
A NEW APPROACH TO RECYCLE WEB CONTENTS
The DOM Tree as the Support for Building New Web Pages

Luis Álvarez Sabucedo and Luis Anido Rifón
Telematics Engineering Department, Universidade de Vigo, Spain

Keywords: Interoperability, web contents, DOM tree.

Abstract: After an initial period of populating the web with a large amount of resources; a new situation has to be
faced in the scope of the WWW: the over production of web contents. Currently, there is a lot of resources
available in the web and new approaches are scanned to improve some features. In particular, this paper tackles
the reusability of contents. The aim of this paper is an alternative method to provide a simple and effective
manner to reuse contents in order to create new web resources. This approach is based on the use of the DOM
tree that defines the web resource to build up new web pages. The presented method involves minor changes
on the server side and no change at all on the client side. Besides, this proposal can take advantage of resources
already developed using on-the-fly technologies.

1 INTRODUCTION

Over an initial period of time, in the mid 90s, a lot
of contents for the Internet were developed. In fact,
we were witnesses of an exponential growing of web
contents on a myriad of different web sites. There-
fore, the Internet community soon foresees the prob-
lem of the lacking of contents moving to the excess of
contents. In order to overcome that situation, during
these last years, a research trend in Web environments
is related to information retrieval, interoperability and
content reuse. Briefly, we can outline some of the
more outstanding: the use of metadata, the develop-
ment of data standards formats (e.g. RSS standard),
intelligent agents, crawlers, etc. All of them provide
suitable solutions that overcome limitations on the ex-
cessive amount of information and improve the cur-
rent situation where nearly no interoperability would
be possible if not measures were taken in the short
term.

As a consequence and to overcome the presented
scenario, we propose the development of a platform
that provides agent users with server side process-
ing support. Using this platform we will be able to
reuse contents in a standard way regardless of particu-
lar technologies. The final goal we are looking for is a
suitable way to compose contents in a single web page
from contents already available in other web sites and
resources already developed.

In the insofar developed technologies/initiatives,
we notice the existence of a gap of functionality not
yet fulfilled as this is not possible just by using server
side programming deliver this service. So, the main
goal for this project is to provide a suitable and simple
way to recover partially documents and therefore, be
able to compose new web contents in a collage fash-
ion. Our proposal will deal with those requirements: a
server-side simple support for partial data retrieval in
web environments, i.e., XML-like contents. In order
to achieve this goal we propose the use of URL (Uni-
versal Resource Locator)(Network Working Group,
2007) schemas with some upgrade to be able to ad-
dress a single certain node included in any document
available as web content. As web browsers, in gen-
eral, allow us to introduce any URL with nearly no
pattern filtering, the only needed upgrade is concern
the web server, which must be able to deal with this
enhanced URL schema.

As all web pages may be defined in terms of its
DOM (Document Object Model) tree(Mozilla, 2007),
we can re-make new web contents just by mixing
nodes from different web resources, see Figure 1. In
order to do this, we just need to be able to address
nodes in the DOM tree remotely from the web server
responsible for content providing. With this idea in
mind, when a user agent requests a web page from
a server, this server must collect nodes from those
servers where contents are actually stored and com-

284
Álvarez Sabucedo L. and Anido Rifón L. (2008).
A NEW APPROACH TO RECYCLE WEB CONTENTS - The DOM Tree as the Support for Building New Web Pages.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 284-289
DOI: 10.5220/0001519202840289
Copyright c© SciTePress

Figure 1: Merging DOM trees.

pose the final submission that must be provided in re-
sponse to the original request by the user agent. This
works properly as any web content can be rendered
from and to a DOM tree.

Thus, we can compose live the new page from
contents recollected all over the World Wide Web,
i.e., there is not intermediate steps, contents are gath-
ered in a full automatic fashion to make up new con-
tents.

It is important to bear in mind that the page is
made of several already existing nodes, no matter
where they come from. It is possible to include
contents created dynamically from any DBMS (Data
Base Management System) by using any technology,
static contents or what ever that can be accessed as a
DOM tree. As a consequence, by using just HTML
and no server side technologies to develop dynamic
contents, we are providing contents that may change
according its original sources.

