
A SIP SPATIAL AUDIO SERVER FOR THE EVE PLATFORM

Ch. Bouras
Research Academic Computer Technology Institute (CTI), Greece and

Computer Engineering and Informatics Department (CEID), University of Patras, Greece

V. Triglianos
Computer Engineering and Informatics Departmet (CEID) University of Patras, Greece

Th. Tsiatsos
Department of Informatics, Aristotle University of Thessaloniki, and Research Academic

Computer Technology Institute (CTI), Greece

Keywords: Virtual reality, Multimedia Collaboration, SIP, Spatial 3D audio, Networked Virtual Environments,
Multimedia systems, architecture, and applications.

Abstract: When it comes to 3D Virtual Environments it is well known that 3D sound is of great importance to the
whole interactive experience. The percept of sound is a major counterpart for the eyesight, since it describes
the location, the momentum and the attitude towards the listener, of each surrounding entity. The sound can
offer precision of spatial perception that cannot be achieved by the eye itself. Thus the support of 3D
surround sound of high fidelity is mandatory for a 3D Virtual platform. The evolution of Internet telephony
led to the introduction of new session establishment and management protocols. The most important of
them, the Session Initiation Protocol (SIP), is a robust, lightweight reliable and fast application-layer
control (signaling) protocol that is highly adopted for creating, modifying and terminating sessions. This
protocol can be of extreme importance in establishing audio sessions for multi-user platforms. This paper
presents the work done for developing a SIP 3D spatial audio server for a multi-user virtual environments
platform, called EVE, in order to support 3D spatial audio.

1 INTRODUCTION

The increment of the available network bandwidth
has enabled the development of richer web
applications. In the field of Networked Virtual
Environments this is reflected in the deployment of
as realistic as possible virtual worlds. Virtual 3D
environments offer a realistic abstraction of reality
in an optical fashion. However, 3D sound is of equal
importance in order for an interactive 3d
environment to be realistic A key point to the
realism is the sound capabilities it provides. Plain
audio support is an important feature; however the
best results are achieved with the addition of 3D
spatial sound.

Audio support in virtual platforms practically
means the digitalization of speech. Speech, one of

the most effective means of communication that
humans possess, is a time-efficient, emotion-
declaring way to communicate. Thus, the
introduction of speech is virtual platforms is time
saving, since no message writing is required, while
at the same time the voice contributes to more
realistic communication and interaction between the
users.

3D spatial audio contributes to a best perception
of the environmental entities, especially when the
user has no eye contact with them. The user by
hearing 3D sound obtains information about the 3D
location, and the direction that the entity that emits
the sound moves. Moreover, depending on the
intensity and the tone of the sound, a user can be
aware, to some extent, of the intensions of the entity
towards the user as well as the psychological

395
Bouras C., Triglianos V. and Tsiatsos T. (2008).
A SIP SPATIAL AUDIO SERVER FOR THE EVE PLATFORM.
In Proceedings of the Third International Conference on Computer Graphics Theory and Applications, pages 395-402
DOI: 10.5220/0001095203950402
Copyright c© SciTePress

composition of the entity. These psychological
effects that arise from the 3D spatial sound
combined with the perception of space, lead to a
very realistic interaction in two fashions: between
the users, and between a use and the virtual space.

Bearing this in mind the authors of this paper
aims to enhance such a platform called EVE
(http://ouranos.ceid.upatras.gr/vr/) which is a
networked virtual environments platform that
supports the following characteristics:
• Flexibility and good rendering quality, since the

large set of all X3D nodes can be used to create
worlds that are visually more appealing, as well
as better defined compared to a VRML world.

• A consistent shared 3d virtual environment for
all users connected to the platform, which is
highly interactive and allows for all possible
functionality of an X3D world to be reliably
shared among all connected clients. In other
words EVE is stable in terms of network and
multi-user behavior.

