Distributed Mission and Contingency Management for
the DARPA Urban Challenge

Tichakorn Wongpiromsarn and Richard M. Murray

Division of Engineering and Applied Science
California Institute of Technology, Pasadena, CA, U.S.A.

Abstract. We present an approach that allows mission and contingency man-
agement to be achieved in a distributed and dynamic manner without any central
control over multiple software modules. This approach comprises two key el-
ements: a mission management subsystem and a planning subsystem based on
a Canonical Software Architecture (CSA). The mission management subsystem
works in conjunction with the planning subsystem to dynamically replan in reac-
tion to contingencies. The CSA provides for consistency of the states of all the
software modules in the planning subsystem. System faults are identified and re-
planning strategies are performed distributedly in the planning and the mission
management subsystems through the CSA. The approach has been implemented
and tested on Alice, an autonomous vehicle developed by the California Institute
of Technology for the 2007 DARPA Urban Challenge.

1 Introduction

One of the major challenges in urban autonomous driving is the ability of the system to
reason about complex, uncertain, spatio-temporal environments and to make decisions
that enable autonomous missions to be accomplished safely and efficiently, with reac-
tive replanning in case of contingencies. Due to the complexity of the system and a wide
range of environments in which the system must be able to operate, an unpredictable
performance degradation of the system can quickly cause critical system failure. In a
distributed system such as Alice, an autonomous vehicle developed by the California
Institute of Technology for the 2007 DARPA Urban Challenge, performance degra-
dation of the system may result from changes in the environment, hardware failures,
inconsistencies in the states of different software modules, and faulty behaviors of a
software module. To ensure safety and mission success, there is a need for the system
to be able to properly detect and respond to these unexpected events which affect the
vehicle’s operational capabilities.

Mission and contingency management is often achieved using a centralized ap-
proach where a central module communicates with nearly every software module in
the system and directs each module sequentially through its various modes in order to
recover from failures. Examples of such a central module are the behavior manage-
ment module of the TerraMax Autonomous Vehicle [1] and the supervisory controller
(SuperCon) module of Alice previously developed for the 2005 DARPA Grand Chal-
lenge [2]. A drawback of this approach is that the central module usually has so much

Wongpiromsarn T. and M. Murray R. (2008).

Distributed Mission and Contingency Management for the DARPA Urban Challenge.

In Proceedings of the 2nd International Workshop on Intelligent Vehicle Control Systems, pages 19-29
Copyright © SciTePress

functionality and responsibility that it easily becomesnamageable and error prone as
the system gets more complicated. In fact, Team Calteciigdan the 2005 DARPA
Grand Challenge was mainly due to an inability of the Supar@odule to reason and
respond properly to certain combinations of faults in th&ey [2]. This resulted from
the difficulty in verifying this module due to its complexity

The complexity and dynamic nature of the urban driving peabmake centralized
mission and contingency management impractical. A missianagement subsystem
and a planning subsystem based on a Canonical Softwaretéctime (CSA) [3] have
therefore been developed to allow mission and contingeranagement to be achieved
in a distributed manner. The mission management subsystemprésing the mission
planner, the health monitor and the process control modubelss in conjunction with
the planning subsystem (the trajectory planner, the fadloand the drive control) to
dynamically replan in reaction to contingencies. As shawhigure 1, the health mon-
itor module actively monitors and estimates the health effthrdware and software
components to dynamically assess the vehicle’s operaiapabilities throughout the
course of mission. It communicates directly with the misgdanner module which re-
plans the mission goals based on the current vehicle’s dajeab The process control
module uses the health estimates of individual softwareutesdo automatically restart
a software module that quits unexpectedly and a softwareutedHat identifies itself
as unhealthy. An unhealthy hardware component is powdedyay the software that
communicates with it. The CSA provides for consistency efstates of all the software
modules in the planning subsystem. System faults are filhtind replanning strate-
gies are performed distributedly in the planning and thesmismanagement subsys-
tems through the CSA directive/response mechanism. Tegétbese mechanisms make
the system capable of exhibiting a fail-operational/tafe and intelligent responses to
a number different types of failures in the system.

