
USING BIT-EFFICIENT XML TO OPTIMIZE DATA TRANSFER OF
XFORMS-BASED MOBILE SERVICES

Jaakko Kangasharju
Helsinki University of Technology, PO Box 5400, 02015 TKK, Finland

Oskari Koskimies
Nokia Research Center, Itämerenkatu 11–13, 00180 Helsinki, Finland

Keywords: Mobile XForms Services, Binary XML Serialization.

Abstract: We consider here the case of XForms applications on small mobile devices. The aim is to find out whether
a schema-aware binary XML format is better suited to this area than generic compression applied to regular
XML. We begin by limiting the potential areas of improvement through considering the features of the binary
format, and then proceed to measure effects in the identified areas to determine whether a binary format would
be effective.

1 INTRODUCTION

The ServiceSphere project at Nokia Research Center
has focused on researching mobile service solutions
for small and medium enterprises (SMEs) in different
business domains. One of the goals has been to study
the benefits of software as a service paradigm (Traudt
and Konary, 2005) that has gained a big momentum
in the fixed Internet-based enterprise solutions.

Increasing capabilities of cellular mobile devices
open possibilities for developing mobile applications
and services in many different business domains. Bet-
ter UI, larger memory, integrated peripherals like
camera and voice recorder, and wirelessly connected
peripherals like GPS and bar code readers make it
possible to use generic mobile phones for applications
that used to require custom-made, integrated systems.

Development of mobile service implementations
in such an environment has requirements for extreme
agility, low overhead, rapid prototyping capability,
and high enough quality that the services could be
deployed in a commercial environment for trial use.
One of the technologies we selected based on these
requirements was XForms (W3C, 2006). We have
implemented a prototype mobile-optimized XForms
processor that allows us to easily reconfigure the user
interface of the mobile device. As a consequence
of using XForms, all client-server communication is
done in XML, which also makes it easier to design

flexible server-side components. However, XML is
a relatively verbose format and in some domains the
amount of data transmitted from client to server each
day can be considerable. When operators charge for
data transfer on a per-kilobyte basis, the question of
efficient XML interchange becomes important for the
commercial viability of a mobile service.

In this paper, we analyze data from two differ-
ent domains, both based on concrete trials we have
performed. The first domain is customer relationship
management (CRM), where a company representative
would regularly visit customers and use a mobile de-
vice to enter detailed data about their current opera-
tions. In this case there were two separate data sets,
one which was sent on the first visit and contained ba-
sic customer information, and another which was sent
on subsequent visits and contained information about
the current operations of the customer. The second
domain is road maintenance, where a mobile device
was used to track road maintenance tasks, collect his-
tory data, create reports, and monitor the cost of ac-
tivities. A single data set was used. It contained in-
formation about the task at hand, the route the mainte-
nance crew was taking, and consumed materials. Our
experiences from the road maintenance domain have
been documented in detail in (Karhinen et al., 2007).

The data sets from the two domains are represen-
tative of two different content structure types, repeat-
ing and non-repeating. As such, they capture well the

5
Kangasharju J. and Koskimies O. (2008).
USING BIT-EFFICIENT XML TO OPTIMIZE DATA TRANSFER OF XFORMS-BASED MOBILE SERVICES.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - SAIC, pages 5-11
DOI: 10.5220/0001683800050011
Copyright c© SciTePress



variance in data sets that most affects compression.
In the CRM domain, the structure is non-repeating,
meaning that the data set consists of many different
elements without significant repetition. In the road
maintenance domain, the structure is repeating, mean-
ing that repetition of the same elements takes up a
significant portion of the data set. The reason for the
repeating structure in the road maintenance domain is
that the route of the maintenance crew is recorded as
a long list of coordinates.

Sample forms and data sets (purged of confiden-
tial information) were given for analysis to the Fuego
Core research team at the Helsinki Institute for Infor-
mation Technology, who specialize in efficient XML
processing for mobile devices. They concluded that
by taking advantage of the known document structure,
advanced bit-efficient XML representations can pro-
vide significant advantages when compared to generic
compression algorithms. The rest of this paper covers
the Fuego Core analysis in more detail.

We begin this paper with a more detailed problem
statement in Section 2. A brief overview of the main
features of the Xebu binary XML format that we used
is given in Section 3. The purpose of the section is
to introduce Xebu sufficiently well to allow follow-
ing the rest of this document, so no technical details
are provided. Section 4 considers the scenario on a
high level, looking at the features of Xebu to deter-
mine how to best use it in the scenario and in what
specific ways. Section 5 provides sample measure-
ments to determine the effectiveness of Xebu in the
problem domain. Section 6 lists some conclusions
on the feasibility based on the previous sections. Fi-
nally, Section 7 outlines some future work that could
be done on Xebu to make it a better fit for a variety of
applications, especially this one.

