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Abstract: We present a method for incrementally learning mixture models that avoids the necessity to keep all data points
around. It contains a single user-settable parameter that controls via a novel statistical criterion the trade-off
between the number of mixture components and the accuracy of representing the data. A key idea is that each
component of the (non-overfitting) mixture is in turn represented by an underlying mixture that represents
the data very precisely (without regards to overfitting); this allows the model to be refined without sacrificing
accuracy.

1 INTRODUCTION

Mixture models are used for many purposes in com-
puter vision, e.g. to represent feature distributions or
spatial relations. Given a fixed data sample, one can
fit a mixture model to it using one of a variety of meth-
ods. However, in many applications, it is not possible
or convenient to fix a model at the outset; one would
rather learn it over time. For example, this would al-
low the deployment of generic recognition or tracking
systems with minimal set-up effort, and training them
over time on the task at hand.

However, learning and refining a mixture model
incrementally is not an easy task. How is a given
model to be updated when new data points arrive?
If the data points underlying the current model have
been discarded, then there is no general answer to this
question. On the other hand, keeping all data around
defeats the purpose of learning parametric models in-
crementally. Thus, a compromise needs to be found.
We need to keep around enough information to be
able to refine a model without sacrificing model accu-
racy, but the quantity of this information should grow
much more slowly than the number of raw data points.

We address this problem by seeking to represent
the data points with (1) sufficient fidelity that we can
safely discard them, while at the same time (2) com-
mitting to no more predictive precision as the original
data support.

These two objectives are mutually exclusive, as
the former tends to overfit and the latter to underfit
the data. We therefore propose a two-level representa-

tion. The first level seeks to summarize the data with
high precision, allowing us to discard underlying data
without significantly impairing our ability to refine
the model. We therefore call it the precise model. The
second level provides a model that represents no more
detail than is supported by the underlying data and
then avoids counterproductive bias in future predic-
tions; we call it the uncertain model. Each uncertain
component is then represented by a precise mixture
model that allows it to be split appropriately when it
turns out that it oversimplifies the underlying data. In
the following development, we use Gaussian mixture
models, but most of the principles are applicable to
other types of mixture models.

2 LEVEL 1: THE PRECISE
MIXTURE MODEL

When a GMM is learned from a data set of n ob-
servations, the main difficulty lies in the choice of
the mixture complexity (i.e. the number of Gaus-
sian components in the mixture). The most popular
offline method is Expectation Maximization (Demp-
ster et al., 1977) for fitting a sequence of GMMs,
each with a specified number of components. The
optimal model is then selected using a penalty func-
tion (Akaike, 1973; Rissanen, 1978; Schwarz, 1978).
Online fitting is even more difficult; since the data
points have been discarded, they cannot be used to
evaluate the fitted models. The problem is then ad-
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∑N
i=1 πt

i
(1)

where each Gaussian is represented by its weight
πt

i , its mean µt
i and its covariance Ct

i . We then re-
ceive a new data point represented by its distribution
gt(x;µt ,Ct) and its weight πt . Ct here represents the
observation noise. As suggested by Hall and Hicks
(Hall and Hicks, 2005), the new resulting GMM is
computed in two steps:

1. Concatenate – produce a model with N +1 com-
ponents by trivially combining the GMM and the
new data into a single model.

2. Simplify – if possible, merge some of the Gaus-
sians to reduce the complexity of the GMM.
The GMM resulting from the first step is simply

pt(x) =
∑N

i=1 πt−1
i g(x;µt−1

i ,Ct−1
i )+πtgt(x;µt ,Ct)

∑N
i=1 πt−1

i +πt
(2)

The goal of the second step is to reduce the complex-
ity of the model while still giving a precise descrip-
tion of the observations. Hall and Hicks (Hall and
Hicks, 2005) propose to group the Gaussians using
the Chernoff bound to detect overlapping Gaussians.
Different thresholds on this bound are then tested and
the most likely result is kept as the simplified GMM.
Since this method is too slow for an on-line process,
we use a different criterion proposed by Declercq and
Piater (Declercq and Piater, 2007) for their uncertain
Gaussian model. This model provides a quantitative
estimate λ of its ability to describe the associated data
that takes on a value close to 1 if the data distribu-
tion is Gaussian and near zero if it is not. This value,
called the fidelity in the sequel, is useful to decide if
we can merge two given Gaussians without drifting
from the real data distribution.

