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Abstract: In this work, a solution to the problem of multi-robot following routes is proposed using an appearance-
based method. In this approach, several images are stored along the route to follow, using an uncalibrated 
forward-looking camera. To extract the most relevant information, an incremental PCA process has been 
implemented. This incremental process allows adding new locations to the PCA database without necessity 
of creating it from the scratch. Then, the follower robots can follow the route while a leader one is still 
recording it. These follower robots, using this database, make first an auto-location process to know their 
current position and then a control phase to compute the necessary steering speed to tend to the route and 
follow it till the end. Both speeds are obtained also through the visual information in an appearance-based 
approach. The problem of ‘visual aliasing’, typical in office environments, is avoided with a probabilistic 
approach that, using a Markov-process model, makes the localization more robust. The experimental results 
have shown how this is a simple but robust and powerful approach for routes in an office environment.   

1 INTRODUCTION 

In the last years, some applications that require the 
use of a team of robots have emerged. They require 
the coordination between the members of the team. 
In some applications, the use of collaborative 
robotics clearly improves the performance, 
comparing to a single robot carrying out the same 
task. As an example, (Thrun, 2002) presents a 
probabilistic EKF algorithm where a team of robots 
builds a map online, while simultaneously they 
localize themselves. (Fenwick, 2002) takes into 
account the problem of the concurrent mapping and 
localization with extra positional information 
available when multiple vehicles operate 
simultaneously. In (Ho, 2005), a map is built using 
visual appearance. From sequences of images, 
acquired by a team of robots, subsequences of 
visually similar images are detected and finally, the 
local maps are joined into a single map. 

A typical problem in collaborative robotics 
implies a path following e.g. to perform a 
surveillance task in an office environment or an 
assembly or delivery task in an industrial 
environment. Also, the problem of formations, 

where a team of robots must navigate keeping a 
relative position in a structure of robots, can be seen 
as a problem of path following, where one or several 
robots must follow the path the leader is recording. 

In the case of route following, to carry out the 
navigation of a robot from one point to another in an 
environment, a map is required. In the last years, 
intensive research on this field, using SLAM 
techniques (Simultaneous Localization And 
Mapping) has been developed. This approach tries to 
build a global map of the environment while 
simultaneously determining the location of the robot. 
Usually, these approaches rely on the extraction of 
several landmarks or characteristic points of the 
environment both natural or artificial, as (Thrun, 
2002) does. 

However, the problem of route following can 
be solved without necessity of creating complex 
maps of the environment. It is just needed a teaching 
step, where the route to follow is learned, and a 
navigation step, where the second robot follows the 
route just comparing its current sensory information 
with the data stored in the database. Classical 
approaches in this field are model-based approaches, 
where the extraction of several landmarks or feature 
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points along the images allows computing the image 
Jacobian, that relates the change of the coordinates 
in the image with the changes in motion in the 
ground plane. Then, using the principles of visual 
servoing, the second robot can follow the route, as in 
(Burschka, 2001). Also, in the behaviour-based 
control (Balch, 1998), some features of the images 
are extracted to carry out the localization and 
navigation of the members of a team in a formation 
problem. However, other approaches suggest that 
these processes could be achieved just comparing 
the general visual information on the images, 
without necessity of extracting any feature. These 
appearance-based approaches are specially useful for 
complicated scenes in unstructured environments 
where appropriate models for recognition are 
difficult to create. As an example, (Matsumoto, 
1999) addresses a method consisting on the direct 
comparison of low-resolution images. This method 
may lead to errors when the size of the route is quite 
long so other features must be added to make the 
method more robust, such as histogram, texture and 
density of edges, (Zhou, 2003). However, these 
features contain no geometric information so they 
are useful just for localization but not for navigation. 