• An efficient physics system functioning locally
on each client’s machine, which is provided by
the Xj3D library and based on the ODE open-
source physics engine, as well as an efficient
sound system.

• Text chat and audio communication, using
H.323 for audio and chat bubbles for text chat.

• User roles and user management.
• Support for avatar gestures and body language
• A flexible, fully customizable and open client-

multiserver architecture.
EVE platform featured spatial H.323 sound since it
was introduced. In order to increase performance,
and stability as well as to emphasize the distributed
nature of the platform a new audio server, utilizing
the latest most popular session protocols and codec
technologies and at the same time featuring a new
algorithmic approach, was introduced. The new
server is based on the SIP session protocol to
establish multicast sessions as well as using RTP for
audio data transmission. The spatial effects are
implemented by the X3D Sound Node interface.
A fair amount of work has be done in on spatial 3D
sound. The majority of today’s 3D games, single or
multi-user, feature spatial 3D sound. However the
sound that is used in this type of applications is pre-
recorded. When it comes to CVE’s where live
streaming sound needs to be converted to spatial 3D
sound, little work has been done. Good examples are
the work in Liesenborgs (1998) and Macedonia et al
(1995).

The work described in Macedonia et al (1995),
is based on multicast networks. We want to avoid
this solution due to the fact that multicasting is not
available in every network. Furthermore, our work
differs from Liesenborgs (1998) in terms of
scalability, complexity of the platform that is
embedded into, and technology. Our scope is to
utilize the latest technologies into our platform,
while using Java API’s in order to maintain the well-
known and commonly accepted benefits of Java.

When it comes to spatial distributed sound there
are two key subjects to address. The first is the
protocol the algorithms and the codecs that will be
used to establish sessions and reproduce sound
between users. The second is the algorithms that will
create the illusion of 3D sound.

As far as the protocol is concerned, the popular
Session Initiation Protocol – SIP was used. The
transmission of the audio data utilizes the RTP
protocol while the task of spatializing the sound is
accomplished by the X3D Sound Node.

X3D offers the Sound Node interface. This node
features built-in spatialization and attenuation audio
algorithms. This solution is both fast and simpler to
develop since no external solution is used more.

The paper is structured as follows: The next
section demonstrates the architecture of the
proposed solutions. Following this (in paragraph 3)
the mechanism and the algorithms that form the
selected solution are described. After that (in
paragraph 4) the implementation issues are
discussed while on section 5 some performance tests
are presented. In Section 6 some concluding remarks
and planned next environment platforms either
commercial products or steps are briefly described.

2 EVE SPATIALIZED AUDIO
ARCHITECTURE

The EVE platform is based on a client-multiserver
architecture, which allows a simple sharing of the
computational load among multiple servers. The
main servers used by the platform are the connection
server, the VRML server (or data server) and a
series of application servers, which add specific
functionality such as audio and text chat to the
platform. The architecture of the EVE platform is
displayed in Figure 1.

GRAPP 2008 - International Conference on Computer Graphics Theory and Applications

396

Figure 1: Architecture of EVE.

Due to the multi-user and client-server
characteristics of the platform, not spatialization of
audio but also networking and communication are
important parts of the whole process. Moreover, the
real time nature of the process requires bandwidth
saving and fast audio processing to deliver
continuous playback of the sound. In order to
provide an architecture that would balance the
bandwidth, complexity and processing costs many
candidate scenarios were examined. The best two
are presented in this section. The two architectures
are different in the way that the audio is processed in
order to become spatialized. The procedure of
connecting to the platform until the spatial audio is
produces consists of four discrete stages, from the
client’s point of view:
• The establishment of the connection to the SIP

Spatial Audio server
• The capture of the audio data
• The transmission of the audio data
• The process of spatializing the audio data
• The reception of the audio

For the common part of establishing a
connection to the SIP Spatial Audio server,
capturing the audio data and transmitting the audio
data, follows a description of the technologies that
are implemented.

