is visited 
by the our evaluator when evaluating XPc, and which 
is also a context node to compute the following 
nodes. The first node Nf of s is an instance parent 
node of Nl, and other nodes in s are ones that are 
visited when searching for Nl of Nf, some of which 
may be the nodes of model groups and are useful for 
consistency checking of occurrence constraints and 
sequences. b is a label associated with the schema 
node Nl, indicating an XPath axis, from which the 
node Nl is generated. b is needed for rewriting. The 
field z in a schema record R is a set of pointers to the 
schema path records in which the last schema node 
of the node sequences is the instance parent node of 
the last schema node of the node sequences of the 
record R. Note whenever an instance XSchema node 
is the first node of a loop, the node has more than 
one possible instance parent node, and thus there are 
several sequences of nodes and pointers in a schema 
path record. lp represents loop schema paths; f 
represents the schema paths computed from the 
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predicates that test the last node of S, which is the 
context node of the predicates. The schema paths 
can consist of predicate expressions, i.e. 
{(<self::node()=C>)}. o represents operators like =, or, and 
and not to indicate the operation on the schema paths 
of predicates. 
 

Example 1. Our XPath-XSchema evaluator 
evaluates an XPath query Q = /city//neighbour 
[name][not(parent::state//city)]/parent::neighbour on the XML 
Schema definition city.xsd of Figure 2 and computes 
the schema paths in Figure 3. A detailed, step by 
step explanation to an example of computing schema 
paths is given in (Groppe J. et al., 2007). 
 

(D1)   <schema> 
(D2)     <complexType name='cityT'> 
(D3)       <sequence> 
(D4)         <element name='name' maxOccurs='1' type='string'/> 
(D5)         <element name='neighbour'  maxOccurs='20' type='cityT'/> 
(D6)       </sequence> 
(D7)     </complexType>             
(D8)    <element name='city' maxOccurs='1' type='cityT'/> 
(D9)  </schema>          

Figure 2: An XML Schema definition city.xsd. 

 

(R1)  {(</,   {(/)},   -,    -,    -,   -> , 
(R2)    </city, {(D1, D8)}, child, {R1},  -,  ->,         
(R3)     </city/neighbour, {(D8, D2, D3, D5), (D5, D2, D3, D5)}, child, {R2, R3},  
(R4)         {(</city/neighbour,  {(D5, D2, D3, D5)}, child, {R3}, -, ->)} , 
(R5)               {{(<-,  {(D8, D2, D3, D5), (D5, D2, D3, D5)}, self, {R2, R3}, -, ->, 
(R6)                  <name, {(D5, D2, D3, D4)}, child, {R5}, -, ->)}, 
(R7)             {(<‘not’, ∅>)}}> 
(R8)    <Q, {(D8, D2, D3, D5), (D5, D2, D3, D5)}, parent, {R2, R3}, -, ->) } 

Figure 3: Schema paths of query Q. 

3.2 Computing Schema Paths 

We use the semantics technique to describe our 
XPath-XSchema evaluator, and define the following 
notations. Let z be a pointer in a schema path and d 
is a field of a schema path record, we write z.d to 
refer to the field d of the record to which the pointer 
z points. Let p be a schema path, then p[k] indicates 
the k-th pointer (or the record to which the k-th 
pointer points) of the schema path p, and |p| be the 
size of the schema path p, i.e. the number of 
pointers. Let S be a set of sequences of XSchema 
nodes, then S(1) indicates an arbitrary sequence of 
nodes in S. We use the operator / to express the 
concatenation of two XPath expressions, e.g. 
XP1/XP2.  

The semantics of the XPath-XSchema evaluator 
is specified by a function L: 
XPath×schema_path×XPath→Set(schema_path) in Figure 4, 

which takes two XPath expressions and a schema 
path as the arguments and yields a set of new 
schema paths. The first XPath expression is one that 
is evaluated on a given XML Schema definition in 
this function, and the second XPath expression is the 
part XPe of the given XPath query Q, which has been 
evaluated so far when the function is called. XPe is 
bound to the XP field of a schema path record, and 
this field is needed for the detection of a loop. The 
schema path in this function signature is one of the 
schema paths computed from XPe. L is defined 
recursively on the structure of XPath expressions. 