Related work includes a holistic contingency managemeinelogy [4], a Mis-
sion Effectiveness and Safety Assessment (MENSA) teclgydl], real-time fault
detection and situational awareness [6], the high levetrotiar of the Intelligent Off-
Road Navigator [7] and a model-based approach [8]. Thes@mapbpes rely on having
a subsystem, similar to our mission management subsysggrabt= of monitoring and
assessing unexpected, mission-related events that #ifecverall system operation
and mission success. This subsystem may also be capablggefsing a new strategy
or operation mode for the planning subsystem or reconfiguhia system in response
to these events. The CSA, however, is intended to facilitatse responsibilities of
the mission management subsystem. By exploiting the hikieal structure and in-
tegrating the directive/response mechanism into the plgnsubsystem, the mission
management subsystem can assess most of the missiorttmletgts by only reason-
ing at the level of failure or completion of its directivesthime health of the hardware
and software components.

The contributions of this paper are: (1) a framework for gméging mission and
contingency management into a planning system so that beachieved distributedly
and dynamically; (2) a complete implementation on an autungs vehicle system ca-
pable of operating in a complex and dynamic environment; @)dn evaluation of
the approach from extensive testing and some insight itoduresearch directions.

——» Directivelresponse
- = = > State knowledge Route Network
======» Process health Definition File

Mission Management

Subsystem lwss-on Data File

R

esponse
Sensors

Connect/

}Pannng Subsystem

Fig. 1. Alice’s mission management and planning subsystems in émoical Software Archi-
tecture. Boxes with double lined borders are subsystensvitide broken up into multiple CSA
modules.

Applanix
(GPSand [R
IMU)

Actuators

The remainder of this paper is organized as follows. Se@ionroduces the concept
of the Canonical Software Architecture. Section 3 dessrihe mission management
subsystem in more detail. Section 4 explains how systentsfaah be identified and
handled distributedly through the CSA. Section 5 presdrasrésults from the 2007
DARPA Urban Challenge’s National Qualifying Event and pd®s a discussion about
the advantages and disadvantages of the approach. Seatanckides the paper and
discusses some future work.

2 Canonical Software Architecture

In many complex systems, the software modules that makeeupl#imning system are
responsible for reasoning at different levels of abstoactHence, the planning system
can be decomposed into a hierarchical framework. A Canb8ufware Architecture
has been developed to support this decomposition and sispesifunctionality, while
maintaining communication and contingency managemeiis. diichitecture builds on
the state analysis framework developed at the Jet Propulsiooratory (JPL) and takes
the approach of clearly delineating state estimation amdrobdetermination as de-
scribed in [9], [10], [11] and [12]. To prevent the inconsisty in the states of different
software modules due to the inconsistency in the state letye, we require that there
is only one source of state knowledge although it may be gexlin different abstrac-
tions for different modules.

There are two types of modules in CSA: estimation modulescandrol modules.
For modularity, each software module in the planning sutesysnay be broken down
into multiple CSA modules. An example of the planning submysin CSA we have
implemented on Alice is shown in Figure 1. An estimation mledzstimates the sys-
tem state and provides an abstraction of the system statbdarorresponding con-
trol module(s). A control module gets inputs, performs @tii based on the inputs,
and delivers outputs. As shown in Figure 2, the inputs comdistate information,
directives/instructions (from other modules wishing tantrol this module) and re-

Same interface with

Controlling module other controlling modules

ceptedrejected,
completedifailed

A generic
control module

State information

Controlled module and/or Estimator or Hardware

Fig. 2. A generic control module in the Canonical Software Architee.

sponses/status reports (from other modules receivinguctgins from this module).
The outputs are the same type as the inputs, but in the redigestion (status reports
from this module and directives/instructions for othertcohmodules).

For each directive that a control module is designed to dactep following must
be specified: (1) entry condition; (2) exit condition; (3)nstraints that must be satis-
fied during the execution of the directive; and (4) perforoeagriteria (performance or
other items to be optimized). The entry and exit conditioeng, respectively, what
must be true before starting to execute this directive anat wiust be true to complete
the execution of this directive. For each directive recgj\eeresponse which indicates
rejection, acceptance, failure or completion of the divecand the reason for rejection
or failure must be reported to the source of the directivge®mn or failure of a di-
rective occurs when the entry or exit condition is not readihievable, the deadlines
aren’t met, or one of the constraints cannot be satisfied.

