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Abstract: Gamma camera images obtained from PSPMT detectors and segmented crystal scintillators to be used for 
scintimammography are often distorted and blurred. Our software application is used to restore flood-field 
gamma camera images and map the peak positions of individual charge clusters back to the positions of the 
corresponding source scintillations. Since the exact position of scintillation in a crystal grain is not 
controllable due to the randomness of scattering, a region-to-region location map is more statistically sound 
than a point-to-point position map. Traditionally, an array of rectangles centered at the restored peaks of 
charge clusters is mapped to an array of crystal grains from which the source scintillations are emitted. We 
observe that the mapping is essentially a nearest neighborhood problem and innovatively introduce the 
Voronoi diagram to replace the rectangular array. The natural fit of the Voronoi diagram to the essence of 
neighborhood problem significantly improves the likelihood of correct mapping. It also makes our mapping 
method adaptable to apply to crystal plates in other geometric configurations. We implement the 
computations of Voronoi diagrams via OpenGL. As an empirical software solution, the images restored 
from raw flood field images illustrate high level uniformity and linearity. 

1 INTRODUCTION 

In breast scintimammography, a compact detector 
with high intrinsic spatial resolution and small 
inactive peripheries can provide improvements in 
extrinsic spatial resolution, efficiency and contrast 
for small lesions relative to larger conventional 
cameras. The detector that is used by the sponsor of 
this research is comprised of a segmented array of 
crystals CsI (TI) optically bonded to a grid of 
Position Sensitive Photomultiplier Tubes (PSPMTs) 
(Weisenberger, 2003, Smith 2003, Williams 2000). 
Tested geometries include both circular and 
rectangular arrays. 

The detection mechanism is conventional 
scintillation, with optical responses spatially 
confined into regularly spaced “grains” by the 
intersegment material. Ultraviolet photons pass 
through the optical bonding material into the 
PSPMT envelope to strike the photocathode. The 
released charge is amplified and the resulting charge 
cloud is collected on a grid of anode elements. The 
charge collected on the several anode elements in 
the PSPMT is electrically gathered along rows and 

columns by a resistive network and presented at 
charge sensitive analog to digital converters. The 
resulting conversions present a vector of raw charge 
distribution data from which the centroid of the 
charge cloud is determined in two dimensions. This 
centroid constitutes the raw centroid data available 
for each event. Data for the calibration is produced 
by illuminating the segmented crystal with a uniform 
planar flood-field gamma ray source. Event data are 
collected and raw centroids are computed. 

Raw flood images obtained in the CsI (TI) array 
system are intrinsically distorted and blurred 
(Weisenberger, 2003, Smith 2003, Marks 1999). 
Optical defects and fabrication limitations cause 
distortions of the photon collection pattern at the 
photocathode, and electro-optical effects further 
distort the charge clouds as they are amplified. Our 
task is to develop a software application that takes 
raw flood images as calibration inputs (figure 2), 
identifies blurred peaks of signals, corrects their 
distorted positions, and finally maps the individual 
peaks to the source scintillations. Since the exact 
position of scintillation in a crystal grain is not 
controllable due to randomness of scattering, a 
region-to-region location map is more statistically 
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sound than a point-to-point position map. 
Traditionally, the output is a map consisting of 
rectangles centered at repositioned peaks so that 
each rectangle maps to a grain of the segmented 
crystal plate. We observe that the mapping is 
essentially a closest neighborhood problem and 
innovatively introduce Voronoi diagram to record 
the position of the source scintillations. Each 
polygon contains a point corresponding to the peak 
of the accumulated charge clouds emitted from a 
particular crystal grain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. 