For evaluating each location step of an XPath 
expression, our XPath-XSchema evaluator first 
computes the axis and the node-test a::n of the 
location step by iteratively taking the last schema 
node from a node sequence of the last schema path 
record from each schema path p in the path set as the 
context node. For each resultant node r selected by 
a::n, L first computes a node sequence s based-on the 
data model of the XML Schema in Figure 1. The 
function L then constructs a pointer e to a new 
schema path record, i.e. e→<XP, {s}, b, z, -, -> and 
extends p to p’ by adding the pointer e at the end of 
the given schema path p, denoted by p’=p+e. If no 
node is selected by the current location step, the 
function L computes an empty set of schema paths. 

In the case of recursive schemas, a loop is 
identified whenever the XPath-XSchema evaluator 
revisits an instance node N of the XML Schema 
definition without any progress in the processing of 
the query. In order to avoid an infinite evaluation, 
we do not continue the evaluation after the node N, 
once a loop has been detected. We detect loops in 
the following way: let e=<XP, {s}, b, z, -, -> be a new 
schema path record generated when computing L(a::n, 
p, xp). If there exists a record p[k] in p such that 
S(1)[|S(1)|]=s[|s|] ∧ S=p[k].S ∧ p[k].XP=XP, a loop is 
detected and the loop path segment is lp = (e, p[k+1], …, 
p[|p|]). lp is integrated to the field of the loop schema 
paths in the schema path record p[k], where the loop 
occurs. A loop might occur when an XPath query 
contains the recursive axis descendant, ancestor, 
preceding or following, which are boiled down to the 
recursive evaluation of the axis child or parent 
respectively. For computing L(descendant::n, p, xp), we 
first compute pi, where pi∈L(child::node(), pi-1, xp) ∧ pi-

1∈L(child::node(), pi-2, xp) ∧…∧ p1=L(child::node(), p, xp). If no 
loop is detected in the path pi, then let pi’=pi and 
Lr(self::n, pi’, xp) is computed in order to construct a 
possible new path from pi. If a loop path segment 
(pi[|pi|], pi[k+1], …, pi[|pi|-1]) is detected in the path pi, then 
the schema path record pi[k], from which the loop 
starts, is modified by integrating the new detected 
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loop schema path, the new sequence of nodes and 
the new parent pointer. Note that all the schema 
paths, which contain the pointer to the schema path 
record, are also aware of this modification. When a 
loop is detected, instead of setting pi’=pi, pi’ is set to 
empty, i.e. if a loop is detected in pi, pi will not 
contribute to the further computation of schema 
paths anymore. 

The schema paths L(q, fp, -) of a predicate q are 
added into the field of the predicate schema paths of 
the record. fp logs the context node of the predicate 
such that we compute the schema paths of the 
predicate from fp. When L(q, fp, -) is computed to 
empty, the main schema paths are computed to an 
empty set. Checking of data-type and occurrence 
constraints is presented in (Groppe J. et al., 2007). 
 

• L(e1|e2, p, -) = L(e1, p, -) ∪ L(e2, p, -)  
• L(/e, p, -) = L(e, p1, /), where p1=( </, {(/)}, -, -, -, - > ) 
• L(e1/e2, p, xp) = {p2 | p2∈L(e2, p1, xp/e1) ∧ p1∈L(e1, p, xp)} 
• L(self::n, p, xp) = {p+<xp/self::n, S, self, p[|p|].z, -, -> |  

S=p[|p|].S ∧ NT(S(1)[|S(1)|], n)} 
• L(child::n, p, xp) = {p+<xp/n, {s}, child, p[|p|], -, -> | 

NT(s[|s|], n) ∧ S=p[|p|].S ∧ isiElement(S(1)[S(1)]) ∧   
((s∈iChild(S(1)[|S(1)|]) ∧ n≠text()) ∨  

    (s∈iTextChild(S(1)[|S(1)|] ∧ (n=text() ∨ n=node())))} 
• Lr(self::n, p, xp) = {p | NT(S(1)[|S(1)|], n) ∧ S=p[|p|].S} 
• L(descendant::n, p, xp) = {p’ |  p’∈∪i=1