The advantage from other technologies already
available, those are briefly described later on, is re-
lated to provide support with no need to update soft-
ware on the client side or contents themselves on the
server: just by upgrading web server functionalities
we can meet the requirements as we will show.

This paper, therefore, will present a simple solu-
tion to contribute in the general trend towards a more
accessible Internet with little cost. The idea for this
contribution lies on the selective recovery of informa-
tion from already existing web contents with no mod-
ification on legacy information systems.

The rest of this paper is organized as follows.
Firstly, we will introduce a key concept for the pro-
posal in this paper: DOM trees. Then, we will
present our proposal and all technical details will be
addressed. Later on, we will discuss details related to
the implementation of the proposal. Once the devel-

opment is completed, we will show the testing phase
by mean of some examples deployed for testing pro-
poses. Finally, some conclusions are included.

2 DOM TREE

This contribution takes place in the current Web envi-
ronment where a lot of on going solutions are being
carrying out to solve the presented problem. To be
able to manage ourselves in the context of the present
proposal, we must deal with a key concept: DOM.

The DOM tree is just a simple way to lay out con-
tents from a HTML page. This representation is con-
ceptual, so there are several ways to present it; nev-
ertheless, the most usual way to do it is by mean of
a tree-like form diagram, as already shown in Figure
1. Valid DOM trees always have a root node for the
document itself and pending nodes to render the full
page. This structure may be as complex as desired
and, obviously, it will get larger as contents get more
and more complex.

Once an agent has already downloaded a web
page, it can create automatically the corresponding
DOM tree. Likewise, the agent can get/update any
piece of the information by accessing the proper node.
In order to implement that functionality, there are al-
ready plenty of software libraries that make it easy to
parse it in order to look for information and change
values. To accomplish this particular issue about ac-
cessing and updating information from DOM tree in
the client side, we must take the DOM initiative from
W3C(W3C, 2007a) into account. According to the
W3C, this project is

a platform- and language-neutral interface that
will allow programs and scripts to dynami-
cally access and update the content, structure
and style of documents.

By using this project, it will be possible to filter data
on the client side by using a standard API for all client
agents. The main aim for this project is to support
transformation of contents on the client side by using
user agents, mainly, web browsers.

This solution will not fulfil our needs as far as the
point for this project is to express an API to access
information on the client side, but it does not allow to
compose contents as requested.

3 THE PROPOSAL

As previously stated, our solution will provide a
server side mechanism to recover contents from the

A NEW APPROACH TO RECYCLE WEB CONTENTS - The DOM Tree as the Support for Building New Web Pages

285

server and submit that information to the client. This
development must allow us to reuse contents already
developed and insert them into a new page without
client side processing. The solution proposed to the
present problem involves minor modifications on the
server processing and no client changes at all. As a
case of use we may refer, for instance, to any blog
where it is needed to introduce information from any
other web site with no modification on the latter as we
will not be able to perform such modifications to fulfil
our needs. This platform will allow users to pick up
a certain node from any web resource by addressing
the proper node in the DOM tree and inserting it on
its own DOM tree (see Figure 1). The result, as we
will show on the testing phase, is a new web resource,
a web page, where information collected from several
external web sites is available.

To achieve this goal we need to perform two ma-
jor, and almost unique, upgrades in current systems:

• Upgrade the requested URL format to express
nodes in a DOM tree.

• Insert a module on web server to collect just the
requested data.

So far, when an agent user requests a web re-
source, no matter if this is an HTML page, a flash
element or an image; it just sends an URL to ask for
the desired resource as it is known as a file in its own
filesystem. But we need to be able to express an el-
ement from the DOM tree in the requested resource,
of course, a HTML/XHTML or XML-based resource.
We may consider this new requested condition as a re-
finement of the previous situation.