2 PROBLEM STATEMENT

XForms (W3C, 2006) is a useful language for spec-
ifying interactive XML-based applications for dis-
tributed computing. However, when considering
small mobile devices that could definitely benefit
from a standardized, truly user-interface-agnostic lan-
guage, the use of XML raises some questions. The
chief among these is XML’s verbosity, which causes
a large amount of network bandwidth to be used in
communication.

In an XForms application, there are two kinds of
documents. The form document follows the XForms
schema, and contains the data model and presentation
logic of the application. The data model also includes
the specification of what data the user is expected to

provide, and a document template for submitting the
data.

After a user has filled the requisite information on
the form, the application then needs to send the in-
formation to the server. This is done by filling the
user-provided information into the template provided
in the form, and sending the resulting XML document
over whatever protocol the application uses to com-
municate.

To mitigate the effect of XML’s verbosity, the ob-
vious solution is to apply some form of compression
to it before sending it over the network. Common ex-
isting protocols such as HTTP (Fielding et al., 1999)
already support indicating the use of generic compres-
sion like gzip (Deutsch, 1996). Since XML is text,
and highly-redundant text at that, generic compres-
sion algorithms usually perform acceptably well.

There are, however, two potential issues with
generic compression over XML when applied to
XForms applications. One is that compression takes
time, and when this gets added to the already signif-
icant time needed to process XML, the amount of
required processing may become prohibitive. The
larger problem is that the amount of data may in many
cases be quite small, so generic compression that is
based on redundancy in the data will not perform very
well.

Because of these, and other, reasons, there
have been several proposals for binary XML for-
mats (Pericas-Geertsen, 2003; W3C, 2003; W3C,
2005). Such a format is a replacement for XML that
is usually intended to be a more compact representa-
tion as well as more efficiently processable. Two re-
quirements for a general binary XML format are that
it be able to represent any XML and that it be able to
use available schema information (usually in the form
of XML Schema (W3C, 2001a; W3C, 2001b)) to im-
prove its compression ratio.

There are a large number of binary XML for-
mats already in use. Well-known general-purpose for-
mats include Fast Infoset (Sandoz et al., 2004) and
XBIS (Sosnoski, 2003), but these are capable of us-
ing only a limited amount of schema information,
i.e., they cannot take advantage of the structure in-
formation present in a schema. Better use of schema
is provided by formats such as ASN.1 (ITU, 2004),
BiM (Niedermeier et al., 2002), and Xenia (Werner
et al., 2006), but these have the drawback that all doc-
uments must be schema-valid and usually good re-
sults are achieved only when the schema describes ev-
erything very precisely. The EXI format currently be-
ing developed at the W3C (W3C, 2007) has the ability
to serialize any XML but also to use all the informa-
tion available in a schema to improve its compression

ICEIS 2008 - International Conference on Enterprise Information Systems

6



ratio. EXI is also capable of serializing any document
even when a schema is in use, but schema-valid doc-
uments will result in much smaller final documents.

3 XEBU OVERVIEW

Xebu (Kangasharju et al., 2005) is a binary XML for-
mat developed by one of the authors in the Fuego
Core research project1. It has been designed to be
usable on mobile phones as a part of a general XML-
based middleware system. It consists of a basic for-
mat applicable to any XML and a few techniques
that decrease document size further when a schema is
available. The main reason why Xebu is attractive for
this research is that it has a publicly-available, Open
Source implementation2 written for mobile phones
that support the Java Mobile Information Device Pro-
file (MIDP) 1.0, which includes most Java-enabled
phones. This eliminates the effort needed for imple-
menting a format processor.

The basic Xebu format, like Fast Infoset and
XBIS, is based on tokenization, i.e., replacement of
repeatedly-occurring pieces of content by small bi-
nary tokens. This is similar to generic compression
methods, but in Xebu this tokenization happens at
the XML level. The only candidates for tokenization
are complete XML namespace URIs, XML names,
attribute values, etc. By concentrating on the XML
level, Xebu’s speed is much faster than that of a byte-
oriented generic compression algorithm.

In principle, Xebu has three different schema-
based techniques that are each individually applica-
ble:
1. Pre-tokenization establishes a set of token map-

pings beforehand based on the names and poten-
tial values that appear in a schema.