A CSA module consists of three componemsbitration, Control and Tactics. It
communicates with its neighbors through directives andamses, as shown in Figure
2. Arbitrationis responsible for (1) managing the overall behavior of &l module
by issuing a merged directive, computed from all the reckdieectives, to th€ontrol;
and (2) reporting failure, rejection, acceptance and cetipi of a received directive
to theControl of the issuing control module. We have implemented a simytdiration
scheme, similar to that of the subsumption architecturg [Bere the merged direc-
tive is simply the received directive with the highest pitiprAs a future work, one can
implement a more complicated arbitration scheme that i@stealing with multiple
received directives simultaneousGontrol is responsible for (1) computing the output
directives to the controlled module(s) or the commands ¢ohtardware based on the
merged directive, received responses and state informaditd (2) reporting failure
and completion of a merged directive to #uebitration. Tactics provides the core func-
tionality of the control module and is responsible for pobrg the logic used by the
Control for computing output directives.

3 Mission Management Subsystem

3.1 Health Monitor and Vehicle Capabilities

The health monitor module is an estimation module that cootiisly gathers the health
of the software and hardware (GPS, sensors and actuatongocents of the vehicle

and abstracts the information about these devices intom fable for the mission
planner. This form can most easily be thought of as vehictmbiity. For example,
we may start the mission with perfect functionality, but sevhere along the line lose
a right front sensor. The intelligent choice in this sitoativould be to try to limit the
number of left turns at intersection due to the inability $s@ss oncoming traffic from
the right and slow down the vehicle. Another example ariféisei vehicle becomes
unable to shift into reverse. In this case we would not likpugposely plan paths that
require a three-point turn.

From the health of the sensors and sensing modules, thémeattitor estimates
the sensing coverage. The information about sensing cgearad the health of the GPS
unit and actuators allow the health monitor to determindalewing vehicle capabili-
ties: (1) turning right at intersection; (2) turning leftiatersection; (3) going straight at
intersection; (4) nominal driving forward; (5) stoppingthehicle; (6) making a three-
point turn; (7) driving in an unstructured region; and (8yigation in unmapped areas.

3.2 Mission Planner

The mission planner module receives a Mission Data File (Mib&t is loaded before
each mission, vehicle capabilities from the health monitodule, position of obsta-
cles from the mapper module and status reports from thectcajeplanner module and
sends segment-level goals to the trajectory planner moAidegment-level goal spec-
ifies the road/zone Alice has to navigate and the constraigpsesented by the type
of segment (road, zone, off-road, intersection, U-turmusea backup, end of mission)
which basically defines a set of traffic rules to be imposedhduthe execution of this

goal.

The mission planner is broken up into one estimation and t®&A €ontrol modules:
the traversibility graph estimator, the mission contral &me route planner. The mission
control module has three main functions: (1) computing ioisgoals which specify
how Alice will satisfy the mission specified in the MDF; (2)deal on the vehicle ca-
pabilities, determining conditions (including the maximspeed) under which we can
safely continue the mission; and (3) detecting the lack oférd progress and replan-
ning the mission goals accordingly. The route planner nedatermines segment-level
goals to satisfy the mission goals based on the travetsiggilaph which represents the
connectivity of the route network and is determined by thedrsibility graph estimator
module. Since vehicle capabilities are also taken into agtim the determination of
the mission goals and the traversibility graph, for examipkae capability for making
a left turn decreases due to the failure of the right fronseerthe route involving the
least number of these maneuvers will be preferred or if thécleis not able to shift
into reverse, routes that require a three-point turn wilabeided.

4 Fault Handling in the Planning Subsystem

In the CSA framework, fault handling is embedded into allin@dules and their com-
munication interfaces in the planning subsystem hierarElgh module has a set of
different control strategies which allow it to identify anelsolve faults in its domain

and certain types of failures propagated from below. If 2l possible strategies fall,
the failure will be propagated up the hierarchy along with #ssociated reason. The
next module in the hierarchy will then attempt to resolveftikire. This approach al-
lows each module to be isolated so it can be tested and venifiedh more fully for
robustness.