∞Lr(self::n, p’i, xp) ∧ (  
(pi’=pi ∧ pi∈L(child::node(), pi-1, xp) ∧ ∀k∈{1, …, |pi|-1}: (  

pi[k].XP≠pi[|pi|].XP ∨ (S1(1)[|S1(1)|]≠S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧ 
 S2=pi[|pi|].S)) ∧ pi-1∈L(child::node(), pi-2, xp) ∧…∧  
p1∈L(child::node(), p, xp))  

∨ 
(p’i=⊥ ∧ (pi[k]→<pi[k].XP, pi[k].S∪ pi[|pi|].S, pi[k].z∪pi[|pi|].z,  

pi[k].lp∪{(pi[|pi|], pi[k+1], ..., pi[|pi|-1])}, pi[k].f>) ∧ ∃k∈{1, ..., |pi|-1}: ( 
pi[k].XP=pi[|pi|]XP ∧ S1(1)[|S1(1)|]=S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧   
S2=pi[|pi|].S) ∧ pi∈L(child::node(), pi-1, xp) ∧  
pi-1∈L(child::node(), pi-2, xp) ∧ … ∧ p1∈L(child::node(), p, xp)))} 

• L(parent::n, p, xp) = {p + <xp/parent::n, S, parent, Z1.z, -, -> |  
S=Z1.S ∧ Z1∈p[|p|].z ∧ NT(S(1)[|S(1)|], n) } 

• L(ancestor::n, p, xp) =  { p’ | p’∈∪i=1
∞Lr(self::n, p’i, xp) ∧ ( 

(pi’=pi ∧ pi∈L(parent::node(), pi-1, xp)  ∧ ∀k∈{1, …, |pi|-1}: (  
pi[k].XP≠pi[|pi|].XP ∨ (S1(1)[|S1(1)|]≠S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧  
S2=pi[|pi|].S)) ∧ pi-1∈L(parent::node(), pi-2, xp) ∧…∧ 
p1∈L(parent::node(), p, xp)) 

∨ 
(p’i=⊥ ∧ (pi[k]→<pi[k].XP, pi[k].S∪ pi[|pi|].S, pi[k].z∪pi[|pi|].z,  

pi[k].lp∪{(pi[|pi|], pi[k+1], ..., pi[|pi|-1])}, pi[k].f>) ∧ ∃k∈{1, ..., |pi|-1}: (  
pi[k].XP=pi[|pi|]XP∧ S1(1)[|S1(1)|]=S2(1)[|S2(1)|] ∧ S1=pi[k].S ∧  
S2=pi[|pi|].S) ∧ pi∈L(parent::node(), pi-1, xp)  ∧  
pi-1∈L(parent::node(), pi-2, xp) ∧ … ∧ p1∈L(parent::node(), p, xp)))} 

• L(DoS::n, p, xp) = L(self::n, p, xp) ∪ L(descendant::n, p, xp) 
• L(AoS::n, p, xp) =  L(self::n, p, xp) ∪ L(ancestor::n, p, xp) 
• L(FS::n, p, xp) = {p+<xp/FS::n, {s}, FS, p[|p|].z, -, -> | s∈iFS(s1) ∧  

NT(s[|s|], n) ∧ s1∈p[|p|].S} 
• L(following::n, p, xp) = L(AoS::node()/FS::node()/DoS::n, p, xp) 
• L(PS::n, p, xp) = {p+<xp/PS::n, {s}, PS, p[|p|].z, -, -> | s∈iPS(s1) ∧  

NT(s[|s|], n) ∧ s1∈p[|p|].S} 
• L(preceding::n, p, xp) = L(AoS::node()/PS::node()/DoS::n, p, xp) 
• L(attribute::n, p, xp) = {p+<xp/attribute::n, {s}, attribute, p[|p|], -, -> |  