The application that we developed for image 
restoration runs under Kmax environment. Kmax is 
a software product of Sparrow Corp. that provides 
an environment for creation of Java script files 
called toolsheets for instrument control and data 
management with high level support for modular 
instrumentation, data acquisition, and data analysis 
(please follow link, http://www.sparrow.com). Our 
application software consists of two packages. One 
is a Kmax toolsheet program that interfaces to the 
end users through routines associated with graphical 
user interface “buttons” as shown at the top of figure 
1. The second package, the block diagram of which 
is shown at the bottom of figure 1 is a native C 

program running in the background. This 
background task is built on OpenGL to take 
advantage of graphical tools therein. The two 
packages are interfaced through Java Native 
Interface (JNI) functions as shown in Figure 1. 

The rest of this article is organized as follows. 
Section 2 describes our software solution to the 
image restoration problem. Section 3 focuses on our 
core geometric technique. We introduce the concept 
of Voronoi diagram and address the rationale to do 
so. Section 4 presents our preliminary work on 
regression methods and an adaptive algorithm for 
future work. 

2 SOFTWARE  

This section, we will describe our software solution 
to the problem introduced above. We present our 
solution by following the four steps illustrated in the 
Kmax package of Figure1. In the first step, the raw 
data file of an image (as shown in figure 2) is loaded 
and the program is initialized. We outline the other 
three steps in the following three subsections. 

2.1 Filtering Out the Noise 

The second step filters noise and enhances peak 
localization. The filter contains a curve that is 
roughly the same size and shape as the peaks in the 
image. The filter is then moved across the image, 
multiplying the filter by the image beneath it - 
essentially a correlation function. This process 
sharpens the image. Figure 3 shows the peak 
enhanced image. 
 

Figure 2: Input Image. Figure 3: Peak Enhanced
Image. 

 

2.2 Find Peaks 

The third step is to locate the peaks in the image. We 
call the set of signals that are emitted from 
individual source scintillation as a signal cluster. A 
peak is the centroid of a cluster. Using the filtered 
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image, a search algorithm attempts to find as many 
peaks as possible by looking for all local maxima 
about a user-selected cutoff point. 
 

 

Figure 4: Missed peaks. Figure 5: Axis warped to
peaks. 

The search is initiated from the peak closest to 
the center of the image assuring the peak search 
works equally well for rectangular and circular 
detectors. A search ray is projected from the center, 
initially along the x-axis. The search algorithm 
iterates finding peaks that are near the axis. The 
program finds all peaks that are contained within 
constraints and assigns them a score based on their 
distance from the center peak and the angle from the 
search ray. The higher the score, the more likely it is 
that the peak is the next correct peak on the axis. 
Significantly higher scoring peaks inside the cone 
are added to the axis, selecting the smaller angular 
deviation from the similar scores. The process 
continues until no peaks fit the constraints, usually 
when the edge of the image has been reached. The 
process is repeated for the next row, constructing a 
new search ray parallel to the next row position until 
all rows have been registered. 

The program will usually find almost all of the 
peaks, but tends to have trouble near the edges 
where the image becomes strongly distorted due to 
the boundaries of crystals and associated losses (see 
figure 4). Additional problems arise when the 
calibration image data contain response 
inhomogeneities, resulting in additional false 
positive peaks. As shown in the third step of figure 
one, the located peaks with editing tools are then 
presented for users to edit them in case some peaks 
are missing. This is the only step in our current 
version that requires user interaction. An adaptive 
algorithm and future work to replace the manual 
interaction will be presented in section 4. 

2.3 Line up Peaks and Built Output 
File 

Once all of the peaks have been identified, all peaks 
must be horizontally and vertically aligned so that 

the calibration file for image restoration can then be 
built. The program can also find the dimensions of 
the crystal array by looking at the number of peaks 
that make up each axis (Figure 5). Once the axes are 
formed, the last step is to align the rest of the peaks. 
Since we know that topology of the crystal grains in 
advance, it is easy to adjust the peak line-up 
algorithm to work for both rectangular and circular 
detectors. 
 

 
Figure 6: Grids centered at peaks. 

 
Figure 7: Voronoi diagram of the peaks. 

Our first mapping file was built on traditional 
method. As shown in Figure 6, each box centered at 
a peak maps to a crystal grain from which the charge 
clouds of the peak are emitted. As shown in the 
fourth step of figure 1, the mapping file of our 
current solution was built on Voronoi diagram, 
which will be elaborated in next section.  