Trajectory Planner. The trajectory planner accepts directives from the misplanner
module and generates trajectories for Alice to follow. itngrises four components: the
logic planner, the path planner, the velocity planner ardpiedictor. The logic plan-
ner guides the vehicle at a high level by determining theanirsituation and coming
up with an appropriate planning problem (or strategy) teeorl he path planner is re-
sponsible for finding a feasible path, subject to the comgg@mposed by the planning
problem. If such a path cannot be found, an error will be gateer Since Alice needs
to operate in both structured and unstructured regions awe tieveloped three types of
path planner to exploit the structure of the environmerr#i planner (for structured
regions such as roads, intersections, etc) offieoad rail planner (for obstacle fields
and sparse waypoint regions) and tethoid planner (for parking lots and obstacle
fields). All the maneuvers available to thal planner are pre-computed; thus, thail
planner may be too constraining. To avoid a situation where Alices gatck in a struc-
tured region (e.g. when there is an obstacle between thefimed maneuvers), the
off-road rail planner or theclothoid planner may also be used in a structured region.
This decision is made by the logic planner. The velocity ptrtakes the path from
the path planner and the planning problem from the logic#amand generates a time
parameterized path, or trajectory. The predictor is resjda for predicting the future
location and behavior of other vehicles.

The logic planner is responsible for fault handling insitie trajectory planner.
Based on the error from the path planner and the followerldbie planner specifies
a different planning problem such as allowing passing oerging, using theff-road
rail planner, or reducing the allowable distance from obstacles. The Ifog dealing
with these failures can be described by a two-level finiteestaachine (FSM). First,
the high-level mode (road region, zone region, off-roat&rsection, U-turn, failed and
paused) is determined based on the directive from the migdanner and the current
position. Each of the high-level modes can be further deas®g to completely spec-
ify the planning problem described by the drive state, thnalble maneuvers, and the
allowable distance from obstacles.

— Road Region, Zone Region and Off-RoadThe logic planner transitions to the
road region, zone region or off-road mode when the type ahser specified by the
mission planner is road, zone or off-road, respectivelye odes and transitions
for the road region mode are shown in Figure 3. In the zon@regid the off-road
modes, passing and reversing are allowed by default. Faothe region mode, the
clothoid planner is the default path planner and the trajectory is planned et
Alice will stop at the right distance from the closest obktaso the only decision
that needs to be made by the logic planner is the allowablerdie from obstacles
For the off-road mode, the drive state (drive or stop) alsedseo be determined.
As a result, only three and six modes are necessary withirdhe region mode

r passing finished or obstacle ROAD REGION |

passing finished or obstacle |

Collision-Tree path 15 found |
no collision-ffee path exists

and the numper of times Alice
has swichedto the DRPR |
state near the current position
is less than spme threshold I

DRPRS | |

collision-free path is-fetnet
no collision-free path exists and the

number of times Alice has switched
to the DR,P,R state near the current
position is less than some threshold

STOPRS
—— collision-free path s found

backup finished

or failed and the
no collision-free

n f i
umber of times Alice path exists and

has switched to BACKUP
is less than some threshold

1o colision-fred
path exists. Ghe lane there is more

han one lane

no collision-free path exists and the number
backup finished or failed and of times Alice has switched to the DR,P.R

Qumber of times Alice has switched state near the current position exceeds some
"o BACKUP exceeds some threshold |_2CKUP_|threshold and there is more than one lane |

Collision-free path is found 'ho collision-free path exists and the number of imes Alice has switched (o the DR,P.R
state near the current position exceeds some threshold and there is only one lane
collision-free path

with DR,A is found 0 collision-free path exists

no collision-free path exists

10 collision-free path exists.
ancthere is more than one lane

FAILED

collision-free path with DR P,R is found

PAUSED

Fig. 3. The logic planner FSM for the road region. Each mode defiredtie state (DR= drive,
BACKUP = reverse, and ST&: stop for obstacles), the allowable maneuvers é\NRo passing
or reversing allowed, P= passing allowed but reversing not allowed, BRboth passing and
reversing allowed), and the minimum allowable distancenfabstacles (S safe or nominal, A
= aggressive, and B= bare or very aggressive).

and the off-road mode, respectively. The transitions caedsly deduced from
those shown in Figure 3.

