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Abstract: In this paper we propose a method for continuous learning of simple visual concepts. The method continu-
ously associates words describing observed scenes with automatically extracted visual features. Since in our
setting every sample is labelled with multiple concept labels, and there are no negative examples, reconstruc-
tive representations of the incoming data are used. The associated features are modelled with kernel density
probability distribution estimates, which are built incrementally. The proposed approach is applied to the
learning of object properties and spatial relations.

1 INTRODUCTION

An important characteristic of a system that operates
in a real-life environment is the ability to expand its
current knowledge. The system has to create and ex-
tend concepts by observing the environment – and
has to do so continuously, in a life-long manner. An
integral part of such a continuous learning system
is a method for incremental updating of previously
learned representations, which has to fulfill several
requirements: (i) the learning algorithm should be
able to update the current representations (and create
new ones if necessary), (ii) it should not require ac-
cess to old (previously processed) original data, (iii)
the representations should be kept compact, and (iv)
the computational effort needed for a single update
should not depend on the amount of previously ob-
served data.

In this paper we present an algorithm that ad-
dresses these requirements in the context of learn-
ing associations between low-level visual features and
higher-level concepts. In particular, we address the
problem of continuous learning of visual properties
(such as colour or shape) and spatial relations (such
as ‘to the left of’ or ‘far away’). The main goal is
to find associations between words describing these
concepts and simple visual features extracted from
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images.
In our setting, the inputs in the learning process

are partial descriptions of the scene; descriptions of
the objects and relationships between them. An ob-
ject can be labeled with several concept labels (e.g.,
object A can be ‘yellow’ and ‘round’ and positioned
‘in the middle’ of the image and ‘to the left of’ object
B). These descriptions serve as learning examples.
There are no negative examples (e.g., the information
that ‘yellow’ is not ‘red’ is not provided). Therefore,
the algorithm should build reconstructive representa-
tions without relying on discriminative information,
which would discriminate between different classes
(i.e., concepts) (Fidler et al., 2006). It can only ex-
ploit consistency of the feature values extracted from
the objects labelled with the same concept and speci-
ficity of these values with respect to the rest of the
feature values related to other concept labels.

The contribution of this paper is twofold. First, we
present a method that is able to continuously process
input feature vectors and learn corresponding associa-
tions based on the consistency and specificity criteria.
Similar problems are commonly referred to as exam-
ples of the symbol grounding problem and have of-
ten been tackled by different researchers in different
settings (Harnad, 1992; Ardizzone et al., 1992; Roy
and Pentland, 2002; Roy, 2002; Vogt, 2002). Sev-
eral papers have also been published addressing on-
line learning, particularly with regard to object recog-
nition (Kirstein et al., 2005; Steels and Kaplan, 2001;
Arsenio, 2004). In our system, however, we utilize,
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in a unified framework, continuous online learning of
qualitative object properties and spatial relations in
a setting with no negative examples and when every
sample is labelled with multiple concept labels, with
a view toward using this as a basis for further learning
and facilitating unlearning as well.

To facilitate this type of learning, our method
models the values of features, that are associated
with individual concepts, by estimating the probabil-
ity density function that generated them. To that end,
we employ kernel density estimates (KDE), which
apply a mixture of kernels to approximate the un-
derlying density. Since the models have to be esti-
mated continuously from the arriving data, we con-
struct a kernel for each incoming data and use it to
update the corresponding distributions. This boils
down to estimating the single parameter of the kernel
– its bandwidth. We propose a method for estimat-
ing the bandwidth of each incoming kernel, which
is the second contribution of this paper. A number
of bandwidth selection methods have been proposed
previously which aim to minimize the asymptotic-
mean-integrated-squared-error (AMISE) between the
unknown original distribution and its approximation
based on a set of the observed samples (e.g., Wand
and Jones (Wand and Jones, 1995)). However, these
approaches are not directly applicable in incremental
settings. To that end, various incremental approaches
have been proposed which usually incorporate some
constraints or prior knowledge of the relation between
the consecutive samples (Elgammal et al., 2002; Han
et al., 2004), like temporal coherence on the incom-
ing data (Arandjelovic and Cipolla, 2005; Song and
Wang, 2005). Szewczyk (Szewczyk, 2005) applies a
Dirichlet process prior on components and applies a
Gamma density prior to sample the bandwidth of the
incoming data. A drawback of this approach, how-
ever, is that the parameters of the prior need to be
specified for a given problem. Here, we propose an
incremental bandwidth selection approach that does
not assume any temporal coherence and does not re-
quire setting a large number of parameters.