At first sight, we could think of two already in
use solutions such as Xpath(W3C, 2007b) or the
use of notation similar to anchors in HTML, i.e.,
f ile.html#node1. We dismiss the first option due to
the high level on complexity that would introduce in
further development phases. The latter option is more
suitable due to its simplicity and meeting the required
conditions for this solution. The applied criterion is to
keep the system as simple as possible while it meets
the requested capabilities. We chose the following
format:

http://server.org/resource.xhtml//node1

By using this format, we mean that the de-
sired resource is just node1, an element in the file
resource.xhtml located in the server server.org. Main
reasons to choose this format are:

• This schema for URLs fits with the current speci-
fications provided in the RFC about URL.

• As far as we can determine the resource with no
possible misunderstanding, we are able to know

what is the real request from the user agent. We
can assure this as far as we completely detached
the file containing the node from the node itself
by the double ‘/’. As a result, there is not overlap
with any other possible request and no misunder-
standing is possible.

• Most of already working web clients are able to
manage this pattern to address contents with no
changes.

There is a remaining issue not solved yet. The
remaining problem is about the delivery of contents
themselves. Current web servers process each request
by performing the requested operation on the proper
file o files by mean of a HTTP connection. At this
point, we would like to outline that HTTP protocol
has nothing to do with contents themselves. This pro-
tocol is just responsible for the submission of con-
tents through data networks despite any other consid-
eration.

To properly deliver this solution, we must mod-
ify the performance of web server but not the HTTP
protocol itself that will remain providing exactly the
same functionalities. Instead of finding the requested
file and submitting it, our web server must deal with
an additional problem: parsing the file and gathering
the requested information. This server must get the
file and process it until it just gets the desired piece of
information, the desired node. The implementation
of this behaviour does not require a large amount of
resources. By using already developed tools we can
find the proper node and submit it in a quite simple
way, as described in the next section.

4 SOME NOTES ON
DEVELOPMENT

Insofar, we have presented the ideas required to im-
plement this system. The only software implemen-
tation required is an enhancement on the web server.
In this way, the client software, mainly browsers, will
need no upgrade to be able to use this additional fea-
ture.

In order to test the proposed schema, we decide to
implement this mechanism by modifying an already
working server. So the first decision we had to face
was the election of the right web server to work with.
The final selected web server was Tornado(Neil Con-
way, 2007). The main reasons for this selection are:

• This software is provided under GPL(Free Soft-
ware Foundation, Inc., 2007) license, so we are
allowed to modify source code to fulfil our needs.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

286

Figure 2: Server processing requests.

• The software platform where this project is being
developed, actually is an ongoing project, is Java.
So we can get advantage of an OOP (Object Ori-
ented Programming) code where a lot of resources
are available to work with little effort for integra-
tion in our project.

• The project has the right state of maturity, i.e., it
is big enough to provide functional result but not
huge enough to introduce too much work on mod-
ifying the source code for the new requested capa-
bilities.

Independently of the selected web server, the
needed changes in the work flow diagram of the web
server (see Figure 2) are:

• Deal with the requested URL to discover the real
requested information and to improve the man-
agement of error message with regard to the ex-
istence of the requested resources.

• Filter the response to the client in order to send
just the proper piece of information.

To fulfil the functionality from the first point, we
just locate the proper piece of code and filter the final
part of the URL to properly search for the resource
requested.

p r i v a t e F i l e t r a n s l a t e U R I (S t r i n g u r i)
throws HTTPException

{ { . . .
/∗ We need t o p a r s e t h e incoming

r e q u e s t t o g e t t h e d e s i r e d node ∗ /

S t r i n g re lURI =
u r i . s u b s t r i n g (u r i . indexOf (’ / / ’ , 7)) ;

/ / G e t t i n g t h e r e l a t i v e URI
S t r i n g r e q u e s t e d N o d e =
re lURI . s u b s t r i n g

(re lURI . l a s t I n d e x O f (’ : ’) + 1) ;
/ / G e t t i n g t h e r e q u e s t e d node

. . . } . .
/∗ When t h e URL i s p r o p e r l y l o c a t e d ,
we can check i f t h e r e q u e s t e d f i l e
a c t u a l l y e x i s t s ∗ /

i f (r e q u e s t F i l e . e x i s t s () == f a l s e)
throw new

HTTPException (HTTP .NOT_FOUND) ;
. .