2.2 Estimating the Fidelity of a
Gaussian Model

To estimate the fidelity λ of a Gaussian model, we first
need to compute the distance between this model and
its corresponding data set. This is done with a method
inspired from the Kolmogorov-Smirnoff test,

D =
1
|I|
∫

I

∣∣F̂(x)−Fn(x)
∣∣dx, (3)

where Fn(x) is the empirical cumulative distribution
function of the n observations, F̂(x) is the correspond-
ing cumulative Gaussian distribution, and I is the in-
terval within which the two functions are compared.
To simplify matters, the distance D is assumed to have
a Gaussian distribution, which leads to the pseudo-
probabilistic weighting function

λ = e
−D2

T 2
D , (4)

where TD is a user-settable parameter that represents
the allowed deviation of observed data from Gaus-
sianity. Whereas the sensitivity of the Kolmogorov-
Smirnov test grows without bounds with n, λ provides
a bounded quantification of the correspondence be-
tween the model and the data. Therefore, this crite-
rion is more appropriate for our case since we need
to estimate the correspondence of the data with the
model and not their possible convergence to a Gaus-
sian distribution.

Thus, the original data are not required anymore
if we keep in memory an approximation of their cu-
mulative distribution within a given interval. Since
the number of dimensions of the data space can be
large, we compute the distance D for each dimension
separately to keep the computational cost linear in the
number of dimensions. The total distance is then sim-
ply the sum of these individual distances.

2.3 Simplification of the Gaussian
Mixture Model

To decide whether two Gaussians Gi and G j can
be simplified into one, we merge them together and
check if the resulting Gaussian has a fidelity λ close
to one, say, exceeding a given threshold λ+

min = 0.95.
The resulting Gaussian is computed using the usual
equations supplemented by the combination of the cu-
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Figure 1: Evolution of the precise mixture model with the number of data points drawn from an arc-shaped distribution.

mulative density functions:

π = πi +π j, (5)

µ =
1
π

[πiµi +π jµ j], (6)

C =
πi

π
[
Ci +(µi−µ)T (µi−µ)

]

+
π j

π
[
C j +(µ j−µ)T (µ j−µ)

]
, (7)

F(x) =
1
π

[πiFi(x)+π jFj(x)] , (8)

At each time, if the current GMM before the con-
catenation is already the simplest possible precise
model of the data, the only Gaussian that can be
merged with another is the one representing the new
data point. If this Gaussian is successfully merged,
the resulting Gaussian is, in its turn, the only available
candidate for a simplification. The merging then con-
tinues iteratively until the best candidate merge drops
below λ+

min. This algorithm is very fast since it cor-
responds, on average, to two nested loops containing
only one nearest neighbour search and one merge, re-
spectively. We only try to merge the new Gaussian
with its nearest neighbour since this is most likely
to provide a precise simplification. While this ap-
proach is simplistic, it gives very good results in prac-
tise while inducing only a low computational cost.

2.4 Discussion

The first row in figure 1 shows a first example of
the evolution of the GMM with data points gener-
ated from an arc-shaped distribution. At the begin-
ning, none of the Gaussians can be merged since there
is clearly no Gaussian distribution that can summa-
rize more than one observation without a significant
loss of information. The complexity of the mixture

thus increases by one with each new data point. As
the shape of the distribution appears more clearly, the
simplification step takes effect, and the number of
Gaussians in the mixture decreases until it converges
to a trade-off between the mixture complexity and its
accuracy. This trade-off is controlled with the param-
eter TD defined in equation 4. The larger its value, the
farther the model is allowed to deviate from the data
and the lower the complexity of the model will be.
This dependence will be analyzed in detail in section
4.