The Session Initiation Protocol – SIP is ideal for
the session establishment. This lightweight,
transport independent protocol has proven to be very
reliable and robust thus making it the most popular
session protocol nowadays.

Real Time Protocol - RTP a very popular
protocol for real time data, including features like
Real-time Transport Control Protocol - RTCP a
protocol that provides control information for RTP
flows, is chosen for audio data transmission.

As far as the audio capture is concerned, the
Java Media Framework API, which provides
convenient classes and methods for media
manipulation is used.

In the following two subsections, the above
mentioned stages are described for each of the
suggested solutions.

2.1 Solution 1: Audio Spatialization
using X3D Nodes

In this solution the spatialization of the audio is
performed by an X3D Sound node (Figure 2). The
client’s side architecture is examined first. The
establishment of the connection is accomplished via
the SIP protocol. The client’s applet makes a call to
the SIP Spatial Audio Server and a server port is
reserved for the connection with the client. After the
session has initiated, an RTP stream, using the JMF
API, is established with the server, in order for the
audio data to be transmitted. At the same time the
client’s capture device captures audio data, again
utilizing JMF API’s classes, and transmits them
through the RTP stream. The X3D browser of the
applet receives the audio data encapsulated, by the
SIP Spatial Audio Server, in X3D AudioClip nodes.
The playback of the audio is performed by X3D
Sound nodes that use the AudioClip nodes as their
sources.

The X3D Sound node features built-in
spatialization and attenuation audio algorithms. This
solution is both fast and simpler to be developed
since no external solution is used.

Regarding the server side, the following
procedure takes place. The server is waiting for new
SIP calls on a dedicated port. After an incoming call
from a client is accepted, a new port is assigned for
the communication between a server thread,
dedicated in servicing the specific client, and the
client. This thread establishes an RTP stream with
the client for receiving audio data. Concurrently, the
audio server acquires information of the user’s
avatar location and orientation in the virtual world
through the VRML Server. This information will be
used to reproduce the sound like it is being emitted
from the avatar’s mouth. For each user an X3D
AudioClip node and an X3D Sound node are
instantiated via the xj3d API and are added in the
graph scene of the virtual world. A file is created to
which the audio data are continuously appended to.
The AudioClip node’s url field is given that file as a
value, while the Sound node’s fields direction,
location and source fields are given the values of the

A SIP SPATIAL AUDIO SERVER FOR THE EVE PLATFORM

397

avatar’s mouth direction, avatar’s mouth location
and the AudioClip, respectively. The key point in
this solution is the entrusting of the audio
spatialization to the X3D Sound node. This node can
produce spatialized audio by setting appropriate
values to the specialized fields.

When the two new X3D nodes are added to the
scene the VRML server sends them to the client
where the client’s X3D browser starts immediate
playback of the Sound node.

Figure 2: Audio spatialization using X3D nodes.

2.2 Solution 2: Audio Spatialization
Exploiting a Spatialization
Algorithm

The second solution (Figure 3) uses a spatialization
algorithm in order to spatialize the audio. The
process of session initiation, audio data capture and
audio data transmission is the same with the one
described in the first solution. What is different in
that solution is the way that the SIP Spatial Audio
Server processes the audio in order to make it
spatialized. That, reflects also to the way that the
client receives and playbacks the processed audio.
The next paragraphs illustrate the differences in both
the client and the server’s side.

The major client’s side change is the way that
the audio is received and being produced. The user
receives a mixed RTP stream, that is, all the streams
of client audio data to be heard, have been processed
from the SIP Spatial Audio Server and have been
mixed in to one stream. Then it reproduces the
sound via a JMF Player.

Figure 3: Audio spatialization exploiting a spatialization
algorithm.