2. Typed content encoding uses a binary encoding
for typed data values, such as integers, instead of
encoding everything as strings like in XML.

3. Omission automata process XML event streams
by leaving out completely events that are de-
ducible from context, e.g., when the schema spec-
ifies a sequence of elements, the start tags of
the elements are deducible from the previous el-
ement’s end tag and can be omitted.

In the current implementation, typed content encod-
ing is based on an extended XML API and the pres-
ence of xs:type attributes instead of determining the
proper data type from the schema.

1http://www.hiit.fi/fi/fc/
2http://hoslab.cs.helsinki.fi/homepages/

xebu/

The omission automaton technique, as it is de-
fined, has one nice benefit. Namely, when the au-
tomata encounter an event that they do not recognize,
it gets passed unchanged through the automata. This
permits extending the schema by, e.g., adding new el-
ements at certain places without hurting the compres-
sion ratio of the rest of the document. Also, deletions
are possible, but with the current system the rest of
the document will then potentially not benefit from
the schema use.

However, the omission automata are not usefully
applicable to some cases. They perform best for lin-
ear schemas, i.e., where elements follow each other in
a predetermined sequence. In case of alternatives, i.e.,
where there are even two choices for the next event,
they do not provide any additional compression due to
the either-or nature of event omission. This is in con-
trast with techniques that have the choices built into
the processing and have an indicator of which choice
to take (Werner et al., 2006; W3C, 2007).

A specific, and potentially unexpected, instance of
this issue is mixed content, since there each position
has the option of containing either text or an element,
so the omission automata do not handle mixed con-
tent very well. This mixed content also extends to
the whitespace often used to indent XML document
for easier readability and editability. This choice re-
flects Xebu’s primary application area, since Xebu-
using applications typically write XML through an
API, where putting in additional whitespace is nor-
mally not expected.

4 INITIAL ASSESSMENT

In XForms applications, two kinds of XML data are
being sent over the network. The client receives the
form in a document that includes both the form data
model and the form presentation logic. The data
model also contains a document template for submit-
ting the data. After filling in the information in the
template, the client submits it to the server. This latter
process can happen multiple times for the same form.

Looking at the server-to-client sending of the
form, real-world applications usually require rela-
tively large forms to capture the necessary presenta-
tion logic. The resulting documents are typically in
the 10–50 kB size range, for which gzip probably per-
forms quite well, and a binary format might not pro-
vide much additional compaction.

Furthermore, application of schema-based tech-
niques to this document is not straightforward. The
XForms schema is very free-form, allowing many dif-
ferent elements at each place. Therefore the omission

USING BIT-EFFICIENT XML TO OPTIMIZE DATA TRANSFER OF XFORMS-BASED MOBILE SERVICES

7



automata of Xebu would probably not provide much
benefit in this case.

The situation is different for the submitted data.
In this case the document is typically much smaller
than in the other case, in the 1–10 kB size range, and
therefore gzip does not achieve as high a compres-
sion ratio. But what is better, the schema in this case
is often very linear, as the template provided in the
form will have the elements in a specific order, which
is then used when sending the filled-in form as well.
Therefore the omission automata of Xebu should be
well suited for this case.

There still remain the questions of how to best ap-
ply Xebu in the given situation. For one, there are
several options for how to construct the omission au-
tomata and pre-tokenization tables from the schema.
The current Xebu implementation can either create a
description of both in a reasonably simple text format,
or it can create Java classes that directly implement
the tables and automata in a form understood by the
Xebu implementation. Second, there is the choice of
constructing these on the server side and transmitting
to the client or having the client construct them.

In the specific application scenario, having the
client construct the tables and automata from a
schema seems like the less reasonable option. The
client is not going to use the schema for anything
other than these Xebu techniques, so having the
schema available at the client seems like a waste. Fur-
thermore, doing the generation on the client side just
uses the client’s resources. Finally, the option of hav-
ing the server generate the tables and automata for
both sides ensures that the client and server are inter-
operable, as there is no need to specify precisely the
generation process.

There are drawbacks to this approach, though.
The first one is that, in essence, it is creating a new
schema language that would need to be supported by
all implementations of Xebu. This might not be a
large hurdle if Xebu is treated as an essentially pro-
prietary format that is specified precisely by its imple-
mentation. The second concern is the size of the trans-
mitted descriptions compared to the schema. While in
most cases encountered so far the generated files are
approximately the same size as the schemas, it could
be possible that some schemas would generate much
larger automata (Section 7 outlines ways to eliminate
this even as a potential issue). However, for a simple
linear schema this should not be a concern.