The paper is organised as follows. First we intro-
duce the main incremental learning algorithm. Then
we explain the algorithm for incremental updating of
KDE representations. In section 4 we then present
the evaluation of the proposed methods. Finally, we
summarize and outline some work in progress.

2 MAIN INCREMENTAL
LEARNING ALGORITHM

The main task of the incremental algorithm is to as-
sign associations between extracted visual features
and the corresponding visual concepts. Since our
system is based on positive examples only (we do
not have negative examples for the concepts being
learned), and each input instance can be labelled with
several concept labels, the algorithm can not exploit
discriminative information and can rely only on re-
constructive representations of observed visual fea-
tures. Each visual concept is associated with a vi-
sual feature that best models the corresponding im-
ages according to the consistency and specificity cri-
teria. It must determine which of the automatically
extracted visual features are consistent over all im-
ages representing the same visual concept and that
are, at the same time, specific for that visual concept
only. The learning algorithm thus selects from a set
of one-dimensional features (e.g., median hue value,
area of segmented region, coordinates of the object
center, distance between two objects, etc.), the feature
whose values are most consistent and specific over all
images representing the same visual concept (e.g., all
images of large objects, or circular objects, or pairs of
objects far apart etc.). Note that this process should
be performed incrementally, considering only the cur-
rent image (or a very recent set of images) and learned
representations – previously processed images cannot
be re-analysed.

Therefore, at any given time, each concept is asso-
ciated with one visual feature, i.e., with the represen-
tation built from previously observed values of this
feature. A Kernel Density Estimate (KDE) is used
to model the underlying distribution that generated
these values. The KDE models, in our case Gaussian
mixture models, are updated at every step by consid-
ering the current model and new samples using the
algorithm presented in the next section. However, af-
ter new samples have been observed, it may turn out
that some other feature would better fit the particu-
lar concept. The system enables such switching be-
tween different features by keeping simplified repre-
sentations of all features. Assuming that the data that
has to be modeled is coarsely normally distributed the
proposed algorithm keeps updating the Gaussian rep-
resentations of all features for every concept being
learned2. These updates can be performed without
loss of information. When at some point the algo-
rithm determines that some other feature is to be asso-
ciated with the particular concept, it starts building a

2In practice, only the representations of a number of po-
tentially interesting features could be maintained.
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new KDE, starting with one component obtained from
the corresponding Gaussian model3.

The only question that still remains is how to
select the best feature. The algorithm fulfills the
consistency and specificity criteria mentioned above
by selecting the feature with a distribution that is
most distant from the distributions of the correspond-
ing feature values of all other concepts. The dis-
tances between two distributions are measured us-
ing the Hellinger distance [16]. Note that while the
Hellinger distance can be calculated exactly for two
Gaussians, there is no closed-form solution for Gaus-
sian mixtures. We therefore apply the unscented-
transform (Julier and Uhlmann, 2005) to approxi-
mate the Hellinger distance between two mixtures.
The proposed incremental learning algorithm is pre-
sented4 in Algorithm 1.

The learned concepts are than used for analysis
of new images. Feature vectors are extracted from
the image and evaluated with a recognition algorithm
that for every concept returns a belief, a value in the
range from 0 to 1. This value is obtained by verifying
how well the value of the feature, which is assigned
to the concept, fits the particular KDE distribution,

i.e., p(i) = getBelief(mC(i)
t .KDE, f (mC(i)

t .B). This esti-
mation can be done in different ways; our algorithm
returns the integral over the pdf values that have lower
probability than the current sample.

3 INCREMENTAL ESTIMATION
OF KDE

In the previous section we described the main algo-
rithm for incremental learning of simple visual con-
cepts. Since these concepts are described using ker-
nel density estimates (in our case mixtures of one-
dimensional Gaussians), we present here an approach
to incremental construction of these estimates.

Formally we define a Gaussian-kernel-based
KDE as an M-component mixture of Gaussians

p(x) =
M

∑
j=1

w jKh j(x− x j), (2)

3In practice, several KDEs of the most interesting fea-
tures could be maintained.