s∈iAttribute(S(1)[|S(1)|]) ∧ NT(s[|s|], n) ∧ S=p[|p|].S} 
• L(e[q], p, xp) = {(p’[1], p’[2], …, p’[|p’|-1]) + <p’[|p’|].XP, p’[|p’|].S,  
p’[|p’|].z, p’[|p’|].lp, p’[|p’|].f∪L(q, fp, -)> | p’∈L(e, p, xp) ∧ L(q, fp, -)≠∅ ∧  
fp=(<-, p’[|p’|].S, self, p’[|p’|].z, -, ->)} 
• L(e[q1]…[qn], p, xp) = {(p’[1], p’[2], …, p’[|p’|-1]) + <p’[|p’|].XP, p’[|p’|].S, 
p’[|p’|].z, p’[|p’|].lp, p’[|p’|].f∪L(q1, fp, -)∪…∪L(qn, fp, -)> | p’=L(e, p, xp) 
∧L(q1, fp, -)≠∅∧…∧L(qn, fp, -)≠∅∧fp=(<-, p’[|p’|].S, self, p’[|p’|].z, -, ->)} 
• L(q1 and q2, fp, -) = {(<‘and’, L(q1, fp, -)∪L(q2, fp, -)>) |  

L(q1, fp, -)≠∅ ∧ L(q2, fp, -)≠∅} 
• L(q1 or q2, fp, -) = {(<‘or’, L(q1, fp, -)∪L(q2, fp, -)>) | L(q1, fp, -)≠∅ ∨  

L(q2, fp, -)≠∅} 
• L(q1 = q2, fp, -) = {(<‘=’, L(q1, fp, -)∪L(q2, fp, -)>) | L(q1, fp, -)≠∅ ∧  

L(q2, fp, -)≠∅}  
• L(not(q), fp, -) = {(<‘not’, L(q, fp, -)>)} 
• L(q=C, fp, -) = L(q[self::node()=C], fp, -),  where q≠self::node() 
• L(self::node()=C, fp, -) = {(<self::node()=C>)} 
 

Figure 4: The function L: XPath×schema_path×XPath→Set 
(schema_path). 

3.3 Analyzing Complexity 

Different from instance XML documents the 
topology of which is a tree, an XML Schema 
definition is a directed graph. In the directed graph 
leading to the worst-case complexity, each node has 
directed edges to all nodes. Thus, we assume that in 
an XML Schema definition S in the worst case, each 
node in S is an instance node and each node is a 
succeeding node of all the nodes. In an XPath query 
Q in the worst case, each location step in Q selects all 
the instance nodes in S.  

Let a be the number of location steps in an XPath 
query Q. Let N be the number of nodes in an XML 
Schema definition S. In the worst case, from each 
schema path p, at most O(∑k=1N N!/(N-k)!) schema paths 
are computed with length from |p|+1 to |p|+N, and thus 
at most O((∑k=1NN!/(N-k)!)a)=O((N!∗3)a) schema paths are 
computed, each of which contains at most O(a∗N) 
pointers to schema records, for Q. Therefore, the 
worst case complexity of our approach in terms of 
run time and space is O(a∗N∗(N!∗3)a). 

The XML Schema definitions of the worst case 
are rare. A query of the worst case is typically not 
used. Therefore, it makes sense to investigate the 
complexity of our approach in typical cases. 
According to the schema and queries in 
(Franceschet, 2005), we assume that the typical 
cases are characterized as follows: each node in an 
XML Schema definition S has only a small number 
of succeeding nodes compared with the number N of 
nodes in S; for each location step in the XPath query 
Q, the number of nodes visited is on the average less 
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than a constant C, and thus less than C schema paths 
are computed for each location step. Therefore, the 
complexity of runtime and space of our approach is 
O(a∗N∗C) for the typical cases. 

4 REWRITING XPATH QUERIES 

If an XPath query Q is computed to a non-empty set 
of schema paths by our evaluator on an XML 
Schema definition, the XPath query is only maybe 
satisfiable, since the satisfiability test in the 
supported subset of XPath is undecidable (Benedikt, 
et al., 2005) and our evaluator does not check 
whether or not two or more location steps in Q 
contradict each other. In this section, we present 
filtering the queries with conflicting constraints by 
rewriting the queries to the empty expression ⊥ 
based on their schema paths. 