The most important changes are in the server’s
side. When the server receives the streams from the
client together with the avatar information
mentioned in solution one, it uses a spatialization
algorithm for each stream. This algorithm is invoked
from each server thread that serves a client. This
algorithm given a stream and an avatar information,
produces spatialized audio that sounds like it is
being emitted from the avatars mouth. The server
thread invokes that algorithm as many times as the
online users connected to the SIP Spatial Audio
Server, Each invocation of the algorithm instantiates
a new thread that executes the algorithm in order to
continuously process each stream. The processed
streams are mixed by the server thread into one
stream and are sent back to the client.

2.3 Discussion

In this section the paper presents a comparison
between the two solutions and the selection of the
most appropriate one. The two proposed solutions
will be examined in terms of bandwidth and
processing costs, complexity, as well as EVE
depended issues.

The multimedia nature of the platform’s content
disambiguated in high bandwidth consumption. The
addition of an extra multimedia factor (in this case
the audio) must be carefully implemented with as
low bandwidth cost as possible. Regarding the
client, the first solution requires one extra stream for
transmission-only purposes, after the client - server
handshaking has been achieved. The reception of the
audio is accomplished by the already established
udp stream of the VRML Server. As result the
network side of the platform is lightly overloaded.
On the other side, the second solution demands both

GRAPP 2008 - International Conference on Computer Graphics Theory and Applications

398

an inbound and an outgoing stream from the client’s
side, thus being more costly in bandwidth.

The processing cost, especially for the client is a
very important factor for deciding which solution
will be implemented. The combination of java with
X3D content and the fact that the platform runs via
an X3D-enabled HTML browser lead to a relatively
high processing cost. The addition of spatial audio
support must, therefore, be as light, in processing
cost, as possible. The server processing cost is very
important as well due to the number of clients a
server may be requested to server. The first solution
adds very little processing cost to the client, since no
extra modules are required to playback the audio.
The only extra cost is that of the X3D browser
reproducing the audio which is comparatively small
comparing it with the need for a new module. The
second solution is light as well for the client since
only one JMF Player class instance is required for
audio playback.

However, that is not the case for the server’s
side. The invocation of n2 threads, if n is the number
of clients, demands much more processing time than
the n threads required by the first’s solution server.
In addition the spatialization of the audio is
performed exclusively in the server, when the
second solution is used while on the first scenario
each client’s applet is responsible for the process.
The cost of spatializing the audio becomes a vast
process cost when the clients increase greatly in
number. Conclusively the first solution comes with
lower processing cost than the second one.

In terms of complexity the picture remains the
same. The first scenario relies for the spatialization
to the internal operations of the X3D browser, while
the second invokes n2 times the spatialization
algorithm, while at the same time the SIP Spatial
Audio Server is assigned with the complex task to
mix n streams for each user, where n is the number
of online clients.

To conclude with, the first solution is in all of its
aspects better than the second. However, there is a
platform dependent issue that need careful
examination in order to avoid a very uncomfortable
situation. Due to that fact that the first scenario
relies to the continuous communication between the
VRML Server and the SIP Audio Server, a
breakdown of the SIP Audio Server could lead to a
VRML Server exception and vice versa.
Nevertheless given the necessary attention this issue
can be sustained, and as result, given the overall
dominance of the first solution, the first scenario
was chosen.

3 DESCRIPTION OF SIP
SPATIAL AUDIO MECHANISM

In this section the mechanism behind the SIP Audio
Server is described. The mechanism consists of
three main components. The SIP component, the
capture component the RTP component and the
spatialization component The following three
paragraphs describe each one of the above
respectively.

Each EVE client applet features an integrated
SIP client (Figure 4). When the EVE Applet
connects to the connection Server of the platform, a
unique port is granted for SIP use. The applet passes
this port parameter to the SIP client, which sends an
SIP INVITE message to the SIP server in the
previously mentioned port. Subsequently, the client
waits for the SIP OK message. As long as the server
accepts the invitation, a server thread is created to
serve the client. The thread establishes an rtp receive
stream with the client while the client establishes an
RTP send stream with the server thread. When the
client decides to disconnect from the platform a SIP
BYE message is sent to the server. When the client
receives a SIP OK message from the server, the
session ends.