Intersection. The logic planner transitions to the intersection mode whgoce
approaches an intersection. Passing and reversing maserneenot allowed and
the trajectory is planned such that Alice stops at the stap [Dnce Alice is within
a certain distance from the stop line and is stopped, thesietéon handler, an
FSM comprising five modes (reset, wait for precedence, vegitnierging, wait
for the intersection to clear, jammed intersection, and gi) be reset and start
checking for precedence [14]. The logic planner transgtiont of the intersection
mode when the intersection handler transitions to the g@aminjed intersection
mode. If the intersection is jammed, the logic planner wihsition to the mode
where passing is allowed.

U-turn. The logic planner transitions to the U-turn mode when the tyfisegment
specified by the mission planner is U-turn. Once the U-tunoispleted, the logic
planner will transition to the paused mode and wait for the deective.

Failed. The logic planner transitions to the failed mode when allgtrategies in
the current high-level mode have been tried. In this mod&yréais reported to
the mission planner. The logic planner then transitionshopgaused mode. The
mission planner will then replan and send a new directivé sisanaking a U-turn,
switching to the off-road mode, or backing up in order to\&lkhe route planner
to change the route. As a result, the logic planner will tittorsto a different high-

level mode. These mechanisms ensure that Alice will keepimgaas long as it is
safe to do so.

— PausedThe logic planner transitions to the paused mode when it dogsave any
segment-level goals or when the type of segment specifiedeognission planner
is pause or end of mission. In this mode, the logic plannersstrand the trajectory
is planned such that Alice comes to a complete stop as soavsaghfe.

Follower. The follower module computes actuation commands that kdieg An the
reference trajectory [15]. Although these trajectoriesgraranteed to be collision-free,
since Alice cannot track them perfectly, she may get tooectrseven collide with an
obstacle if the tracking error is too large. To address #saé, we allow the follower to
request a replan from the trajectory planner through the @igtive/response mecha-
nism when the deviation from the reference trajectory iddoge. In addition, we have
implemented a reactive obstacle avoidance (ROA) compdoeatdal with unexpected
obstacles. The ROA component can override the acceleratimmand if the projected
position of Alice collides with an obstacle. The projectitistance depends on the ve-
locity of Alice. The follower will report failure to the tragctory planner if the ROA is
triggered, in which case the trajectory planner can repiarrajectory.

Drive Control. The drive control module is the overall driving software Adice. It re-
ceives actuation commands from the follower, determinésely can be executed and,
if so, sends the appropriate commands to the actuators. ieeantrol module also
performs checking on the health and operational state cdi¢heators, resets the actu-
ators that fail, and broadcasts the actuator state. Aldaded in the role of the drive
control module is the implementation of physical protetsidor the hardware to pre-
vent the vehicle from hurting itself. This includes threadtions: limiting the steering
rate at low speeds, preventing shifting from occurring eflile vehicle is moving, and
transitioning to the paused mode in which the brakes areedepd and commands to
any actuator are rejected when any of the critical actuatock as steering and brake
fail.

5 Results and Discussion

The 2007 DARPA Urban Challenge’s National Qualifying Eveas split into three test
areas, featuring different challenges. In this sectionpwesent the results from Test
Area B which was the most challenging test area from the orisand contingency
management standpoint. Test Area B consisted of approgiynatmiles of driving,
including a narrow start chute, a traffic circle, narrow, eiitg roads, a road with cars
on each side that have to be avoided and an unstructuredrefto an opening in a
fence, navigating and parking at a designated spot in ansilfully occupied parking
lot.

In our first attempt, a reasonably conservative vehiclersejoa distance was used.
As shown in Figure 4(a), the logic planner spent a consideramount of time in the
aggressive and bare modes where the allowable distance from obstacles is relduce
Given the size of Alice, the second largest vehicle in thepetition, she had difficul-
ties finishing this course mainly due to the vehicle sepanatistance problem which

0.2%
0.0%
5.8%

' 0.4%
0.0%

,,,,,,,, W mE _rr__rEm b 167%
0.0%

Off-road g o0
L] 1.4%

z L 0.0%
one region o o,

— 85%
0.0%

Road region 0.0%

0.0%

1 05%

- w = 109%
EEEEEEE S W NN SN EIEEIE W616%

0.0%
Off-road oo,

0.3%

- 26.4%
Zone region

0.3%
9.1%

3.4%
Road region , 0%

0.0%
[1 5.6%
[' 10.0%
ing- @ WE EEI mmm —6.9%

0 500 1500 2000 0 200 400 600 800 1000 1200 1400
i onds)