4.1 Mapping Schema Paths to 
(Regular) XPath Queries 

The function M(L) in Figure 5 maps a set of schema 
paths L={p1, …, pm} to an XPath query Q’. The function 
M(p) maps a schema path p=(r1, …, rn) to a sub-
expression e of the query Q’. The function M(r) maps 
a schema path record r to a pattern of the sub-
expression e. The patterns are concatenated in order 
with ‘/’ to form the sub-expression 
e=M(p)=M(r1)+‘/’+…+‘/’+M(rn), where we use ‘+’ to denote 
concatenation of strings. Disjunctions of the sub-
expressions form the mapped query Q’=M(L)=M(p1)+‘ | 
’+…+‘ | ’+M(pn). In order to compute a pattern from a 
schema path record <XP, S, b, z, lp, f>, <o, f> or <e>, we 
need the following functions: location(S, b) computes 
the axis and the node-test of a pattern; loops(lp) 
computes the union of loop patterns. Let us assume 
that B is a pattern, then we define B* as a loop 
pattern, in which the Kleene star denotes an arbitrary 
repetition of the pattern B. As an example, if B=a, 
then B*=(⊥ | a | a/a | a/a/a |…). 

Let L be a set of schema paths, p be a schema 
path and r be a schema path record, such that L={p1,…, 
pm} and p=(r1,..., rn), where p∈L. The semantics of the 
mapping function M, which maps a set of schema 
paths to a (regular) XPath expression, is defined in 
Fig 6. Note that in the mapping functions of Fig. 6, 
the two fields XP and z in a schema path record r are 
left out since they do not contribute to the 
computation of the mapping. 

If we use the function Mr(<S, b, lp, ->), we get a 
regular XPath expression with loop  patterns using 

the Kleene star ∗, which is not a standard XPath 
operator; if we use the function M(<S, b, lp, ->), we get 
a standard XPath expression without loop patterns. 

• M(L) = M(p1)+‘ | ’+ …+‘ | ’+M(pm) 
• M(p) = M(r1)+M(r2)+‘/’+…+‘/’+M(rn), if N=‘/’ ∧ N=S(1)[|S(1)|] ∧ S= r1.S 
• M(p) = M(r1)+‘/’+…+‘/’+M(rn), if N≠‘/’ ∧ N=S(1)[|S(1)|] ∧ S= r1.S 
• M(<S, b, -, ->) = location(S, b) 
• M(<S, b,  -, {L1, ..., Ln}>) = M(<S, b, -, ->)+‘[’+M(L1)+‘]’+…+‘[’+M(Ln)+‘]’ 
• M (<S, b, lp, ->) = ‘descendant::’+attribute(N,  ‘name’), where  

b=‘child’ ∧ N=S(1)[|S(1)|] 
• M (<S, b, lp, ->) = ‘ancestor::’+attribute(N, ‘name’), where  

b=‘parent’ ∧ N=S(1)[|S(1)|] 
• Mr(<S, b, lp, ->) =loops(lp)+location(S,b) 
• M(<S, b, lp, {L1,..., Ln}>) = M(<S, b, lp, ->)+‘[’+M(L1)+‘]’+…+‘[’+M(Ln)+‘]’ 
• Mr(<S, b, lp, {L1,..., Ln}>) = Mr(<S, b, lp, ->)+‘[’+M(L1)+‘]’+…+‘[’+M(Ln)+‘]’ 
• M(<‘not’, {L}>) = ‘not’+‘(’+ M(L)+‘)’ 
• M(<‘or’, {L1, L2}>) = M(L1)+‘ or ’+M(L2) 
• M(<‘=’, {L1, L2}>) = M(L1)+‘ = ’+M(L2) 
• M(<self::node()=C>) = ‘self::node()=C’ 
• location (S, -) = ‘/’, where S(1)[|S(1)|]= ‘/’ 
• location(S, b) = b+‘::’+attribute(N, ‘name’), where  

(isiElement(N) ∨ isiAttribute(N)) ∧ N=S(1)[|S(1)|] 
• location(S, b) = b+‘::text()’, where isiText(N) ∧ N=S(1)[|S(1)|] 
• location(S, b) = b+‘::node()’ where N= ‘/’ ∧ N=S(1)[|S(1)|] 
• loops(lp) = loops({p1,…, pk})=‘((‘+M(p1)+‘/)*’+‘ | ’…‘ | ’ + ‘(’+M(pk)+‘/)*)’ 

Figure 5: Functions mapping schema paths to a (regular) 
XPath expression. 

Proposition 1. Let L be a set of schema paths, Qr be 
the regular XPath expression mapped from L, and Q 
be the standard XPath expression mapped from L. 
The evaluation of Q returns the same node set as Qr 
for any valid XML document (Groppe J. et al., 
2006c). 