3 VORONOI DIAGRAM  

This section focuses on our core geometric 
technique, which is using Voronoi diagram to 
replace the array of rectangles of the output mapping 
file. We introduce the concept of Voronoi diagram, 
outline its implementation, and address the rationale 
and advantages to introduce this concept to our 
program. 

3.1 Definition of Voronoi Diagram 

A Voronoi diagram creates a polygon around each 
peak such that any point contained within that 
polygon is closer to that peak than any other peak. 
This means that when an event is detected, it is 
mapped to the closest possible crystal. The Voronoi 
diagram guarantees that every point in a give peak’s 
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polygon is closer to that peak than any other. The 
Voronoi diagram is built simply by providing a list 
of points; it is independent of the geometric 
configuration that the points belong to. In short, it 
only depends on the peaks that we found. 

The Voronoi diagram is one of the most 
important computational geometry concepts, which 
is secondary only to convex hulls (O’ Rourke, J., 
1998). Let },....,{ 21 nPPPP = be a set of n points in 

plane, the nearest neighborhood of iP  is defined as: 

}|,||:|{ ijxpxpxV jiPi
≠∀−≤−= . It is a 

polygon that contains all points that are closer to 

ip than any other points jp in the point set P. The 
Voronoi diagram is made up of all neighborhoods 

iPV  for ni ≤≤1 . 

3.2 Computation of Voronoi Diagram  

An efficient algorithm to create Voronoi diagrams as 
well as its dual Delaunay triangles can be found in 
the book of O’ Rourke. Although our user interface 
is in Java script, there are two factors that motivate 
us to code the Voronoi computation in C. Firstly, 
coding the algorithm in Java reduced the 
performance measurably. Secondly, OpenGL is 
coded in C and we would like to build our 
computation on OpenGL, which provides rich 
graphic utility functions for us to interpret data and 
process the graphics elements. The detail 
implementation is beyond the scope of this article. 
Source codes are available by personal contact to 
liuho@erau.edu. Our technical challenge is the 
interfacing problem with many file operations. We 
use JNI to interface the Java script code in Kmax 
and native C codes. 

Once the Voronoi diagram is built, the 
calibration file is created by assigning each crystal 
element an integer value. This value will represent 
the array position of the regular crystal that the event 
will be mapped to. The numbering system starts at 
the bottom left corner of the array, which is assigned 
the value of 0 with indices increasing in row order. 
Event centroids are resolved to an initial pixel 
position in the raw image. Each pixel in the image 
space is tested to determine which Voronoi polygon 
it falls inside and thus which crystal grain the event 
is to be associated with. The pixel is then assigned 
the value of the corresponding array position. Once 
the map has been completed, it is exported in Kmax 
histogram format. The resulting calibration file is 
then used to interpret the data when the detector 

receives a gamma event. The calibration function 
takes the apparent (distorted) location of the event 
and returns the crystal number (position) in which 
the event is most likely to have occurred.  

3.3 The Rationale of Voronoi 
Approach  

We address the rationale to replace rectangular grids 
to Voronoi diagrams by the deficiency of the former 
approach and the advantages of the latter one. 

Building a rectangular array to match the array 
of crystals presents a number of problems. First, not 
all of the detectors are rectangular; some detectors 
are made into circles by cutting off the corners of the 
crystal array. Second, due to the distortions, 
especially near the edges, it is difficult to detect 
exactly where in the array a particular peak belongs. 
Third, the size of the crystals and the number of 
crystals changes from detector to detector. It is 
challenging to make an algorithm that will align the 
peaks correctly for different geometric 
configurations of segmented crystal plates. 

