
MDA-BASED DEVELOPMENT OF DATA-DRIVEN WEB
APPLICATIONS

Attila Adamkó and Lajos Kollár
Department of Information Technology, Faculty of Informatics

University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary

Keywords: MDA, UML2, Web Information System, XForms, XML Schema.

Abstract: Due to the last decade’s technological changes, the more or less static Web sites has been evolving into Web-
based distributed applications in the past few years. Many competitive technologies have appeared but when
modeling a Web application, details of current technologies should be detached from the model of the appli-
cation domain since they are evolving very dinamically so they become obsolete relatively soon. We propose
an MDA-based method which can be used for designing and implementing Web Information Systems in the
above mentioned manner. Web applications are composed of several models (expressed in UML2): structural
model describes the underlying data structure, composition model defines an abstract page structure, while
navigational paths are modeled by navigational diagrams and use cases capture common user activities. By
the help of XML, XSLT and XForms, prototypes can be generated from these UML models rapidly.

1 INTRODUCTION

The evolution of Web technologies increased the
presence of the Web in our everyday life: starting
from personal home pages through corporate portals
and Web shops up to Web applications implement-
ing complex business processes. This diversity of
applications makes the selection of the appropriate
technology and platform more difficult, in particu-
lar, when these applications should collaborate each
other. The best practices tells us to keep the modeling
of the application domain and the technological de-
tails separated.

Performing early demonstrations is an important
factor during the communication with the customer.
The models should formulate the complete structural
description of the Web site, resulting in an incomplete
prototype which may be used for testing and demon-
strating purposes.

Following these guidelines, the approach pre-
sented in Section 2 helps in the development of small
and medium sized data-oriented Web applications us-
ing UML. Use cases, activity and class diagrams are
used to describe the behaviour and the structure of the
Web application.

1.1 Model Driven Architecture

OMG’s Model Driven Architecture (MDA) provides a
framework which allows applications to be described
in a platform-independent manner. In MDA, artifacts
are formal models describing a given aspect of the
system. MDA uses UML as a standard modeling lan-
guage in order to achieve a common understanding
among stakeholders.

In case of a technological change (or evolution),
a PIM is not subject to change as it contains the
platform-independent model of applications. All
what we need is to create a PSM in order to show
how platform-independent components manifest on
the new platform or technology. A PSM metamodel
should be defined (or refined) which can describe the
new platform in an abstract way to make the creation
of platform-specific models easier. Transformation
rules are also needed for mapping PIM metamodel el-
ements to PSM metamodel elements. Applying them
to an existing PIM will result PSMs for the new plat-
form. The final step in the development process is the
transformation of each PSM to code. Because a PSM
fits its technology rather closely this transformation
could be done relatively easy.

252
Adamkó A. and Kollár L. (2008).
MDA-BASED DEVELOPMENT OF DATA-DRIVEN WEB APPLICATIONS.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 252-255
DOI: 10.5220/0001522202520255
Copyright c© SciTePress



1.2 UML Profiles

The MDA approach requires a language which uses
formal definitions so the tools will be able to trans-
form these models automatically. OMG recommends
the use of UML to construct platform-independent
models. The power of UML in our case is the model-
ing of the structural aspects of a system. This is done
through the use of class diagrams which enables the
generation of PSMs with all structural features.

The semantics of UML models can be extended
by applying UML profiles by adding stereotypes and
tagged values which is a common way for buliding
UML models for particular domains. These profiles
are considered to reside in the metamodel layer al-
lowing to define UML “dialects” that can be used by
models in the model layer. This mechanism is useful
for both PIMs and PSMs.

For PIMs, a new profile should be defined to sup-
port a given design methodology. There are sev-
eral profiles for that purpose (Gómez and Cachero,
2003; Koch and Kraus, 2003; Conallen, 2000) but
they might not be appropriate for a different design
strategy (see Section 2).

Many popular UML Profiles for specific platforms
(e.g., UML Profile for EJB, UML Profile for CORBA,
and so on) also exist but due to the extensibility mech-
anism new ones may also be created. This is how new
platforms and technologies should be handled.

Therefore, UML Profiles might serve as a basis
for defining a PIM–PSM tranformation. This should
be defined using the concepts of the metamodels used
for describing PIM (source) and PSM (target).