4The following notation is used: mC(i) represent nc
models of concepts being learned, where mC(i).G( j) is a
Gaussian model of the j-th feature and mC(i).KDE is a KDE
model of the best feature (mC(i).B) for the i-th concept. f
is a n f−dimensional training feature vector, c is a list of
the corresponding concept labels. The subscripts t− 1 and
t indicate the time step.

Algorithm 1 Main incremental learning algorithm.

Input: mC(i)
t−1; i = 1 . . .nct−1, ft , ct // current models

and current input
Output: mC(i)

t , i = 1 . . .nct // updated models
// Update Gaussian models

for i ∈ ct do // for all current concept labels
if i /∈mCt−1 then // previously unencountered
concept

nct = nct−1 + 1 // increase the number of
concepts
init(mC(i)

t ) // initialize a new concept
else // existing concept

for j = 1 . . .n f do // for all features
mC(i)

t .G( j) = updateG(mC(i)
t−1.G

( j), f ( j)
t )

// update Gaussian models
end for

end if
end for
// Select best features

for i = 1 . . .nct do // for all learned concepts
for j = 1 . . .n f do // for all features

di j = ∑nct
k=1 dHel(pd f 1, pd f 2),

where // calculate Hellinger
distances

pd f 1 =

{
mC(i)

t .KDE , if mC(i)
t .B = j

mC(i)
t .G( j) , if mC(i)

t .B 6= j
(1)

pd f 2 =

{
mC(k)

t .KDE , if mC(k)
t .B = j

mC(k)
t .G( j) , if mC(k)

t .B 6= j

end for
mC(i)

t .B = argmax
j

di j

// determine the best featureend for
// Update KDE models

for i = 1 . . .nct do // for all learned concepts
if mC(i)

t .B 6= mC(i)
t−1.B then // new best feature

mC(i)
t .KDE = mC(i)

t .G(mC(i)
t .B) // initialize

KDE with corresp. Gaussian
else // still the same best feature

if i ∈ ct then // current concept label
mC(i)

t .KDE =

updateKDE(mC(i)
t−1.KDE, f (mC(i)

t .B)
t )

using Algorithm 2
else // not current concept label

mC(i)
t .KDE = mC(i)

t−1.KDE // keep the old
model

end if
end if

end for
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where w j is the weight of the j-th component and
Kσ(x−µ) is a Gaussian kernel

Kσ(z) = (2πσ2)
−1
2 exp(−1

2
z2/σ2), (3)

centered at mean µ with standard deviation σ; note
that σ is also known as the bandwidth of the kernel.
Suppose that we observe a set of nt samples {xi}i=1:nt
up to the current time-step t. We seek a kernel density
estimate with kernels of equal bandwidths ht

p̂t(x;ht) =
1
nt

nt

∑
i=1

Kht (x− xi), (4)

which is as close as possible to the underlying distri-
bution that generated the samples. A classical mea-
sure used to define closeness of the estimator p̂t(x;ht)
to the underlying distribution p(x) is the mean inte-
grated squared error (MISE)

MISE = E[p̂t(x;ht)− p(x)]2. (5)

Applying a Taylor expansion, assuming a large
sample-set and noting that the kernels in p̂t(x;ht)
are Gaussians ((Wand and Jones, 1995), p.19), we
can write the asymptotic MISE (AMISE) between
p̂t(x;ht) and pt(x) as

AMISE =
1

2
√

π
(htnt)−1 +

1
4

h4R(p′′(x)), (6)

where p′′(x) is the second derivative of p(x) and
R(p′′(x)) =

∫
p′′(x)2dx. Minimizing AMISE w.r.t.

bandwidth ht gives AMISE-optimal bandwidth

htAMISE = [
1

2
√

πR(p′′(x))nt
]

1
5 . (7)

Note that (7) cannot be calculated exactly since it
depends on the second derivative of p(x), and p(x)
is exactly the unknown distribution we are trying to
approximate. Several approaches to approximating
R(p′′(x)) have been proposed in the literature (see e.g.
(Wand and Jones, 1995)), however these require ac-
cess to all observed samples, which forgoes the pos-
sibility of incremental learning where we wish to dis-
card previous samples and retain only compact rep-
resentations of them. Thus in our setting we have to
estimate the bandwidth of the kernel corresponding to
the incoming sample and update the existing density
estimate using that kernel; we propose a plug-in rule
to achieve that.