An interesting point in this situation is related to
the error message in case of no resource available. We
may make a distinction between two different cases.
We can deal with the situation where no resource is
available because there is no the requested file and
submit, therefore, the 404 error message. But also, it
is possible to find the file but we may not be able to
send any piece of information due to the inexistence
of the requested node or even due to the improper
composition of the file as they may be not XHTML
or HTML compliant. We decided to use the same er-
ror message, as far as we are dealing with a partial
document as if it was a full document. Nevertheless,
other options are also possible.

There is only an issue left to implement this solu-
tion: parse the file and recover the right node. In our
case, a Java project, this may be solved by using any
of the existing libraries for DOM processing. In our
case, we decide to use de library jaxen(The Werken
Company, 2007). Obviously, this improvement is the
previous step to the final submission of the informa-
tion to the client agent. In our case, the resultant piece
of code is as follows:

p u b l i c s t a t i c Node G e t C o n t e n t
(S t r i n g reques t edNode , O b j e c t doc)

{ Node node = n u l l ;
t r y {
/∗ We d e c l a r e an o b j e c t from c l a s s

DOMXPath t o g e t t h e d e s i r e d node ∗ /
XPath x p a t h = new

DOMXPath (r e q u e s t e d N o d e) ;

/∗We g e t a l i s t w i t h a l l nodes w i t h t h e
pr op er name ∗ /

L i s t v a l u e = x p a t h . s e l e c t N o d e s (doc) ;

/∗ In case o f more than one node , we
s u b m i t j u s t t h e f i r s t one I t would be
p o s s i b l e t o send a l l o f them ∗ /

I t e r a t o r r e s u l t I t e r = v a l u e . i t e r a t o r () ;
i f (r e s u l t I t e r . hasNext ()) {
node = (Node) r e s u l t I t e r . n e x t () ; }

}
/∗ D e f a u l t e x c e p t i o n h a n d l i n g ∗ /

catch (X P a t h S y n t a x E x c e p t i o n e) {
throw new

HTTPException (HTTP .NOT_FOUND) ; }
catch (J a x e n E x c e p t i o n e) {

throw new
HTTPException (HTTP .NOT_FOUND) ; }

re turn node ;
}

A NEW APPROACH TO RECYCLE WEB CONTENTS - The DOM Tree as the Support for Building New Web Pages

287

When the information is already located, we only
need to serialize it and submit it through a TCP
socket. With quite little additional upgrade on this
code and the one responsible for data serialization,
we could provide more options to recover different
parts of the document. Nevertheless, no more fea-
tures will be developed so far in order to get feedback
from users to improve further developments. So far,
just support for recovering a certain node in the re-
quested document is provided. As this project gets
support and on-line experience provides feedback, we
will develop support for more advanced queries.

5 AN EXAMPLE

In order to test the already developed project, we de-
ployed several experiences. As our server is so far the
only one with these capabilities, the first step in this
testing process was to clone some web pages from the
Internet to our own server. The first obvious test is to
request for some particular element from the DOM
tree. This test was successfully accomplished with no
special incidences.

The first serious attempt to test our system consists
of a simple web page, as explained in the introduction,
where contents were address using our new schema;
we, therefore, developed a web page made, mainly, of
frames.

By using this concept we can compose any web
content as they can be accessed by mean of its DOM
tree. It is important to notice that the DOM tree cor-
responding to this source code, at first glance, may
seem to be quite simple, but we may be dealing with
a huge structure.

One of the main constrains for web design using
this technique is due to limitations to use of exter-
nal addresses. To access external resources, the only
suitable tag included in the HTML 4.01 specification
is the tag f rame so we are forced to use it. In this
situation, it would be very suitable to be able to use
other tags, such as div to reference external resources.
As this tag provides a certain position to place certain
contents and it is widely supported for laying out with
CSS, it would quite useful to be able to use it as con-
tainer for external resources.

But the most interesting test was about its func-
tion as a real interoperability booster. As previously
stated, the aim in this project is to allow the content in-
terchange in the World Wide Web. The expected way
this tool is going to be use is to include contents from
several web resources in just one single new web re-
source, mainly, a web page. To achieve this goal, we
designed a web page with contents both, from its own

and externally located. In the insofar web pages, it is
a quite usual practice to include as contents for frames
someone else’s full web page; an application for this
project is to allow web designer to include just a sin-
gle piece of an existing web page in their own web
sites.