4.2 Optimizing Mapped XPath Queries 

The mapped XPath query can be optimized by 
eliminating redundant parts, reverse axes and 
recursive axes. For this optimization, we develop a 
set of rewriting rules. Different from the rewriting 
rules in (Olteanu et al., 2002), which eliminates 
reverse axes based on the symmetry of the XPath 
axes, we eliminate reverse axes mainly based on the 
symmetry of the schema paths. The reverse axes, 
which are remaining after eliminating redundant 
parts, can be eliminated using the ruleset in (Olteanu 
et al., 2002). 

Let a be an axis, n be a nodetest, e be a pattern 
and q be a qualifier. The rewriting rules, which 
eliminate reverse axes and redundant parts in the 
XPath expression mapped from a set of schema 
paths, are defined as follows. 
 

• e/attribute::n1/parent::n2[q] ≡ e[q][attribute::n1] 
• e/child::n1/parent::n2[q] ≡ e[q][child::n1] 
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• e1/child::n1/e2/parent::n3[q] ≡ e1[q][child::n1/e2],  
where e2 contains only the axes FS and PS 

• e/attribute::n1[parent::n2[q]] ≡ e1[q]/attribute::n2  
• e1/child::n1[parent::n2[q]] ≡ e1[q]/child::n1 
• e1/child::n1/e2[parent::n3[q]] ≡ e1[q]/child::n1/e2,  

where e2 contains only the axes FS and PS 
• e1[attribute::n1/parent::n2[q]] ≡ e1[q][attribute::n1] 
• e1[child::n1/parent::n2[q]] ≡ e1[q][child::n1] 
• e1[child::n1/e2/parent::n3[q]] ≡ e1[q][child::n1/e2],  

where e2 contains only the axes FS and PS 
• e/self::n[q] ≡ e[q]  • e[q][q] ≡ e[q]          • 
e[q]/q ≡ e/q  
• e[true()] ≡ e       • [not(false())] ≡ [true()] • [q 
or true()] ≡ [true()]  
• [q or false()] ≡ [q]  • [q and true()] ≡ [q] 
• e*/parent::n ⊆ ancestor::n      • e*/child::n ⊆ descendant::n   
 

Note that in the rules, e*/child::n is the pattern 
mapped by Mr[<S, b, lp, ->] and descendant::n is the 
pattern mapped by M[<S, b, lp, ->], when b=‘child’. As 
shown in Proposition 1, although descendant::n 
retrieves a superset of the node set retrieved by 
e*/child::n, the entire XPath query returns the same 
node set for all valid XML documents when using 
either descendant::n or e*/child::n. 

4.3 Filtering XPath Queries with 
Conflicting Constraints 

We apply the rules in Figure 6 to the queries 
rewritten from schema paths to filter the queries, 
which contain conflicting constraints. Although the 
rule set can be directly applied to given queries, 
application of the rules to the rewritten queries, 
which exclude redundant parts, wildcards, reverse 
axes and recursive axes, can filter more unsatisfiable 
queries. 

Let e (e1, e2… respectively) be an XPath 
expression. If a sub-expression of an XPath query is 
reduced to the empty expression ⊥, the XPath query 
is reduced to ⊥. 

• ⊥ | ⊥= ⊥  • e/⊥ = ⊥  • ⊥/e = ⊥
  • e[⊥] = ⊥    • ⊥[e] =  ⊥ 
• ⊥ and e =  ⊥ • ⊥ or ⊥=⊥ • e1[not(e2)]/e2=⊥ • 
e1[not(e2)][e2]=⊥  
• e1[not(e2)][e2/e3]=⊥   • e[@t=c1][@t=c2]=⊥ if 
c1≠c2 
• e[@t<c1][@t=c2]=⊥ if c1≤c2   • e[@t<c1][@t>c2]=⊥ if 
c1≤c2 
• e[@t<c1][@t≥c2]=⊥ if c1≤c2  • e[@t≤c1][@t=c2]=⊥ 
if c1<c2 
• e[@t≤c1][@t>c2]=⊥ if c1≤c2  • e[@t≤c1][@t≥c2]=⊥ 
if c1<c2 

Figure 6: Rules for filtering queries with conflicting 
constraints. 