We know from 3.1 that Voronoi diagram is a 
geometric concept to describe vicinity. We argue 
that the mapping between the peaks of signal 
clusters and the crystal grains is essentially a map 
between two sets of closest neighborhoods. A 
PSPMT diagram of the set-up for mapping the 
detector surfaces with gamma rays can be found in 
the article by Weisenberger et al. 2003. The charges 
scattered from the scintillation hit mostly the nearby 
anode elements within a cylindrical cone whose 
vertex is the scintillation origin. Notice that the 
vertical distance from all anodes to the crystal plate 
are uniform, so, the source scintillation of a charge 
cluster is most likely originated from the scintillation 
whose horizontal distance to the peak (centroid of 
the cluster) is smallest. Since we cannot control the 
exact location of the scintillation inside a particular 
crystal grain due to the randomness of scattering, a 
point-to-point mapping between the scintillation 
location and their corresponding peaks is not 
available. Nevertheless, it is statistically sound to 
assume that most of scintillations originated near the 
center of the crystal grains. Therefore, the crystal 
grains that host the corresponding scintillations are 
their natural nearest neighborhoods in statistical 
sense. On the other hand, the Voronoi diagrams are 
the precise nearest neighborhoods of signal peaks. 
Hence, we have a map between the two sets of 
neighborhoods; with one set as the nearest 
neighborhoods of the signal peaks and the other set 
as the crystal grains that are the natural 
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neighborhood of the original scintillation. 
To summarize the idea: 1. A set of regularly 

spaced crystal segment grains possess a one to one 
relationship to peaks identified in the calibration 
image. 2. The Voronoi diagram of the peak locations 
define the nearest neighbor mapping from image 
pixels to the crystal grains (see figure 7). 3. Each 
imaging event in the scintillator produce a cluster of 
charge signals at the PSPMT anodes whose centroid 
falls inside one Voronoi region. 4. The mapping of 
this centroid from the Voronoi region to the crystal 
grain defines the shortest distance to the mapped 
peak among all peaks in the calibration file. 5. Since 
statistically, most scattering charges of a scintillation 
hit nearby locations on the detector, the detected 
cluster of signals is most likely to have originated 
from a scintillation occurring in the mapped crystal 
grain corresponding to the containing Voronoi site. 
Thus, the region-to-region mapping between the two 
sets of nearest neighborhoods is the best one that is 
available and necessary in theory. In practice, we 
can clearly see the differences of linearity and 
uniformity between the solution in Voronoi diagram 
approach and the solution in rectangular grids 
(comparing figure 7 and figure 6). It is desirable to 
measure the quantitative improvement of in our 
future work. 

The Voronoi diagram will always create a 
precise nearest neighbor map regardless of 
geometry. This makes the mapping technique 
adaptable to crystal plates of other geometric 
configurations. It is superior to previous methods 
which defined arbitrary neighborhoods based on a 
simpler set of bisectors and thus did not guarantee 
true nearest neighbor performance. The 
computational complexity of the algorithm for 
generating the Voronoi diagram O(n ln(n)), where n 
is the number of the sites and ln(n) is the natural 
logarithmic function of vertex number n. It is fast 
enough for use in real time applications.  

4 FUTURE WORK 

The third step sometimes relies on manually 
cropping to correct possible missing peaks, which 
mostly occurs at edges. Due to the optical and 
electronic faults, it is possible to incorrectly identify 
high noises as peaks and falsely filter out low peaks 
as noises. With judicious choices by the operator the 
initial peak identification process typically detects 
90% to 95% of the true peaks. Our future work is to 
apply a preliminary nonlinear regression method and 
an adaptive algorithm presented below to improve 

the accuracy of our peak identification. 

4.1 Nonlinear Regression 

MATLAB is used to implement the nonlinear 
regression analysis presented below. We try to 
preprocess the input data file and correct the local 
distribution of the individual signal clusters without 
change their total energy levels. The two 
assumptions are that each cluster observes a 
hypothetic Gaussian distribution and corresponds to 
a peak and the distortion does not significantly 
change the total received energy of a cluster. In our 
analysis, we first use the local maximum as a 
reference point to estimate the amplitude of the 
Gaussian distribution. By substituting the reference 
point to the model that we have obtained with both 
the mean and the standard deviation, we can solve 
for the potential amplitude from the selected 
reference point. The second step is to identify those 
significantly distorted data by calculating the 
difference between the experimental data and the 
predicted data. The third step is to correct them in 
the direction of the estimated trend by keeping the 
mean invariant according to the second assumption. 
After constructing the Gaussian distribution the 
deficient data values are replaced by the values 
suggested by the regression curve. This procedure is 
performed iteratively until the difference between 
the interactions is sufficiently small (see Figure 8). 