When working with the whole images, the 
complexity of the problem can be reduced by means 
of the PCA (Principal Components Analysis) 
subspace as in (Kröse, 2004) or (Maeda, 1997), 
where through PCA techniques a database is created 
using a set of views with a probabilistic approach for 
the localization. In classical PCA approaches, all the 
views along the route must be available before the 
compression can be done so the navigation of the 
second robot cannot begin until the leader has 
finished learning the route. Actually, a new model 
must be built from the scratch when we want to 
include information about new locations in the map. 
These problems can be overcome using an 
incremental PCA method, as shown in (Payá, 2007). 

In this paper, we present an appearance-based 
method for route following where incremental PCA 
has been used to build the database, and a 
probabilistic Markov process has been implemented 
for robot localization during the navigation. First, 
the representation of the environment along the route 
is detailed. Then, in section 3, the basics of 
localization and control in route following are 
outlined. In the 4th section, the probabilistic 
approach to make navigation more robust is 
presented and to finish, the results and conclusions 
of the work are shown. 

2 REPRESENTATION OF THE 
ENVIRONMENT 

The philosophy of the appearance-based methods 
consists in working with the general visual 
information of the images, without extracting any 
interesting point. Thus, this family of methods 
presents the disadvantages of the size of the database 
necessary to retain all the information of the 
environment and the computational cost of the 
comparisons between the whole images. 

When working with 64x64 images, the data 
vectors fall in a 4096 dimensional space. However, 
all these data are generated from a process with just 
three degrees of freedom (position and orientation of 
the robot). This way, before storing the images, a 
reduction of the dimensionality of the data can be 
performed with the goal of retaining the most 
relevant information of each scene. Since pixels tend 
to be very correlated data, a natural reduction step 
consists on performing Principal Components 
Analysis (PCA), as in (Kirby, 2001). 

Each image Njx Mx
j K
r 1;1 =ℜ∈ , being M the 

number of pixels and N the number of images, can 
be transformed in a feature vector (also named 
projection of the image) Njp Kx

j K
r 1;1 =ℜ∈ , being K 

the PCA features containing the most relevant 
information of the image, .NK ≤  In traditional PCA, 
first of all, the data matrix is built using the images 
of the environment. The PCA transformation is 
computed from the covariance of the data matrix 
using SVD and the Turk and Pentland’s method 
(Turk, 1991). After the process, a new data matrix 
with the most relevant information is obtained. 

In classical PCA approaches, all the images 
along the environment must be available before 
carrying out the compression. This way, the robots 
that follow the route should wait the leader one to 
run till the end. However, in collaborative tasks, it is 
usual that some robots follow the first one while it is 
still recording the information. Then, with this 
approach, the robot that is building the database 
should do it from the scratch when a new image 
along the route is captured, what is computationally 
very expensive. To overcome this disadvantage, a 
progressive construction of the database can be 
implemented, using the incremental PCA algorithm 
exposed in (Artac, 2002). When the leader captures 
a new image, it is added to the database, updating all 
the projections that were previously stored. 

As can be proved, when having a set of 
eigenvectors from a set of views, when a new image 
is added to the database, these eigenvectors and the 
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projection of the existing images can be updated 
following the next four-step algorithm (Artac, 2002): 
 
1. First, the mean must be updated with the 
expression: 

( ) .
1

1' 1++⋅
+

= NxmN
N

m rrr        (1) 

2. Now, the set of eigenvectors must be updated so 
that they include the information of the new image 

1+Nxr . To do it, we compute the residual vector, that is 
the difference between the reconstruction and the 
original N+1 image ( ) 111 +++ −+⋅= NNN xmpVh rrrr

. This 
vector is orthogonal to the old eigenvectors. Then, it 
must be normalized (so that it becomes a unit 
vector), obtaining 1

ˆ
+Nh

r
. 