The current implementation of Xebu supports
both the generation of individual Java classes for each
schema as well as generic implementations of both
the tokenization tables and omission automata. These
generic implementations read a simple text-based for-

mat file that gives the contents of the tables and the
transitions of both automata.

The choice between these approaches is probably
dictated by the environment. The client will reside
on a mobile phone, and MIDP permits loading only
the system classes and classes contained in the ap-
plication’s suite. Therefore, when generating classes,
it would not be possible to dynamically include new
recognized schemas at runtime, but rather all used
schemas would have to be known at the build time
of the application. As XForms-based applications are
often generic, instead of being specific to a particular
form, it seems therefore best to adopt the use of the
generic tables and automata.

Acquiring the schema to use in generation is an-
other question. The algorithm that is used in gener-
ating the omission automata is mostly generic, but
currently implemented only for RELAX NG (OASIS,
2001). For this initial assessment, the automata gener-
ation was also ported to understand XML Schema, to
the extent required to process the sample documents3.
This latter work should be useful, as XForms already
supports XML Schema, and when no schema is spec-
ified, it should be possible to generate a schema from
the template in the form. This generation would seem
to be preferable to the alternative of implementing
the automata generation algorithm specifically for the
XForms language.

When using XML with schemas in the real world,
it often occurs that the documents provided are not
actually valid according to the schema. As noted,
Xebu’s omission automata provide some resilience
against invalid documents (or, equivalently, schema
changes), but the precise limits of this resilience are
not known at present. Some cases are straightforward
to observe, e.g., adding an element inside a sequence
of elements is supported, and deleting a mandatory
element is often not supported well.

It is not expected that the automata would be fully
resilient to changes. However, what the serialization
side automaton should be able to do is to determine in
all cases whether the serialization succeeded or not.
Here success is defined so that the parser side automa-
ton will produce an equivalent XML document to the
one that was transmitted. The current implementa-
tion can check that the automata have properly round-
tripped back to the start state at document end, but
this check might not be sufficient. Further evaluation
with real documents that are schema-invalid would be
needed.

3Note that this already includes a substantial amount of
what is used in practice.

ICEIS 2008 - International Conference on Enterprise Information Systems

8



5 SAMPLE MEASUREMENTS

To evaluate the feasibility of using Xebu instead of
XML we conducted a few simple measurements on a
small set of real-world XForms data. According to the
analysis of Section 4 this measurement only included
the client-submitted data files and not the more com-
plex server-provided forms. A total of three different
files were used, called CRM_basic, CRM_visit, and
road.

The main comparison point in these measure-
ments should be against gzipped XML, as that has
been deemed acceptable in the specific use cases. It is
also assumed that schema information is present, so
Xebu’s schema-based techniques can be used. Com-
parisons should be made with both plain and gzipped
Xebu, to determine whether Xebu’s schema-based
techniques are sufficient to eliminate the need for gzip
completely.

The schemas for the files were hand-written based
on the XForms data models for the applications. For
further use, a system for automatically generating a
schema from an XForms data model would need to
be built, which does not appear infeasible, as the hand
translation was sufficiently mechanical to automate.
The provided example files have been verified to val-
idate against the hand-written schemas.

The most interesting measurement will be the size
of the resulting documents, as this is often the most
significant concern in mobile messaging. Another in-
teresting measurement will be the size of the com-
piled class files, as current mobile phones can have
severe limitations on total application size.

The measurement application would first read in
the XML file and convert it to an abstract represen-
tation. This representation is then serialized as Xebu
into a file, the size of which is measured. Finally,
the application parses the written file as Xebu into the
abstract representation and verifies that it produced
the same, or equivalent, result as parsing the original
XML.

The sizes of the compiled class files are shown in
Table 1. The files were obfuscated with Proguard4 as
would be done in real deployment. The table shows
the size of the popular kXML5 parser and serializer,
the size of the Xebu parser and serializer, and finally
the size of the generic code for using the text-based
tokenization table and automata file, marked COA in
the table. The size of an XForms implementation is
measured in hundreds of kilobytes, so the overhead of
including Xebu is not prohibitive on devices capable
of supporting XForms.

4http://proguard.sourceforge.net/
5http://kxml.org/

Table 1: Compiled class file sizes in bytes for kXML and
Xebu.