Let xt be the currently observed sample and let
p̂t−1(x) be an approximation to the underlying distri-
bution p(x) from the previous time-step. Note that
in incremental learning we compress the estimated
distributions once in a while to maintain low com-
plexity (Leonardis and Bischof, 2005). Therefore,

in general, the bandwidths of the kernels in p̂t−1(x)
may vary. The current estimate of p(x) is initial-
ized using the distribution from the previous time-
step p̂t(x) ≈ p̂t−1(x). The bandwidth ĥt of the ker-
nel Kĥt

(x− xt) corresponding to the current observed
sample xt is obtained by approximating the unknown
distribution p(x)≈ p̂t(x) and applying (7)

ĥt = cscale[2
√

πR(p̂′′t (x))nt ]−1/5, (8)

where cscale is used to increase the bandwidth a lit-
tle and thus avoid undersmoothing. In our experi-
ence, values of the scale parameter cscale ∈ [1,1.5] in
(8) give reasonable results and in all our experiments
cscale = 1.3 is used. The resulting kernel Kĥt

(x− xt)
is then combined with p̂t−1(x) into an improved esti-
mate of the unknown distribution

p̂t(x) = (1− 1
nt

)p̂t−1(x)+
1
nt

Kĥt
(x− xt). (9)

Next, the improved estimate p̂t(x) from (9) is plugged
back in the equation (8) to re-approximate ĥt and thus
equations (8) and (9) are iterated until convergence;
usually, five iterations suffice. The entire procedure is
outlined in Algorithm 2.

Algorithm 2 Incremental density approximation algo-
rithm.
Input: p̂t−1(x), xt . . . the current density approxima-

tion and the new sample
Output: p̂t(x) . . . the new approximation of density

1: Initialize the estimate of the current distribution
p̂t(x)≈ p̂t−1(x).

2: Estimate the bandwidth ht of Kĥt
(x− xt) accord-

ing to (8) using p̂t(x).
3: Reestimate p̂t(x) according to (9) using Kĥt

(x−
xt).

4: Iterate steps 2 and 3 until convergence.
5: If the number of components in p̂t(x) exceeds a

threshold Ncomp, compress p̂t(x).

4 EXPERIMENTAL RESULTS

In this section we present two sets of experiments,
which were conducted to evaluate the proposed meth-
ods. The aim of the first experiment was to demon-
strate the incremental bandwidth selection method
proposed in Section 3. We generated 1000 samples
from a 1D mixture of Gaussians and a uniform dis-
tribution (Figure 1(a)). These samples were then
used one at a time to incrementally build the ap-
proximation to the original distribution using Algo-
rithm 2. At each time-step two other KDE approxi-
mations were also built for reference: an optimal and
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Figure 1: Illustration of Incremental KDE algorithm: (a) final estimated distributions, (b) MISE with respect to the source
distribution, (c) estimated bandwidth.
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Figure 2: (a) Input shapes. (b) Training / automatically generated scene description.

a suboptimal. These were batch approximations, and
were thus built by processing all samples observed
up to the given time-step simultaneously. The op-
timal bandwidth was estimated using the solve-the-
equation plug-in method (Jones et. al, 1996), which
is currently theoretically and empirically one of the
most successful bandwidth selection methods. For the
suboptimal bandwidth selection we have chosen Sil-
verman’s rule-of-thumb ((Wand and Jones, 1995), pg.
60), which was also used to initialize our algorithm
from the first two samples.

The results are shown in Figure 1. The final
KDEs, after observing all 1000 samples, estimated by
the proposed incremental method and the two refer-
ence methods, are shown in Figure 1(a). It is clear
that Silverman produced an undersmoothed approx-
imation to the ground-truth distribution. The incre-
mentally constructed KDE and the batch-estimated
KDE using the solve-the-equation plug-in both visu-
ally agree well with the ground-truth. This can be
further quantitatively verified from Figure 1(b) where
we show how the integrated squared error (ISE) be-
tween the three approximations and the ground-truth
was changing as new samples were observed. While
initially errors are high for all three approximations
they decrease as new samples arrive. As expected,
the error of the KDE calculated using Silverman’s
rule remains high even after all 1000 samples have
been observed. On the other hand, the error de-
creases faster for the KDE constructed by the pro-
posed method and comes close to the error of the

optimally selected bandwidth with increasing num-
bers of samples. Note that the optimal bandwidth
was calculated using all samples observed up to a
given step. On the other hand, the proposed incremen-
tal method produced similar bandwidths using only a
low-dimensional representation of the observed sam-
ples (Fig.1(c)).