Once the SIP session is established the client’s
applet invokes the methods for capturing the sound.
Firstly, a list of the available capture devices is
examined until an appropriate for sending audio
data, is found. Next, follow the instantiation of a
processor that receives the capture data and
produces a data source in the specified format that is
continuously filled with captured audio data. This
data source is used by the RTP stream to send the
audio data to the sever.

The RTP manager creates an RTP send stream
and passes to it as argument the data source that is
produced by the processor. Once this is
accomplished the stream starts sending the audio
data of the audio source. On the server side, the
server thread that corresponds to the particular client
instantiate an RTP manager, which, in turn, creates a
receive stream that stores the received data to a
buffer file for a constant amount of time. When this
amount time has elapsed a second buffer is being
written for the same amount of time while the first is
flushed. This procedure is continuously repeated
with one buffer being filled with data and the other
being flushed.

A SIP SPATIAL AUDIO SERVER FOR THE EVE PLATFORM

399

Figure 4: SIP session.

Simultaneously with the capture setup, the
client’s applet instantiates an RTP manager that will
manage the rtp session (Figure 5).

Figure 5: RTP streaming flowchart.

The server thread when the RTP stream is
established, constantly, acquires information from
the VRML server about the client’s avatar. Then two
X3D AudioClip nodes and two X3D Sound nodes
are created. The Sound nodes’ fields of location and
direction match those of the avatars mouth.

Figure 6: Spatialization process.

Each Sound node has one, different with one
another, of the AudioClip nodes as its source field,
while each AudioClip node has as URL field one of
the two buffer files (Figure 6). Once the first buffer
file is filled with data the corresponding AudioClip
starts playback and the corresponding Sound node
produces the effect of spatialization. When the first
AudioClip finishes the second set of nodes starts
playback. This procedure is repeated as far as the
user is connected. It must be stated that the actual
X3D nodes are created on the client-side. However
since the AudioClip takes URLs as a source the
client has access to the buffer files that are stored on
the SIP Audio Server.

4 IMPLEMENTATION ISSUES

In this section the implementation issues are
discussed. The main technologies, classes and
methods of the SIP Spatial Audio Server
implementation are presented.

4.1 SIP Implementation

Because of the fact that the EVE platform is Java –
xj3d based, an java implementation of the protocol
was needed, to maintain its non-commercial, cross
platform characteristics. JAIN – SIP was chosen as
an API, nist-sip 1.2 was used as reference
implementation. These are the main classes used:
• SipStack
• SipFactory
• SipProvider

GRAPP 2008 - International Conference on Computer Graphics Theory and Applications

400

• ClientTransaction
• MessageFactory

Three are the main methods invoked:

• processRequest (RequestEvent). A custom
method for processing SIP requests such as
INVITE.

• MessageFactory. createRequest. A method for
creating SIP requests such as INVITE

4.2 RTP Streaming and Audio Capture

The RTP streaming and the audio captured
management tasks, is performed by custom code tha
utilizes the Java Media Framework API – JMF.

Five are the main classes used for the audio
capture:
• javax.media.CaptureDeviceInfo
• javax.media.Processor
• javax.media.MediaLocator
• javax.media.Manager
• javax.media.format.AudioFormat
• javax.media.protocol.DataSource

A list of the most important methods for the
audio capture:
• Vector CaptureDeviceManager.getDeviceList
• DataSource

Manager.createDataSource(MediaLocator ml)
• Processor

Manager.createProcessor(DataSource ds);
• Javax.media.control.FormatControl.setFormat(

AudioFormat af).
• DataSource Processor.getDataOutput()

The capture format that is used in this
implementation is in linear encoding, has 8000 Hz
sample rate, 8 bits of sample size and is
monophonic. The streaming format was of the same
characteristics. We used this relatively low quality
settings in order to save bandwidth and processing
resources.