2 DEVELOPMENT PROCESS

Several years ago, one of the authors of this article has
been envolved in a project which aim was to develop
a Web-based application for the Doctoral School of
Mathematics and Computer Science at the University
of Debrecen. The requirements against the system
were to keep track of students and teachers of the
Doctoral School, and manage data of doctoral pro-
grams and courses, as well. Nowadays, almost all of
the applied technologies are out-of-date but there are
several new requirements that have been arisen since
the system’s deployment. For that reason, this legacy
system has become difficult to maintain so we con-
sidered of applying a model-based solution to reduce
development time and maintenance costs.

The first step durig system design is the analysis
of requirements to gather and formalize user requests.
Using use cases and activity diagrams, we could de-

Figure 1: Phases of development.

termine the outline of the system and describe its fun-
damental functional aspects from the different users’
viewpoints.

The second step is the conceptual modeling of
data structure and access paths of the application.
This is achieved by UML2 class diagrams which are
applying our UML profile. At conceptual level, struc-
tural, composition, navigational and presentational
models are created. Several design methods (OO-
HDM (Schwabe and Rossi, 1998), WebML (Fra-
ternali, 1999), UWE (Koch and Kraus, 2003), Jim
Conallen’s WAE (Conallen, 2000), etc.) follow more
or less the same way.

After a platform-independent model has been de-
veloped, it is subject to a model transformation which
results in a platform-specific model which serves as
a starting point for code generation. Our method is
illustrated in Figure 1.

2.1 Models of the Design Phase

2.1.1 Structural Model

Main modeling elements of the structural model are
classes, associations and packages. For a common
Web application, use cases and activity diagrams are
the base of the conceptual design of the domain.

However, in case of data-centric applications
(which we consider), the structural model of the appli-
cation domain is typically much more complex than
any other models that have been mentioned previ-
ously. It is very important to create a class diagram
which is of a good quality since many other activities
(such as generating some primitive navigational ele-
ments like information access along associations) are
relying on it. This implies that some kind of quality
assurance for these models should be applied which
have not been considered by this time.

MDA-BASED DEVELOPMENT OF DATA-DRIVEN WEB APPLICATIONS

253



2.1.2 Composition Model

Composition model is intended to define a mapping
between concepts of the structural model and Web
pages. One should think of a page as an object of
the composition model which is associated with the
entities of the structural model. Hence, a page can ar-
bitrarily intermix information originating from multi-
ple entities, and moreover, it is possible to extend the
content with derived attributes or relationships.

An element (object) of the compositional model
should be considered as the content of a page which
should be rendered somehow (described by the pre-
sentational model) along with several navigational el-
ements (given using the navigational model). This ac-
tually provides a view over the structural model ele-
ments which is extremely useful when different user
groups are subject to access different page contents
since several views might be defined on the same
structural elements.

This model is similar to the one defined by
WebML (Ceri et al., 2002) but we use UML for de-
scribing composition model elements. Classes with
<<page>> stereotype represent the abstract informa-
tion content of a Web page. (Recall that we are
still not considering any presentational issues.) These
classes are in association with classes of the struc-
tural model. Such associations has the <<consists>>
stereotype.

After the structural model has been created, a
skeleton for the composition model is generated
which can further be used as a starting point for de-
scribing complex compositions. This idea reflects the
fact that in data-driven applications, the majority of
pages is close to be defined as a one-to-one mapping
to structural model elements. Retrieving a PhD Stu-
dent’s data or adding a new supervisor are examples
of such pages.

2.1.3 Navigational Model

The next stage in the development process is the nav-
igational design. The navigational model specifies
which elements of the composition model can be ac-
cessed from other parts of the application. In the nav-
igation model’s building process, the developer takes
crucial design decisions such as what navigation paths
are required to ensure the application’s functionality.
These decisions are based on the composition model,
use case diagrams and navigational requirements that
the application needs to satisfy.

The navigational diagram is strongly connected
to the composition one since it defines the naviga-
tional paths among compositional model elements,

Figure 2: Structural and navigational diagrams.

i.e., abstract page views of the application. In gen-
eral, new associations might be added for direct navi-
gation to avoid navigation paths of length greater than
one. However, there may be some classes in the struc-
tural model that are not subject to be a visiting target.
Therefore, they should be omitted from the naviga-
tional diagram. The navigation inside the application
mostly occurs along associations which are used to
describe the relation between pages. Typically, these
associations appear as either hyperlinks or menus in
the user interface.

Subsets of the structural and navigational dia-
grams of the Doctoral School are shown in Figure 2.
Since the navigational diagram supplements the com-
position model with some additional associations and
classes representing different access structures such
as menus, queries and indices, composition model is
omitted from the figure.