5 PERFORMANCE ANALYSIS 

We have implemented a prototype of our approach 
in order to verify the correctness of our approach 
and to demonstrate the optimization potential by 
avoiding the evaluation of unsatisfiable XPath 
queries. (Groppe J. et al., 2007) presents a 
comprehensive performance analysis on detecting 
the unsatisfiable XPath queries that do not conform 
to the constraints in an XML Schema definition, i.e. 
the schema paths of the queries are computed to the 
empty set, and experimental results show that our 
approach can achieve a speedup up to several orders 
of magnitudes over common XPath evaluators when 
detecting unsatisfiable XPath queries. Therefore, this 
performance analysis focuses on the unsatisfiable 
XPath queries, which conform to the constraints 
imposed by a schema, but contain hidden conflicting 
constraints. Our approach first computes the schema 
paths of the queries by evaluating the queries on an 
XML Schema definition, then rewrites these queries 
based on the schema paths in order to make hidden 
conflicting constraints visible, and finally applies the 
rules to the rewritten queries to filter the queries 
with conflicting constraints. We study the detection 
of the unsatisfiable XPath queries by our approach 
and the evaluation of these unsatisfiable queries by 
common XPath evaluators. 

The test system for all experiments is an Intel 
Core 2 CPU T5600 processor, where we disable one 
CPU, 1.83 Gigahertz with 2 Gigabytes RAM, 
Windows XP as operating system and Java VM 
version 1.6.0. We use the XQuery evaluators Saxon 
version 8.0 (//saxon.sourceforge.net) and Qizx version 
0.4pl (//www.xfra.net/quizxopen) to evaluate the XPath 
queries on XML data. We use the XPathMark 
benchmark (Franceschet, 2005) as the source of our 
experimental data, and generate data from 0.116 
Megabytes to 11.597 Megabytes by using the data 
generator of (Franceschet, 2005). An XML Schema 
definition benchmark.xsd (Groppe J. et al., 2007) is 
manually adapted according to the DTD benchmark.dtd 
(Franceschet, 2005) and the instance documents in 
order to integrate as many constructs of the XML 
Schema as possible and to specify more specific data 
types for values of elements and attributes, which 
are all declared as #PCDATA in benchmark.dtd. 

The queries Q1-Q15 in Table 1 conform to the 
semantics, structure, data-type and occurrence 
constraints given in benchmark.xsd, but contain hidden 
conflicting constraints. Thus, the schema paths of 
these queries are computed to a non-empty set. 
Queries Q1’-Q15’ in Table 1 are the rewriting of 
queries Q1-Q15 based on their schema paths. The 
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rewritten queries disclose the hidden conflicting 
constraints. Furthermore, the queries Q1-Q15 are also 
designed to contain as many constructs of the XPath 
language as possible in order to test how the 
different constructs of the XPath language influence 
the processing performance. We present the average 
results of ten executions of these queries. 

Table 1: Queries Q1-Q15 and rewritten queries Q1’-Q15’. 

Original and rewritten Queries 
Q1 /site/catgraph[not(edge)]/∗ 
Q1’ /site/catgraph[not(edge)]/edge 
Q2 /site/catgraph[not(edge)]/self::node()/∗ 
Q2’ /site/catgraph[not(edge)]/edge 
Q3 /site/regions/europe[(@area or ∗/name) and not(item)] 
Q3’ /site/regions/europe[item/name][not(item)] 
Q4 /site/regions/europe/∗[parent::∗[not(item)]] 
Q4’ /site/regions/europe[not(item)]/item 
Q5 //europe/∗[parent::∗[not(item)]] 
Q5’ /site/regions/europe[not(item)]/item 
Q6 /site/closed_auctions/closed_auction/buyer 

[@∗][not(@person)] 
Q6’ /site/closed_auctions/closed_auction/buyer 

[@person][not(@person)] 
Q7 /site/closed_auctions/closed_auction/buyer[@∗]/ 

self::∗[not(@person)] 
Q7’ /site/closed_auctions/closed_auction/buyer 

[@person][not(@person)] 
Q8 //buyer[@∗][not(@person)] 
Q8’ /site/closed_auctions/closed_auction/buyer 