Main classes used for the RTP streaming are the
following:
• javax.media.rtp.RTPManager
• javax.media.rtp.SendStream
• javax.media.rtp.ReceiveStream
• javax.media.protocol.PushBufferDataSource
• lavax.media.protocol.PushBufferStream
• javax.media.rtp.event.NewReceiveStreamEvent

A list of the most important methods for the RTP
streaming is the following:
• RTPManager.NewInstance()

• RTPManager.createSendStream
(DataSource dataSource, int streamIndex)

• NewReceiveStreamEvent.getReceiveEvent()

4.3 Audio Spatialization

The spatialization of audio is performed by the X3D
Sound Node. The Sound node specifies fields that
affect the spatialization of the sound. The sound is
located at a point in the local coordinate system and
it is emitted in an elliptical pattern. The location is
specified by the location field, while the direction
vector of the ellipsoids is specified by the direction
field. There are fields that specify the maximum and
minimum values to where the sound is audible, that
is the maximum and minimum lengths of the two
ellipsoids along the direction vector.

A very crucial field is the spatialize field. If set
to TRUE the sound is perceived as being
directionally located relative to the viewer. If the
viewer is located between the transformed inner and
outer ellipsoids, the viewer's direction and the
relative location of the Sound node is taken into
account during playback. In our implementation this
field is set to TRUE, resulting in a very realistic
spatialized audio playback.

The sound source specified by the field source is
an AudioClip node. The AudioClip node specifies
an url field, that in our implementation is the url of
the buffer file, which is used as source. In order to
change between the two sets of nodes, we used an
ecma script which sets the startime field of one
AudioClip that waits to start, equal to the stoptime
field of the currently playing AudioClip.

5 CONCLUSIONS - FUTURE
WORK

This paper presents the addition of an SIP Spatial
Audio Server to the EVE platform. This new server
enhances to a great extend the realism of the virtual
world and expands the interaction capabilities of the
platform. In addition it utilizes the latest
technologies in this field which makes EVE an
equivalent alternative to commercial solutions.

Our next step is to simulate the two proposed
solutions in order to conclude to experimental
results of each solution’s efficiency and stability.

A SIP SPATIAL AUDIO SERVER FOR THE EVE PLATFORM

401

REFERENCES

Liesenborgs, J., 1998. Voice over IP in networked virtual
environments, Computer Society Press.

Macedonia, M., Brutzmann, D., Zyda, M., Pratt, D.,
Barham, P., Falby, J., Locke, J., 1995. NPSNET: A
multi-player 3D virtual environment over the internet.
In Pat Hanrahan and Jim Winget, editors, 1995
Symposium on Interactive 3D Graphics, pages 93-94.
ACM SIGGRAPH, April 1995. ISBN 0-89791-736-7.

Bouras, C., Panagopoulos, A., Tsiatsos, T., “Advances in
X3D multi - user virtual environments”, IEEE
International Symposium on Multimedia (ISM 2005),
Irvine, California, USA,, 12 - 14 December 2005, pp.
136 – 142.

Bouras, C., Giannaka, E., Panagopoulos, A., Tsiatsos, T.,
“A Platform for Virtual Collaboration Spaces and
Educational Communities: The case of EVE.”
Multimedia Systems Journal, Special Issue on
Multimedia System Technologies for Educational
Tools, Springer Verlang, Vol. 11, No. 3, pp. 290 –
303, 2006.

Bouras, C., Tegos, C., Triglianos, V., Tsiatsos, T., “X3D
multi-user virtual environment platform for
collaborative spatial design”. The 9th International
Workshop on Multimedia Network Systems and
Applications (MNSA-2007), Toronto, Canada,, 25 -
29 June 2007, (to appear).

GRAPP 2008 - International Conference on Computer Graphics Theory and Applications

402