4.2 An Adaptive Algorithm 

We need firstly to set the criteria to measure the 
quality of our calibration. Regardless whether we 
use rectangular crystal plate or round crystal plate, 
we know the numbers of the crystal grains in each 
row and each column. We also recall that our 
Voronoi diagram has been indexed horizontally and 
vertically at the fourth step. So our first measure is 
that the numbers of sites in each row and each 
column of Voronoi diagram must match those of the 
crystal plate. We also know that the sizes of crystal 
grains are almost uniform except for the grains on 
the edge of round crystal plates. Though distortion is 
inevitable, we expect that the Voronoi diagram has a 
certain level of uniformity of sizes, which is 
measured by the number of pixels. Hence, our 
second measure is the statistical confidence level of 
the site sizes. We define our fitness function of the 
adaptive algorithm according to these two factors 
with empirical weighted coefficients. 

In the first step of iteration, the image data 
modified in the previous iteration is loaded to 
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replace the raw data. Our major change starts at the 
third step as follows: We mark those narrowly 
passed peaks as likely false peaks. While those 
points passing a specific cutoff filter are recorded as 
peaks, other points passing half of the cutoff filter or 
whose amplitudes being second to the corresponding 
peaks nearby are also recorded as back-up candidate 
peaks for next iteration. They are used to mutate 
with the narrowly passed peaks to improve the 
overall fitness function in the fourth step. 

 
Figure 8: Nonlinear Regressions of Several Iterations. 

After constructing the Voronoi diagram and 
indexing each site with the mapped pixels, we add 
three operations in the fourth step. Firstly, we 
recalculate the median and standard variations of the 
site sizes along with the amplitude of signals and 
update the fitness function. Secondly, we construct a 
hypothetic Gaussian distribution of the site sizes of 
the Voronoi diagram. If the size of a peak lies out of 
the small side of a certain confidence interval, then it 
is confirmed as a most-likely false peak. If a 
recorded back-up peak candidate is available in the 
corresponding site of the most-likely false peak, 
then, we test the mutation under the fitness function. 
If the mutation improves the fitness, then the back-
up point is promoted as a peak by properly 
increasing its signal amplitude without changing the 
mean signal intensity, while the most likely false 
peak is demoted as a back-up candidate by properly 
decreasing its amplitude. Finally, we use an 
empirical cutoff of the fitness function to decide if 
the iteration should be terminated. 

4.3 Conclusions 

Voronoi diagram has extensive applications in many 
fields (Gonzalez 2004). In the broad image 
processing field, Amidror surveyed the applications 
of Voronoi diagrams to data interpolations Amidror 
2002. We observe that the mapping between the 
peaks of charge clouds and scintillation sources of a 

segmented crystal plate is essentially a nearest 
neighborhood problem. In this work, we use a 
Voronoi diagram to construct the position mapping. 
To our knowledge, it is the first time that the 
Voronoi diagram is applied to solve position 
mapping problems in image processing field. The 
natural fit of the Voronoi diagram to the essence of 
neighborhood problem significantly improves the 
likelihood of correct mapping and makes the 
mapping technique adaptable to crystal plates in 
other geometric configurations. This paper presents 
our empirical solution to the image restoration 
problem used for breast scintimammography. We 
implement the computation of Voronoi diagrams in 
C via OpenGL under a Java-based user environment 
called Kmax. We also outline a nonlinear regression 
method to correct the shape of charge clusters 
locally and a preliminary adaptive algorithm to 
improve the effectiveness of peak identification in 
our future work. 
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