Let us now consider the evolution of the model
for data generated from a Gaussian distribution with
a large covariance. Figure 1(l) shows the mean evolu-
tion of the number of Gaussians in the mixture for a
series of 50 tests, and figures 1(g)-(k) show the evo-
lution for one of these tests. As one would expect,
we first observe an explosion of the complexity of the
model before it converges to a single Gaussian. This
shows that the effort to faithfully represent the obser-
vations leads to gross overfitting of sparse data. Thus,
our method is useful to summarize past observations
but not to predict future observations. To address pre-
diction, in the following section we propose a 2-level
mixture model containing one level for precise sum-
mary of the data and one for a non-overfitted repre-
sentation of the data.

3 LEVEL 2: THE UNCERTAIN
MIXTURE MODEL

Let us consider again the case of a GMM learned from
Gaussian-distributed data. What should be the value
of the parameter TD to guarantee that the model will
always be a one-Gaussian mixture with a fidelity λ
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P (eD2/T̃ 2
D ≤ λ+

min) = α

T̃D

Figure 2: (a) Distribution of D for a number of observations between 1 and 200 estimated over 1000 trials. The red line
represents the mean, the blue the standard deviation, and the green lines the extrema of the samples. (b) We then choose TD
such that the risk of incorrectly splitting the Gaussian is bounded by α.
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Figure 3: Evolution of the uncertain mixture model with the number of data points drawn from an arc-shaped distribution
(compare Fig. 1).

exceeding λ+
min? To answer this question we have

computed the distribution of the distance D (eqn. 3)
for a number of observations between 1 and 200 esti-
mated over 1000 tests. Figure 2(a) shows the results
we obtained. As expected, the variance of the distance
D is very large when the number of observations is
low. We then have to choose TD such that probability
of incorrectly splitting the Gaussian is bounded by a
constant α. Since TD represents a standard deviation
(eqn. 4), and since empirical estimates of variance fol-
low a χ2 distribution, we can limit this probability to,
say, α = 0.005, by replacing TD by an adjusted T̃D
defined as

T̃ 2
D =

N
χ2

N−1(α)
TD

2, (9)

where χ2
N−1(α) is the inverse of the cumulative den-

sity function of the χ2 distribution evaluated at prob-
ability α. The new fidelity criterion is then defined by

exp
(−D2

T̃ 2
D

)
≥ λ+

min. (10)

We would now like to express this criterion by a
new fidelity criterion λ−min < λ+

min. Substituting eqn. 9

yields
−D2χ2

N−1(α)
NT 2

D
≥ logλ+

min, (11)

exp
(−D2

T 2
D

)
≥ exp

(
N logλ+

min

χ2
N−1(α)

)
. (12)

The complexity of the imprecise GMM is then con-
trolled by the lower threshold on the fidelity

λ−min = exp

(
N logλ+

min

χ2
N−1(α)

)
(13)

that can be precomputed in a table since it only de-
pends on λ+

min. Thanks to this new threshold, we are
able to avoid the overfitting due to an explosion of the
GMM complexity.

However, even if we have reduced the complex-
ity of the model, we still face the problem of overfit-
ting through the Gaussian model itself. Indeed, the
Gaussian learned from a data set corresponds to the
maximum likelihood estimate of these data and not of
the complete distribution: Consider, for example, the
case of a Gaussian learned from a single observation,
it is clear that this Gaussian is not representative of
the complete distribution. Again, the uncertain Gaus-
sian model of Declercq and Piater (Declercq and Pi-
ater, 2007), briefy summarized next, provides us with
a solution to this problem by accounting for the uncer-
tainty in the relevance due to a lack of observations.
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2
(x−µ)TC̃−1(x−µ)

)
+(1−λ)

(14)
where C̃ is an augmented covariance that bounds
the risk of underestimating the true covariance, i.e.,
P(C̃≤C) = α, where conventionally α = 0.05. Since
empirical estimates of variance follow a χ2 distribu-
tion,

C̃ =
n

χ2
n−1(α)

Ĉ, (15)

where n is the number of observations used to learn
the model and Ĉ is its maximum-likelihood covari-
ance matrix. Thanks to the new threshold λ−min and the
uncertain Gaussian model, we are now able to learn a
GMM that is kept as general as possible until there is
sufficient evidence that the model can be made more
specific.