Code kXML Xebu COA
Size 18056 22883 11990

Document sizes for the three example documents
are shown in Figure 1. Sizes are shown for the origi-
nal XML, gzipped XML, and for two kinds of Xebu:
XebuT uses only the pre-tokenization tables and Xe-
buS also uses the omission automata. Both Xebu
kinds are given in plain and gzipped versions. To get
these numbers, extraneous whitespace was removed
from the XML files, as it is only used for indenta-
tion, and the current omission automata are not built
to handle it.

The results of this experiment have one notewor-
thy point, namely that Xebu does much better on the
CRM files than on the road file. The reason for this is
that, while all of the files are approximately the same
size, the road file consists mostly of repetitions of a
certain element, which helps gzip in compressing the
file. This reason is also evident when we note that
gzip on top of Xebu does much better on the road file
as well.

We also note that with schema optimizations
even uncompressed Xebu is competitive with gzipped
XML. This indicates that it might not be necessary
to include compression support in the application to
get the needed size reduction. Since a compression
library is not included by default in current mobile
phones, leaving it out could have a beneficial effect
on application footprint, even though the footprint of
Xebu is larger than that of kXML.

6 CONCLUSIONS

Based on the experiments above, we can conclude
that replacing gzipped XML with gzipped bit-efficient
XML yields significant benefits in the examined do-
mains. In particular, even if the COA implementa-
tion is considered too fragile, the pre-tokenizations
alone seem to provide improved compactness com-
pared with gzip. We note that the Xebu implementa-
tion with the COA is approximately twice the size of
kXML, so the code size poses little hindrance except
in the most resource-constrained of environments.
More complex bit-efficient XML formats, such as the
upcoming EXI standard (W3C, 2007), may yield even
more savings. On the other hand, in the resource-
constrained mobile environment, simplicity of format
and implementation are also important.

Specifically in the XForms case, we recommend

USING BIT-EFFICIENT XML TO OPTIMIZE DATA TRANSFER OF XFORMS-BASED MOBILE SERVICES

9



3412
X

M
L

1112

X
M

L
.g

z

711
X

eb
uT

512

X
eb

uT
.g

z
422

X
eb

uS

337

X
eb

uS
.g

z

0

1000

2000

3000

4000

5000

CRM basic

Si
ze

(B
)

4512

X
M

L

1181

X
M

L
.g

z

656

X
eb

uT

493

X
eb

uT
.g

z

318

X
eb

uS

283

X
eb

uS
.g

z

CRM visit

4060

X
M

L

721

X
M

L
.g

z

1288

X
eb

uT

599

X
eb

uT
.g

z

716

X
eb

uS

459

X
eb

uS
.g

z

road

Figure 1: Document sizes in bytes for gzipped XML and Xebu.

Figure 2: Recommended compression use in XForms appli-
cations.

the approach shown in Figure 2. Namely, gzip should
be used for the actual form documents, since they are
sufficiently large for gzip to do well and the XForms
schema is complex so Xebu’s schema optimizations
have less effect. On the other hand, the situation is re-
versed for the actual data documents, which are small
and have rigid schemas, so Xebu, or another equally
efficient binary format, should be used there.

7 FUTURE WORK

The design and implementation of Xebu has been per-
formed in the context of a research project, and its
main purpose has been to test a variety of ideas re-
lated to binary XML. Therefore the implementation
choices that have been made may not be the best pos-

sible for wide application, and we have some con-
cerns that would be useful to address to make Xebu
applicable more widely.

The implementation of typed content fits well into
Xebu’s initial application area, and to take proper ad-
vantage of type support in the format does require
an extended API of some form. However, requir-
ing xs:type attributes is not a very good solution,
as they are not often present in real data apart from
some SOAP applications, and they require additional
processing. A better solution could be to build a filter
based on the schema that would decode bytes from the
input directly into objects based on the schema state.

The omission automata are currently specified as
normal finite automata. This means that they, e.g.,
cannot support recursive content in elements. Another
problem caused by this is that, for each kind of el-
ement, the part of the automata constructed for that
element needs to be duplicated everywhere that the
element could appear. This does not cause any prob-
lems for so-called “Russian doll” schemas (van der
Vlist, 2001), but with a flat schema this could lead
to a blowup in the size of the automaton compared
to the schema (theoretically even exponential, but this
should not be a concern in the XForms case). This
could be fixed by splitting each element into its own
automaton and extending the automata to use an aux-
iliary stack to keep track of the automata correspond-
ing to the parent elements and the states they are in.

