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Abstract: Augmented reality (AR) is a very promising technology that can be applied in many areas such as 
healthcare, broadcasting or manufacturing industries. One of the bottlenecks of such application is a robust 
real-time optical markerless tracking strategy. In this paper we focus on the development of tracking by 
detection for plane homography estimation. Feature or keypoint matching is a critical task in such approach. 
We propose to apply machine learning techniques to solve this problem. We present an evaluation of an 
optical tracking implementation based on Random Forest classifier. The implementation has been 
successfully applied to indoor and outdoor augmented reality design review application. 

1 INTRODUCTION 

The main goal of the Augmented Reality (AR) 
technology is to add computer-generated 
information (2D/3D) to a real video sequence in 
such a manner that the real and virtual objects 
appear  coexisting  in the same world. In order to get 
a good illusion, the registration problem must be 
addressed.  The real and virtual objects must be 
properly aligned with respect to each other. In this 
way, the position-orientation (pose) of the camera 
respect to a reference frame must be accurately 
estimated or updated over time. In this work, we 
address the registration problem for interactive AR 
applications, working on a fully mobile wearable 
AR system based on a vision-based (optical) tracker. 

Our approach to solve the registration problem 
is based on the tracking of plane surfaces. Either in 
an indoor or outdoor scenario, planes are common 
structures. The ground, the building facades or walls 
can be seen as planes. These 3D world planes and its 
projection in the image are related by a homography. 
Recovering this transformation it is possible to 
estimate the position and orientation (pose) of the 
camera. 

Keypoint matching is the most important 
feature of the markerless module. As described in 
(Lepetit, 2006), we propose to treat wide line base-

line matching of features points as a classification 
problem. We have implemented the Random Forest 
classifiers and carried out an evaluation in the 
context of optical markerless tracking for 
Augmented Reality applications. 

The article is structured as follows. Section 2 
gives an overview of current optical tracking 
techniques and methods in augmented reality 
applications. Section 3 describes the approach to 
keypoint matching based on Random Tree 
classifiers. Section 4 presents a study of the 
behaviour of the classifiers. In Section 5, a practical 
augmented reality application using our 
implementation is described. Section 6 summarizes 
some conclusions and future work. 

2 RELATED WORK 

Though the real-time registration problem using 
computer vision techniques has received a lot of 
attention during last years is still far from being 
solved. Ideally, an AR application should work 
without the need to adapt neither the object nor the 
environment to be tracked, by placing special 
landmarks or references. This issue is known as 
markerless tracking. 
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We can divide the optical markerless tracking 
technologies in two main groups: recursive 
techniques or model-based techniques. Recursive 
techniques start the tracking process from an initial 
guess or a rough estimation, and then refine or 
update it over time. They are called recursive 
because they use the previous estimation to 
propagate or calculate the next estimation. During 
the estimation process several errors may occur, 
such as wrong point matching or ill conditioned data 
that can degenerate the estimation. Due to the 
recursive nature of this kind of tracking, they are 
highly prone to error accumulation. The error 
accumulation over time may induce a tracking 
failure, requiring a new tracking process 
initialization, which can be cumbersome and not 
feasible in practical applications. 

Other approaches are known as tracking by 
detection or model-based tracking. In this kind of 
techniques some information of the environment or 
the object to be tracked is known a priori. They are 
also known as model-based tracking because the 
identification in the images of some features (texture 
patches or corners) corresponding to a known model 
are used to recognize such object. This kind of 
tracking does not suffer from error accumulation 
(drift) because, in general, does not rely on the past. 
Furthermore, they are able to recover from a 
tracking fail since they are based on a frame by 
frame detection not depending on the past. They can 
handle problems such as matching errors or partial 
occlusion, being able to recover from tracking 
failure without intervention (Williams, 2007). 

Tracking by detection needs information data 
about the object or objects to be tracked prior to the 
tracking process itself. This data can be in the form 
of a list of 3D edges (CAD model) (Vaccheti, 2004), 
colour features, texture patches or point descriptors 
(Lowe, 2001). A good comparison about different 
point descriptors can be found in (Mikolajczyk, 
2005). The tracker is trained with that a priori data, 
to recognize the object from different points of view. 
A good survey about different model-based tracking 
approaches can be found in (Lepetit, 2005). 