[@person][not(@person)] 
Q9 /site/people/person/profile[@∗>50][@income<10] 
Q9’ /site/people/person/profile[@income>50][@income<10] 
Q10 /site/people/person/profile[@∗>50]/interest 

/parent::∗[@income<10] 
Q10’ /site/people/person/profile[@income>50][@income<10] 

[interest] 
Q11 /site/people/person/profile[@∗>50][@∗<99][@income<10] 
Q11’ /site/people/person/profile[@income>50][@income<99] 

[@income<10] 
Q12 /site/people/person/profile[@∗>50][@∗<99][@∗>30] 

[@income<10] 
Q12’ /site/people/person/profile[@income>50][@income<99] 

[@income>30][@income<10] 
Q13 /site/people/person/profile[@∗>50][@∗<99][@∗>30] 

[@∗>40][@income<10] 
Q13’ /site/people/person/profile[@income>50][@income<99] 

[@income>30][@income>40][@income<10] 
Q14 //profile[@∗>50][@income<10] 
Q14’ /site/people/person/profile[@income>50][@income<10] 
Q15 //profile[@∗>50][@∗<99][@∗>30][@income<10] 
Q15’ /site/people/person/profile[@income>50][@income<99] 

[@income>30][@income<10] 
 

Figure 7 presents the time of filtering the 
unsatisfiable queries Q1-Q15 by our approach, 
consisting of three times: the time of computing 
schema paths, i.e. evaluating Q1-Q15 on benchmark.xsd; 
the time of rewriting Q1-Q15 based on the schema 
paths, i.e. mapping schema paths to an XPath query 
Q and optimizing Q by the rules in Section 4.2; the 
time of filtering XPath queries with conflicting 
constraints by the rules in Section 4.3. The overhead 
of filtering unsatisfiable queries is mainly evaluating 
XPath queries on the schema. Among 15 queries, Q5, 
Q8, Q14 and Q15 are queries with recursive axes, 
which we call recursive queries; others do not 
contain recursive axes, which we call non-recursive 
queries. Non-recursive queries can be evaluated very 
fast and are on the average 7.2 faster than the 
recursive queries. The overhead of rewriting and 
rule application is very low. The time of rewriting 
and rule application is 32.6% of the time of 
computing schema paths for the non-recursive 
queries, the time ratio is 2.6% for the recursive 
queries, and the time ratio is 11% for all the queries. 

Figure 8 and Figure 9 present the speedup 
achieved by our approach over Saxon and Qizx 
when the evaluation of Q1-Q15 returns an empty 
result. The results show that our approach can detect 
unsatisfiable queries efficiently. At a data size of 6 
Megabytes, our approach is 199 times (and 39.6 
times) faster on the average when evaluating the 
non-recursive queries, and 35.6 times (and 10 times) 
faster on the average when evaluating the recursive 
queries, than Saxon (and Qizx). At a data size of 12 
Megabytes, our approach is 392 times (and 80 times) 
faster on the average when evaluating the non-
recursive queries, and 69.5 times (and 20 times) 
faster on the average when evaluating the recursive 
queries, than Saxon (and Qizx). 
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Figure 7: Filtering queries Q1-Q15 by our approach. 
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Figure 8: Speedup by our approach over Saxon when 
evaluating Q1-Q15. 

 
Figure 9: Speedup by our approach over Qizx when 
evaluating Q1-Q15. 

6 CONCLUSIONS 

We have proposed a data model for the XML 
Schema language, which identifies the navigation 
paths of XPath queries on XML Schema definitions. 
Based on the data model, we have developed an 
XPath-XSchema evaluator, which evaluates XPath 
queries on an XML Schema definition in order to 
filter the queries not conforming to the constraints 
imposed by the schema and in order to rewrite 
queries. When an XPath query does not conform to 
the constraints in the schema, our evaluator 
computes an empty set of schema paths, i.e. the 
XPath query is unsatisfiable. If a non-empty set of 
schema paths is computed for an XPath query, we 
rewrite the query from its schema paths, and apply 
the rules of conflicting constraints to the rewritten 
queries to further filter the queries with conflicting 
constraints. 

The experimental results of our prototype show 
that the application of our approach can significantly 
optimize the evaluation of XPath queries by filtering 
unsatisfiable XPath queries. A speed-up factor up to 
several orders of magnitudes is possible. 
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