1000
Time Elapsed (seconds) ime Elapsed (sec

(a) (b)
Fig. 4. The logic planner mode during NQE Test Area B (a) run #1 anduiv)#2.

caused her to spend about five minutes trying to get out oftélrechute area and more
than ten minutes trying to park correctly while keeping tequired distance from ob-
stacles. Specifically, the problem was that in the startechrga, there were K-rails less
than one meter away from each side of Alice, resulting in datiion of the obstacle
clearance requirement for tisafe or nominal mode, which was set in accordance with
the DARPA rules. Alice had to progress through a series @frivel planning failures
before finally driving with reduced buffers on each side & tehicle. In the parking
lot, there was a car parked right in front of our designatexd apd if Alice was to park
correctly, she would have to be within two meters of that taus, violating the obsta-
cle clearance requirement. Alice ran out of the thirty méintine limit shortly after we
manually moved her out of the parking lot.

After the first run, we decided to decrease the required \e@Bk¶tion distance
and relax the tolerance of reaching waypoints so Alice coafdplete the course faster.
Alice was then able to successfully complete the courseinvithenty three minutes
with only minor errors. The logic planner mode during theasetattempt is shown in
Figure 4(b).

Despite the failure in completing the first run within the &rimit, Alice demon-
strated the desired behavior, consistent with what we haga & over two hundred
miles of extensive testing, that she would keep trying diffe strategies to get closer to
completing the mission and she would never stop as long ay#tem is capable of op-
erating safely. Had she been given more time, the missiotra@amould have detected
the lack of forward progress and decided to skip the parkithcntinue to complete
the rest of the mission.

Comparedto a centralized approach, our approach to miasihnontingency man-
agement is a lot more modular. It allows independent deveéayi and testing of failure
handling in different software modules, which is importfmta project with a short de-
velopment period and a large development team. Most of tiye ban be found at the
stage of module test, instead of system integration teshgUdifferent levels of ab-
straction, our approach greatly simplifies the logic forlaeawith failures and makes
it easier to identify all the combinations of failures in thygstem. A drawback of this
approach is that all the interfaces need to be clearly defthed, it requires putting a
substantial amount of effort in the design phase of the ptoje

6 Conclusions and Future Work

We described Team Caltech’s approach to mission and cantagygnanagement for the
2007 DARPA Urban Challenge. This approach allows missiah@mtingency man-
agement to be accomplished in a distributed and dynamic erattnrcomprises two
key elements: a mission management subsystem and a plasulisgstem based on
a Canonical Software Architecture (CSA). The mission managnt subsystem works
in conjunction with the planning subsystem to dynamicadlplan in reaction to con-
tingencies. The CSA provides for consistency of the statedl the software modules
in the planning subsystem. System faults are identified apthnning strategies are
performed distributedly in the planning subsystem throtlgh CSA. These mecha-
nisms make the system capable of exhibiting a fail-openatiail-safe and intelligent
responses to a number different types of failures in theegysExtensive testing has
demonstrated the desired behavior of the system whichftsttivél keep trying differ-
ent strategies in order to get closer to completing the imisand never stop as long as
it is capable of operating safely.

Extensions of this work include extending the CSA to theneation side of the sys-
tem. Incorporating the notion of uncertainty in the CSA diie/response mechanism
is also important. Consider a scenario where spurious clestare seen such that they
completely block the road. Although the map may correctiient high uncertainty,
the logic planner will still progress through all its modefdre finally concluding that
it cannot complete the segment-level goal. Failure wilhtbe reported to the mission
planner which will incorrectly evaluate the current sitaoatas the road is completely
blocked and subsequently plan a U-turn. If the responseiatsporates the notion
of uncertainty, the mission planner can use this infornmatamether with the system
health and issue a pause directive instead so Alice will stapwait for better accuracy
of the map.

Another direction of research is to formally verify thatrifiplemented correctly, the
directive/response mechanism will ensure the consistefittye states of all the soft-
ware modules in the system and that the CSA and the missioageament subsystem
guarantee that Alice will keep going as long as it is safe tealdJsing temporal logic,
we were able to formally verify the state consistency forftiiklower and drive control
modules. For the rest of the system, we have only verifiedttite sonsistency and the
fail-operational/fail-safe capability through exterestesting.