We evaluated the proposed method for learning
visual concepts in a task that involved learning
concepts of several object properties and spatial
relations using simple objects of basic shapes and of
different colours and sizes (Fig. 2(a)). This image
domain is quite suitable for such analysis, since the
object properties are very diverse and well defined.
The input images contained pairs of objects that
were placed on a table in different configurations.
For every object, we considered ten visual concepts
related to the object’s colour, size and shape (red,
green, blue, yellow; small, large; square, circular,
triangular, and rectangular). Next, we also consid-
ered eleven different spatial relations – six binary
relations between the two objects (with respect to
the observer/camera): ‘to the left of’, ‘to the right
of’, ‘closer than’, ‘further away than’, ‘near to’,
‘far from’, and five unary relations describing the
position of the object in the scene: ‘on the left’, ‘in
the middle’, ‘on the right’, ‘near’, and ‘far away’.
Fig. 2(b) depicts one image with the corresponding
description, which gave two training samples (for
object A and object B). From every training sample
11 features were extracted (three appearance features,
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Figure 4: Final models for ‘green’, ‘large’, ‘to the left of’, ‘on the left’, and ‘on the right’.

three shape features, and five distance features),
which were to be associated with 21 visual concepts
being learned.

We randomly divided a set of 300 samples into
two halves consisting of training and test samples
respectively. Then we added training samples one by
one and at each step updated the models of object
properties and spatial relations using the proposed
method. We evaluated the current models by trying
to recognize all training samples and observing the
achieved accuracy. To limit the complexity of the
models, the current KDE was compressed whenever
the number of components exceeded the number 20.

The experiment was repeated 20 times with dif-
ferent sequences of input samples. The average re-
sults are depicted in Fig. 3. From Fig. 3(a) it can be
seen that the overall accuracy increases by adding new
samples. The growth of the accuracy is very rapid at
the beginning when new models of newly introduced
concepts are being added, but still remains positive
even after all models are formed due to refinement
of the corresponding associations and representations.
Fig. 3(b) plots the average number of Gaussian com-
ponents in KDE distributions of all models. One can
observe that after a while this number does not grow
any more, thus the model size remains limited. The
models do not improve by increasing their complex-
ity, but rather due to refinement of the underlying rep-
resentations. Fig. 4 depicts kernel density estimates of
their best features for five concepts at the end of the
learning process. These trained models can be used
for automatic generation of scene descriptions as pre-
sented in Fig. 2(b).

5 CONCLUSIONS

In this paper we proposed a method for continuous
learning of simple visual concepts and applied it to
learning object properties and spatial relations. The
method keeps continuously establishing associations
between automatically extracted visual features and
words describing the observed scenes. The associated
features are modelled with kernel density probability
distribution estimates using the proposed incremental
KDE algorithm.

The proposed method fulfills four requirements
for incremental learning presented in the introduction:
(i) the learning algorithm is able to update the current
representations and create new ones when new con-
cepts occur, (ii) it does not require access to old data
(it uses only their representations), (iii) the represen-
tations are kept compact and do not grow any more
once they reach an adequate complexity, and, con-
sequently (iv) the computational effort needed for a
single update at a given time does not depend on the
amount of data observed up until that time.

The work presented in this paper is a part of a
larger framework for continuous learning of concepts
that we have been developing. We will embed this
algorithm in an interactive setting, where the concept
labels (descriptions of scenes) will be obtained in an
interactive dialogue with the tutor. In this way nega-
tive training examples will also be introduced, which
will enable correction of erroneous updates. The pro-
posed algorithm was tailored to support such opera-
tions. In addition we also plan to extend the proposed
incremental KDE algorithm to multiple dimensions
and to advance the method to handle associations with
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several features, as well as to improve the feature se-
lection method. Our ultimate goal is to develop a gen-
eral, scalable and robust method for continuous learn-
ing of visual concepts.
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