To consider the transmission format for the au-
tomata and tokenization tables, the current text-based
format is designed for readability to aid in debugging
the automata. In particular, there is much repetition
and readable names. It would be straightforward to
design a much more compact format by tokenizing
all information and packing them tightly into bytes.
However, it is not yet clear what kinds of size savings

ICEIS 2008 - International Conference on Enterprise Information Systems

10



such a format would have over gzipping the current
text-based format. Of the files used here, the sizes of
such gzipped files were between 2 and 4 kilobytes.

However, all of these considerations on extend-
ing Xebu need to be contrasted with how work at
the W3C on a standard binary XML format is pro-
gressing (W3C, 2007). Assuming that this process
manages to produce something stable soon, it might
be better to invest in implementing the standard on
mobile phones instead of developing what is essen-
tially a proprietary format. Xebu does have the ad-
vantages, though, that an implementation already ex-
ists, its properties are mostly well-understood, and the
Xebu format is much simpler than the current EXI
draft format.

REFERENCES

Deutsch, L. P. (1996). RFC 1952: GZIP File Format Speci-
fication Version 4.3. Internet Engineering Task Force.

Fielding, R., Gettys, J., Mogul, J., Nielsen, H. F., Masin-
ter, L., Leach, P., and Berners-Lee, T. (1999). RFC
2616: Hypertext Transfer Protocol — HTTP/1.1. In-
ternet Engineering Task Force.

ITU (2004). Mapping W3C XML Schema Definitions
into ASN.1. International Telecommunication Union,
Telecommunication Standardization Sector, Geneva,
Switzerland. ITU-T Rec. X.694.

Kangasharju, J., Tarkoma, S., and Lindholm, T. (2005).
Xebu: A binary format with schema-based optimiza-
tions for XML data. In Ngu, A. H. H., Kitsuregawa,
M., Neuhold, E., Chung, J.-Y., and Sheng, Q. Z., ed-
itors, The 6th International Conference on Web Infor-
mation Systems Engineering, volume 3806 of Lecture
Notes in Computer Science, pages 528–535, Heidel-
berg, Germany. Springer-Verlag.

Karhinen, A., Koskimies, O., and Nurminen, J. K. (2007).
Experiences in applying a mobile service platform
across different business domains. In The 4th Inter-
national Workshop on Ubiquitous Computing, pages
33–42.

Niedermeier, U., Heuer, J., Hutter, A., Stechele, W., and
Kaup, A. (2002). An MPEG-7 tool for compression
and streaming of XML data. In IEEE International
Conference on Multimedia and Expo, pages 521–524.

OASIS (2001). RELAX NG Specification. Organization
for the Advancement of Structured Information Stan-
dards, Billerica, Massachusetts, USA.

Pericas-Geertsen, S. (2003). Binary interchange of XML
Infosets. In XML Conference and Exposition.

Sandoz, P., Triglia, A., and Pericas-Geertsen, S. (2004).
Fast Infoset. On Sun Developer Network.

Sosnoski, D. M. (2003). XBIS XML Infoset encoding. In
(W3C, 2003).

Traudt, E. and Konary, A. (2005). 2005 software as a ser-
vice taxonomy and research guide. Research report,
IDC.

van der Vlist, E. (2001). Using W3C XML schema. On
XML.com.

W3C (2001a). XML Schema Part 1: Structures. World Wide
Web Consortium, Cambridge, Massachusetts, USA.
W3C Recommendation.

W3C (2001b). XML Schema Part 2: Datatypes. World
Wide Web Consortium, Cambridge, Massachusetts,
USA. W3C Recommendation.

W3C (2003). W3C Workshop on Binary Interchange of
XML Information Item Sets. World Wide Web Con-
sortium.

W3C (2005). XML Binary Characterization. World Wide
Web Consortium, Cambridge, Massachusetts, USA.
W3C Note.

W3C (2006). XForms 1.0. World Wide Web Consortium,
Cambridge, Massachusetts, USA, 2nd edition. W3C
Recommendation.

W3C (2007). Efficient XML Interchange (EXI) Format
1.0. World Wide Web Consortium, Cambridge, Mas-
sachusetts, USA. W3C Working Draft.

Werner, C., Buschmann, C., Brandt, Y., and Fischer, S.
(2006). Compressing SOAP messages by using push-
down automata. In IEEE International Conference on
Web Services, pages 19–26, Piscataway, New Jersey,
USA. Institute of Electrical and Electronic Engineers.

USING BIT-EFFICIENT XML TO OPTIMIZE DATA TRANSFER OF XFORMS-BASED MOBILE SERVICES

11