Lastly, it is also of interest to verify that this distribdtenission and contingency
management approach actually captures all the functigrafla centralized approach
such as SuperCon and that it actually facilitates formaification of the system. We
believe that this is the case for many systems in which thealemodule does not take
into account the uncertainties in the system and the envieur.

Acknowledgements

The idea of the CSA came from discussions with Robert Rasenwessd Michel Ingham
and was implemented by Josh Doubleday. The health monitduteavas developed
by Chris Schantz. The following individuals have contrémlito the development of the

planning subsystem: Joel Burdick, Vanessa Carson, St&a@airano, Noel duToit,
Sven Gowal, Andrew Howard, Magnus Linderoth, Christian iham, Kenny Oslund,
Kristian Soltesz. Special thanks go to the members of Tealecawithout whose
contributions this work would not have been possible.

This work was supported in part by the Defense Advanced Reséxojects Agency
(DARPA) under contract HR0011-06-C-0146, the Califormatitute of Technology,
Big Dog Ventures, Northrop Grumman Corporation, Mohr Dawdventures and Ap-
planix Inc.

References

1. Braid, D., Broggi, A., Schmiedel, G.: The Terramax autonas vehicle. Journal of Field
Robotics 23, (2006) 693-708

2. Cremean, L.B., Foote, T.B., Gillula, J.H., Hines, G.Hogén, D., Kriechbaum, K.L., Lamb,
J.C., Leibs, J., Lindzey, L., Rasmussen, C.E., Stewart, MDrdick, J.W., Murray, R.M.:
Alice: An information-rich autonomous vehicle for highes desert navigation. Journal of
Field Robotics 23 (2006) 777-810

3. Rasmussen, R.D., Ingham, M.D. personal communicatiodgR

4. Franke, J., Hughes, A., Jameson, S.: Holistic contingenanagement for autonomous
unmanned systems. In: Proceedings of the AUVSI's Unmanmnyste®is North America.
(2006)

5. Franke, J., Satterfield, B., Czajkowski, M., Jameson,Slf-awareness for vehicle safety
and mission success. In: Unmanned Vehicle System Techydogssels, Belgium (2002)

6. Dearden, R., Hutter, F., Simmons, R., Thrun, S., VermaWileke, T.: Real-time fault
detection and situational awareness for rovers: Repoti®@miars technology program task.
In: Proceedings of the IEEE Aerospace Conference, Big SRy(2004)

7. Chen, Q.Umit Ozgiiner: Intelligent off-road navigation algorithms astategies of team
desert buckeyes in the DARPA Grand Challenge 2005. Joufraéh Robotics 23, (2006)
729-743

8. Williams, B.C., Ingham, M.D., Chung, S.H., Elliott, P:HModel-based programming of
intelligent embedded systems and robotic space explorersProceedings of the IEEE:
Special Issue on Modeling and Design of Embedded Softwalemeé 9. (2003) 212—-237

9. Dvorak, D., Rasmussen, R.D., Reeves, G., Sacks, A.: Saftarchitecture themes in JPL’s
mission data system. In: Proceedings of 2000 IEEE Aerospaoéerence. (2000)

10. Rasmussen, R.D.: Goal based fault tolerance for spatensy using the mission data sys-
tem. In: Proceedings of the 2001 IEEE Aerospace Conferé2661)

11. Barrett, A., Knight, R., Morris, R., Rasmussen, R.: Miasgplanning and execution within
the mission data system. In: Proceedings of the Internatidforkshop on Planning and
Scheduling for Space. (2004)

12. Ingham, M., Rasmussen, R., Bennett, M., Moncada, A.:ireeging complex embedded
systems with state analysis and the mission data systenerdspace Computing, Informa-
tion and Communication 2, (2005)

13. Jones, J.L., Roth, D.: 4. In: Robot Programming: A PcattGuide to Behavior-Based
Robotics. McGraw-Hill (2004)

14. Looman, C.: Handling of dynamic obstacles in autonomatnicles. Master’s thesis, Uni-
versitat Stuttgart (2007)

15. Linderoth, M., Soltesz, K., Murray, R.M.: Nonlineardeal control strategy for nonholo-
nomic vehicles. In: Proceedings of the American Controlfémnce. (2008) Submitted.