Several concerns may arise on content presenta-
tion. DOM tree nodes do not just include informa-
tion about data but also about presentation so prob-
lems may arise if no measures are taken. During the
design of the test page some resources had to be de-
voted to fix presentation bugs. These problems may
get worse when dealing with contents poorly format-
ted or even wrong. So we must bear in mind problems
on placing external HTML code on new pages.

The key concept to achieve a higher level of con-
tent reusability involves merging different DOM trees
from several sources into a new single tree where all
the information is stored. Besides, these transforma-
tions are not in the scope of the final client, which
just will ask for a simple web resource, neither in the
scope of the HTML designer that just ask for con-
tents in a simple way regardless of where they are al-
located. The only needed tool to build up contents is
the use of frames as previously presented.

It is important to notice that this goal could be
accomplished just by using other already developed
technologies, but by using this technique we can pro-
vide these contents with no need of dynamic contents
or client side processing.

6 CONCLUSIONS

The main idea of this paper is to propose an alter-
native way to reuse contents in a cost-effective way.
As the only needed changes are on to the software in-
stalled in web serves, not in the information itself, and
no changes in client side, this technique can spread
quickly with nearly no efforts in the short term and
support legacy information systems. This proposal
deals with is related to partial recover, server side pro-
cessing of static contents. In this particular situation
we could not find any suitable solution in terms of
simplicity with short time-to-market.

The main goal in our proposal is to provide web
developers with the chance to reuse contents from al-
ready existing web contents. This is possible with
no changes on the contents themselves. To be able
to perform this operation we mix different DOM tree
in a single new tree. The undertaken steps to fulfill
our proposal are related with information recovery by
sending pieces of files on HTTP channels. It, there-
fore, is possible to build up contents just by using

WEBIST 2008 - International Conference on Web Information Systems and Technologies

288

HTML code depending on the external contents refer-
enced in our source code. Web designers do not need
to take care of availability of those resources or even
if there is installed on that server an engine for dy-
namic contents. Thus, it is possible to reuse partially
contents with no need to program anything neither on
the server where contents are stored nor on the client
side. The only requirement is use of the URL where
the desired content is located. This idea makes possi-
ble to reuse contents from legacy information systems
with no extra efforts.

Before hand, the main goal for this initiative was
to upgrade web server capabilities and provide a new
way to increase interoperability among web contents.
This goal was completely achieved: web contents can
be shared in a new way rendering a higher integration
level. Nevertheless some concerns must be taken into
account. A part from legal issues about contents un-
der copyright, some problems about design may arise
if contents are provided under poor HTML coding.

ACKNOWLEDGEMENTS

We want to thank “Ministerio de Educacción y Cien-
cia” and “Xunta de Galicia” for their partial support to
this work under grants TIN2007-68125-CO02-02 and
"Diseño y desarrollo de un marco semántico para el
modelado de servicios en la administración pública.
Aplicación a la provisión de servicios frente al ciu-
dadano.” (PGIDIT06PXIB322285PR).

REFERENCES

Free Software Foundation, Inc. (2007). Gnu
general public license. Web available.
http://www.fsf.org/licenses/gpl.htm

Mozilla (2007). Gecko dom reference. Web available.
http://www.mozilla.org/docs/dom/domref/.

Neil Conway (2007). Tornado http server. Web available.
http://tornado.sourceforge.net/

Network Working Group (2007). Rfc 1738 - uni-
form resource locators (url). Web available.
http://www.faqs.org/rfcs/rfc1738.html.

The Werken Company (2007). jaxen: universal java xpath
engine. Web available. http://jaxen.codehaus.org/.

W3C (2007a). Document object model. Web available.
http://www.w3.org/DOM/.

W3C (2007b). Xml path language. Web available.
http://www.w3.org/TR/xpath.

A NEW APPROACH TO RECYCLE WEB CONTENTS - The DOM Tree as the Support for Building New Web Pages

289