Some authors propose to use machine learning 
techniques to solve the problem of wide baseline 
keypoint matching (Özuysal, 2006). Supervised 
classification system requires a previous process, in 
which the system “is trained” with a determined set 
of known examples (training set) that present 
variations in all their independent variables. Once 
the process is finished, the system is trained and 
ready to classify new examples. The most widely 
used supervised classifiers are for example, k-

Nearest Neighbours, Support Vector Machine or 
decision trees. 

While k-Nearest Neighbors or Support Vector 
Machine can achieve good classification results, 
they are still too slow and therefore not suitable for 
real-time operation (Lepetit, 2004). Recently the 
approach based on decision trees has been 
successfully applied on tracking by detection during 
feature point matching task (Özuysal, 2006). 

Based on this recent progress in the field, we 
propose to integrate Random Forest classifiers in the 
implementation of a tracking module and carry out 
some evaluation studies. 

3 CLASSIFIER DESCRIPTION 

In this section we describe a Random Forest 
classifier implementation as a core of a tracking 
module. 

3.1 Random Trees 

As in (Lepetit, 2006), we propose a supervised 
classification method based on Random Forest for 
interest point matching. The classifier is able to 
detect key-point occurrences even in the presence of 
image noise, variations in scale, orientation and 
illumination changes. This classifier is a specific 
variation of a decision tree (Breiman. 2001). 

When the tree is constructed and trained it can 
correctly classify a given data (example) by pushing 
it down the tree. In order to do it, while the data is 
descending down on the tree, in every node there is a 
discriminant criteria which allows to know to which 
child the example has to go. 

A random tree is called random because instead 
of do exhaustive search for the best combination of 
features to be tested in each node to determine the 
discriminant criteria, just some random 
combinations of them are evaluated. When the 
number of different classes to be recognized and the 
size of the descriptor of such classes are high, an 
exhaustive analysis is not feasible. In addition, the 
examples that are going to be used during the 
training process are selected at random from the 
available ones. The combination of some random 
trees forms a multi-classifier known as Random 
Forest. One of the advantages of the Random Forest 
is their combinational behaviour. Even when a 
random tree can be weak by itself, their recognition 
rate is low; the combination of such weak classifiers 
can generate a strong one. 
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3.2 Training 

In supervised classification each class must be 
defined before the training process itself. In order to 
define the classes, we use a point extractor (Rosten, 
2006) to get the candidate points and their 
surrounding patches. Then the classifier assigns a 
class number to each point, and their class descriptor 
is defined. The descriptor of each class is 
constructed as the intensity values of the pixels that 
forms the extracted patch centered at interest point p. 
Once the classes to be recognized by the classifier 
are defined, the training set must be generated.  

As described in (Lepetit, 2006) we can exploit 
the assumption that the patches belong to a planar 
surface; we can then synthesize different new views 
of the patches using warping techniques as affine 
deformations (Fig. 1). These affine transformations 
are needed to allow the classifier to identify or 
recognize the same class but seen from different 
points of view and at different scales. This step is 
particularly important for tracking, where the camera 
will be freely moving around the object with six 
degrees of freedom. 

 
Figure 1: Randomly generated training examples of four 
classes by applying affine transformations. 

Once the training set is ready, the training task 
can be performed. During this task, a number of 
examples are randomly selected from the training 
set. These examples are pushed down in the trees. In 
order to decrease the correlation between trees, and 
therefore increase the strength of the classifier, 
different examples must be pushed down in each 
tree. This randomness injection favours the 
minimization of trees correlation. 

The training step is needed in order to define 
how each tree of the forest is going to test the 
patches it receives, i.e, which pixels of the patch it 
tests. 

While building up the tree, each node of the 
tree is treated as follows: 

 N training examples from the training set are in 
the node. 

 S random sets of n pixels are selected. 
 For each set, its information gain(Breiman, 

2001) is calculated. 
 The variable set with the greatest information 

gain value is selected. 

 The examples are tested with the selected set of 
pixels. Depending on the result of this test, 
they are pushed down to their corresponding 
child node. 