The drawback of this solution is that it is now im-
possible to recover the data from it. For example, the
data in figure 3(a) suggest that the underlying distribu-
tion is poorly represented by two Gaussians. Unfortu-
nately, when this fact is detected, it is already too late:
The observations are not in memory anymore, leaving
you with a poor model that can no longer be refined.
This motivates our two-level mixture model where the
data are represented by the uncertain mixture model,
and where each uncertain Gaussian contains a precise
mixture model to describe itself. Thus, when we want
to refine an uncertain Gaussian, we can split it accord-
ing to its underlying mixture components.

3.2 Updating a Two-Level Gaussian
Mixture Model

The algorithm used to update the GMM proceeds
along the following steps:

1. Merge the new data point with the nearest uncer-
tain Gaussian,

2. if the resulting Gaussian has a value of λ below
the corresponding λ−min, replace it with two Gaus-
sians learned from its underlying GMM with EM
(Dempster et al., 1977),

3. else continue to merge the current uncertain Gaus-
sian with its nearest neighbour until the resulting
Gaussian has a value of λ lower than the corre-
sponding λ−min.

Merging two uncertain Gaussians also involves
merging their respective underlying mixture models.
This can be done by simply summing the components
from both mixtures, and using the simplification step
only on the precise Gaussian that contains the new ob-
servation. Even if other precise Gaussians could pos-
sibly be merge together, we leave that for later when
they merge with the current observation. This way,
we distribute the computational cost through different
time instants.

3.3 Discussion

Figure 3 shows an example of the evolution of the
GMM with data points generated from an arc-shaped
distribution. This time the complexity of the GMM
only increases when there is enough evidence that
the observed distribution is too complex for the cur-
rent model. If we compare figure 3 with figure 1,
we see that the two-level GMM and the precise mix-
ture model converge to the same distribution. The
two-level approach then provides a more stable non-
overfitted model that can still become more accurate
thanks to the precise model level.

4 EXPERIMENTS

4.1 Empirical Analysis of the Behaviour
of the 2-Level Model

To analyze the relation between the model complex-
ity and the only parameter TD, we generated data from
a circular distribution for different values of TD from
0.01 to 0.25. We ran 30 tests per value of TD and
stopped each test after 500 observations. As we can
see in figure 4(a), TD provides us with a simple way to
specify the desired trade-off between the model com-
plexity and its accuracy.

Since the learning is incremental, we may won-
der if the model will always converge to qualitatively
the same result. We therefore performed the same ex-
periment with TD = 0.04 and with angular velocities
between 0.01 and 2 rad/frame for the process that gen-
erates the observations. As shown in figure 4(b), the
model complexity is nearly independent of the order
of the observations.

4.2 A Vision Application

Our method provides an under-fitted probability den-
sity estimation of the partially observed distribution.
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Figure 4: Dependency of the number of Gaussians in the mixture model on (a) TD and (b) the observations order (through the
angular velocity). The red line represents the means of the 30 tests for each value, and the green lines represent the extrema.

Figure 5: Evolution of a model learned from a webcam. First row: TD = 0.04. Second row: TD = 0.04 but the model is only
learned from every tenth frame. Third row: TD = 0.02. In each row, the frames no. 70, 110, 220 and 450 are shown.

It can then be used to predict future observations with-
out exerting strong counterproductive bias. A possi-
ble application of our method is then the online learn-
ing of an object model with the immediate objective
of improving the tracking of this object. This idea
was tested by Declercq and Piater in the context of
the simultaneous learning and tracking of a visual fea-
ture graph models (Declercq and Piater, 2007). The
idea is to incrementally learn the relations between a
set of tracked features and to use those incompletely
learned relations to improve the tracking of the fea-
tures. While the uncertain model of Declercq and Pi-
ater (2007) is limited to rigid relations, our present
model is able to describe any relation that can be rep-

resented with a Gaussian mixture model. Figure 5
shows an example of the learning of the articulated
relation existing between an upper arm and a forearm.
The method is first tested with TD = 0.04 and a learn-
ing procedure that uses all frames to update the model
(row 1). The same procedure is then tested using only
one in ten frames (row 2). As the figure shows, the
resulting model is not influenced by this difference in
the data set (except, of course, in the difference of
covariances due to a difference of evidence accumu-
lation). The third row shows the result for a smaller
value of TD which corresponds as expected to a mix-
ture with more Gaussians.
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