2.1.4 Presentational Model

Presentational aspects are not dealt in this paper. The
main goal of presentational modeling is to map the el-
ements of the composition model to some well-known
GUI primitives. This task can also be applied at a con-
ceptual level since it does not hold information about
concrete implementation. After the PIM–PSM trans-
formation, some of those primitives might be replaced
by others if the target platform does not support the
given one (e.g., tree view of some hierarchical data
might be replaced by a list with indented sublists).

WEBIST 2008 - International Conference on Web Information Systems and Technologies

254



2.2 PIM–PSM Transformations

For the transformation of the structural model we use
Hibernate which provides an implicit PSM (relational
model) so we does not deal with issues of this kind
of model transformation. Composition and naviga-
tional models are used to formalize page templates
along with presentational model. These templates are
used to generate concrete pages using W3C’s XForms
standard for handling user inputs. The PSMs are rep-
resented with XML documents which allow XSLT to
be used for the page generation from templates.

2.3 Code Generation

We use the Eclipse Modeling Framework to create
the conceptual models. In the deployed application,
all the communication is based on XML documents.
When a user interacts with the system by filling and
submitting forms, an XML document is created and
passed to the server side. However, user-supplied data
should be validated against the data model. Since
XML documents’ validation are based on any of
the well-known XML schema languages (e.g., DTD,
XML Schema, RelaxNG), a schema was needed. A
freely available Eclipse plug-in called hyperModel
(http://www.xmlmodeling.com/hypermodel) is able
to transform a UML2 class diagram into an XML
Schema, therefore we applied it in our process.

The generated XML Schema is one of the most
important part of our architecture since it is used as
the base of the generation of XForms pages. On the
other hand, it is applied for validating all the XML
documents which are used for intra-system commu-
nication, as well. XForms pages might be embedded
in more complex XHTML pages which conform to
the composition and navigational model defined at the
conceptual modeling phase.

For creating models, OMG’s XML Metadata In-
terchange (XMI) gives the possibility of a kind of
tool-independence. As XMI is being an industrial
standard for exchanging metadata of UML models in
XML format, it is supported by all the major model-
ing tools so—in a collaborative environment—teams
might use different tools. First of all, UML diagrams
should be saved in an XMI-compliant format. After-
wards, XMI should be imported to Eclipse and let
hyperModel do the transformation to XML Schema
(.xsd). XForms pages are generated directly from
the .xsd using an XSLT. The whole process is shown
in Figure 3.

Figure 3: Using UML and XML technologies to create pro-
totypes.

3 FUTURE WORK

The presented approach is applicable for rapid design
and development of data-driven Web applications us-
ing MDA. We merely focused on building rapid pro-
totypes based on XForms pages generated from an
XML Schema.

Obviously, the current state of our work could
only be a part of a more comprehensive WIS develop-
ment framework. Due to the lack of space, we could
only enumerate our future plans: include modeling
of personalization and presentation (Fraternali, 1999);
presentational aspects should cover current technolo-
gies like AJAX, OpenLaszlo, etc.; introducing the
concepts of page fragments (portlets). Later on, statis-
tical models should be applied to achieve higher qual-
ity. For the correct measurement we need to identify
operational profiles and applicable statistical models
to find the relevant factors and methods.

REFERENCES

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai,
S., and Matera, M. (2002). Designing Data-Intensive
Web Applications. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Conallen, J. (2000). Building Web applications with
UML. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Fraternali, P. (1999). Tools and approaches for developing
data-intensive web applications: a survey. ACM Com-
put. Surv., 31(3):227–263.

Gómez, J. and Cachero, C. (2003). OO-H method: extend-
ing UML to model web interfaces. pages 144–173.

Koch, N. and Kraus, A. (2003). Towards a common meta-
model for the development of web applications. Cueva
Lovelle, Juan Manuel (ed.) et al., Web engineering.
International conference, ICWE 2003, Oviedo, Spain,
July 14-18, 2003. Proceedings. Berlin: Springer. Lect.
Notes Comput. Sci. 2722, 497-506 (2003).

Schwabe, D. and Rossi, G. (1998). An object oriented
approach to web-based applications design. Theor.
Pract. Object Syst., 4(4):207–225.

MDA-BASED DEVELOPMENT OF DATA-DRIVEN WEB APPLICATIONS

255