 The above process is recursively done for the 
children nodes, whether until there is only one 
example, or only one class is represented in 
the remaining examples or the maximal 
predefined depth is reached (Fig. 2). 

The tests to be performed in each node are simple 
comparison of the intensity values of the pixels 
indicated by the pixels set. In case of a pixel set of 
size two, the tests to be performed in each node 
could be: 
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Where )( 1pv  and )( 2pv represent the intensity values 

of two pixels located at positions 1p  and 2p  

respectively. The values of the positions 1p , 2p , 
were randomly selected during the training step. The 
value of t represents a threshold that can be also 
randomly selected while training. 

 
Figure 2: Random Tree construction example. 

Once the descriptors reach the bottom (maximal 
depth) of the tree, it is said that they reached a leaf 
node and the recursion stops. In leaf nodes the class 
posterior distributions are stored. These distributions 
represent the number of class examples from the 
training set that has reached that node. Once an 
example of a given class reaches a leaf node, the 
posterior probability distribution stored in that node 
must be updated accordingly. 

3.3 Classification 

Once the classifier is built, i.e, the pixels to be tested 
in each node and the class posterior distributions are 
calculated, it is ready to classify new examples 
different from the ones in the training set. During the 
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classification task any new example is dropped 
down in every tree that constitutes the forest. These 
examples will reach a leaf node depending on the 
results of the tests obtained in the previous nodes 
they visit (Fig. 3). The posterior distributions stored 
in leaf nodes are used to assign a class probability 
value to the examples that reach that 
node, ( )η=== nTTcYP l ,| 1  where lT  is a 
given tree of the forest and η  is the reached node by 
the example (patch) Y and c is the assigned class 
label. 

 
Figure 3: Example of image path classification. 

As any multi-classifier, the random forest needs 
to combine the independently generated output by 
each tree in the forest, in order to assign a final class 
label to the examples to be classified. 

3.4 Tracking 

As in (Lepetit, 2006) the Random Forest classifier 
can be applied to interest point matching of a planar 
surface prior to homography estimation (Hartley, 
2004). After the classification step, wrong classified 
patches (outliers) can be removed by using robust 
estimation techniques such as RANSAC in order to 
obtain a more accurate homography estimation. 
Furthermore, the final estimation can be refined by 
using Levenberg-Marquardt non-linear minimization 
method starting from the estimation obtained by 
RANSAC. 

4 EVALUATION 

We have implemented our own API to evaluate the 
influence of different factors on the behaviour of 
random forest classifiers during the training period 
as well as during the execution period. Depending 
on different factors such as, number of classes, 
number of trees in the forest, or the size of the 
training set, the point classification rate may vary. In 
addition, other factors such as the training time and 

the execution time are also very important factors to 
be evaluated. 

4.1 Combination Methods 

During the run time point classification (point 
matching) a probability and therefore a class label 
must be assigned to every point (texture patch) that 
needs to be matched against the model (trained 
points). In this way, once the point extractor 
generates the potential matches, they all must be 
dropped down in the trees. Each tree will 
independently give a probability value to a given 
patch, and then all these values must be combined to 
assign the most probable match. We have 
implemented and evaluated the following 
combination methods: 

Our first study consisted in comparing the 
classification rate of the respective methods. The 
tests were done with the same number of trees and 
with the same value of depth. Due to the random 
behaviour of the random forest classifier, the tests 
were run 10 times. All the tests were carried out with 
100 different classes, 15 different trees, and 10 as 
the maximum reachable depth. The results are 
shown on the next figure. 

Combination Methods
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Figure 4: Comparison between Combination Methods 
performance. 

As seen in Figure 4, the Maximum of the 
average probability method reaches the best results, 
being the most stable method amon 

4.2 Classification Rate 

We also evaluated the influence of the number of 
trees on the classification rate. The results are shown 
on the next figure.  It is seen that reaching a certain 
number of trees for a same training set, the increase 
in performance is not significant (Fig. 5). 
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Figure 5: Classification rate in function of the number of 
trees. 

4.3 Training Time 

The training time was then evaluated. This factor 
mainly depends on the size of the training set, this is, 
on the number of examples that are going to be 
dropped down in the trees to estimate the final 
posterior probability distributions of each class. The 
size of the training set has also impact on the 
recognition rate, but no significant improvement of 
classification rate are seen from about 500 training 
examples, given the same forest, i.e, the same 
number of trees with the same value of depth each 
tree, while the training time notably increases. As in 
the previous one, this test shows that the classifier 
has an optimal maximum that once reached 
(converged) the performance gain is very slow (Fig. 
6). 
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Figure 6: Training time in function of the size of the 
training set. 

4.4 Computational Cost 

In order to evaluate the computational cost of the 
method, we conducted some tests using different 
hardware with the same memory amount but 
different CPUs. Because of the highly CPU 
demanding tasks during the tracking, the results 
show clearly that the performance drastically 
decreases with a poor hardware (Fig. 7). 
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Figure 7: Computational cost and CPU. 

4.5 Discussion  

The random tree classifier performs well when the 
number of different points (classes) is moderate, 
around 100 different points. When this number 
increases, the classification rate starts to decrease. 
This is because the strength of the trees decreases 
individually due to the excessive number of different 
classes, so that the classification ability or the forest 
also decreases. 

When the classification rate is low, the number 
of miss-matched points (outliers) increases. Once 
the population of outliers is high, the number of 
iterations of either RANSAC or non-linear 
estimation methods before convergence is very high. 

5 APPLICATION 

The approach described previously was applied 
within an innovative system using head mounted 
displays (HMD) for collaborative mobile mixed 
reality design indoor and outdoor review. 

Our tracking module uses natural features to 
estimate the position and orientation of the camera, 
mounted on the HMD. Once this transformation is 
computed, the virtual object can be registered and 
viewed through the HMD as part of the real world. 
During the tracking process, the transformation must 
be updated over time. 

By using natural features, the use of artefacts 
such as reflective markers is avoided, allowing the 
system to be more flexible and being able to work in 
non-well controlled conditions, such as outdoor 
environments. 

As described earlier, tracking by detection 
techniques requires an off-line process where the 
classifier is trained. During this period, one image of 
a highly textured plane, such as a building facade or 
a picture over a table, must be acquired. After the 
acquisition, some features points and their 
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surrounding texture patches are extracted from the 
image (Rosten, 2006), and synthetic views of the 
plane are generated. 

Based on the results described previously, the 
classifier is trained to be able to recognize about 
100-130 different classes (points). The forest is 
constructed with 15-20 trees, and a training set 
compound of 500 synthetically generated examples, 
in less than 30 minutes. This size of the training set 
is a good compromise between training time and 
final accuracy of the classifier. Training time is a 
very important factor in practical situations such as 
outdoor setup preparation time. Once the training set 
is ready, the system is ready for tracking. 

The obtained frame rate is about 20-25 frames 
per second (near real-time) on a 1.6Ghz dual core 
CPU. This frame rate may vary depending on the 
accuracy of the tracker, i.e, depending on the 
number of different points to be recognized. The 
drift and jitter are well controlled, so no severe 
movements of the objects occur. On a lower CPU, 
such as the one installed on a JVC portable device, 
the obtained frame rate is 5 frames per second, for 
the same number of points.  

In comparison with a recursive tracking 
approach, the tracking by detection allows the 
tracking to run faster and being more robust against 
partial object occlusion, or fast camera movement. 
The tracker can run indefinitely without requiring a 
new initialisation. 

6 CONCLUSION AND FUTURE 
WORK 

In this work we have presented an approach of 
tracking by detection for plane homography 
estimation using the Random Forest based classifier 
for interest point matching. An evaluation and a 
practical application of the approach in an 
augmented reality setup has been described. The 
proposed method is able to robustly track a plane 
even if partial plane occlusion occurs, at real-time 
frame rate. 

We think that machine learning techniques such 
as Random Forest is a very promising technique for 
optical marker-less tracking. 

We want to extend our work to support on-line 
training classification (Özuysal, 2006). On-line 
training allows the tracking to update the model with 
new feature points not present in the original 
training set. As described in (Williams, 2007) on-
line training can be exploited in several frameworks 
such as Simultaneous Localization and Mapping 
(SLAM). 

Also the use of the new generation Graphic 
Processor Units (GPU) to perform some task, such 
as the generation of warping transformations during 
training step is planned. 
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