 
3. The new matrix of eigenvectors 'V  can be 
obtained by appending 1

ˆ
+Nh

r
 to V  and rotating them, 

according to the next expression: 
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where ( )mxh NN
rvr

−⋅= ++ 11δ , ( )mxVp N
T rvr

−⋅= +1  and Λ  is a 
diagonal matrix containing the original eigenvalues. 
This way, if  MxKV ℜ∈ , then ( )1' +ℜ∈ KMxV . It must be 
studied whether this new dimension is significant or 
not. In this work, two different criteria have been 
used with this goal. First, if the last eigenvalue is 
under a percentage of the first one, it is considered 
that it does not retain enough information so the last 
eigenvector is removed of the system. Also, if the 
new image can be correctly represented by the 
previous set of eigenvectors, the new dimension is 
not added. To know it, the module of the residual 
vector is computed. If this module is under a 
threshold, the new image can be represented with 
enough accuracy with the previous set of 
eigenvectors so the new dimension is not taken into 
account. 
 
4. The image representations can be updated with 
the next expression: 
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Then, when a new image arrives, the previous 
projections in the database and the eigenvectors are 
updated and the new projection is added. This 

method has shown to be efficient in robot navigation 
(Payá, 2007). 

3 LOCALIZATION AND 
CONTROL FOR ROUTE 
FOLLOWING 

Once the database is created, one robot can follow 
the route running successively two tasks: auto-
localization and control. 

Auto-localization: The robot captures an image 
and using this information it must decide which of 
the set of the observations is the closest one. A 
projection of the current image on the current 
eigenspace calculated by the leader allows 
determining it. This returns a K-components vector 
that contains the main information of the view. 
Then, this vector has to be compared with those 
stored in the database. The one that offers the 
minimum Euclidean distance is the matching one. It 
is taken as the current position of the robot. 

Control: From each image stored in the 
database, j, a set of N’ sub-windows is obtained from 
the whole image where ,1'xMi

jw ℜ∈
r  is each sub-

window. The sub-windows are obtained scanning 
the original scene with a step in the horizontal axis 
(fig. 1(a), 1(b)). Carrying out a process of PCA 
compression, the PCA components ,1'xKi

jf ℜ∈
r

 of 
each sub-image are calculated, where K’ ≤ N’. Fig. 
1(c) shows these projections as black dots in the case 
K’=3. During the autonomous navigation, five sub-
windows ( )E

j
D
j

C
j

B
j

A
j wwwww rrrrr ,,,,  are taken on the 

currently captured view (fig. 1(d)) and tracked over 
the central band of the matching image. To do this, 
once the robot knows its location, the PCA 
components of these five sub-windows are 
calculated. This operation returns five K’-
components vectors ( )E

j
D
j

C
j

B
j

A
j fffff

rrrrr
,,,,  that are 

shown as red crosses on fig. 1(c). Then, the most 
similar projections to each of them are extracted. 
These most similar projections are those that fall in 
five spheres whose centers are ( )E

j
D
j

C
j

B
j

A
j fffff

rrrrr
,,,, . 

The radius of these spheres is chosen so that a 
number of corresponding windows is extracted. In 
this work, a total number of seven sub-windows are 
extracted. The linear and steering velocities are 
inferred using a controller, whose inputs are the 
most similar projections to each of the five sub-
windows. Analyzing these data and solving possible 
inconsistencies, the controller infers the linear and 
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steering velocities of the robot to tend to the 
recorded route. 

To do it, once the most similar sub-windows 
are recognized, the controller tries to arrange them 
and look for a correlation that shows clearly if the 
robot has to turn left or to turn right to tend to the 
pre-recorded route.  

Fig. 2 shows an example of how the controller 
works. In this figure, the blue crosses are the seven 
most similar sub-windows. On this figure, the most 
similar window to A

jwr  is the window 8 ( )8
jwr , the 

most similar to B
jwr  are the windows 12, 13 and 14 

( )141312 ,, jjj www rrr
, the most similar to C

jwr  are 15 and 16 
( )1615 , jj ww rr

, D
jwr  has no correspondences and the most 

similar to E
jwr  is the 3rd window ( ).3

jwr  This 
distribution of correspondences shows that the robot 
has to turn left so that the sub-windows fit with 
those of the corresponding image. The 
correspondence of E

jwr  has been considered as an 
outlier so it has been discarded. Actually, this is a 
wrong point due to the fact that this window falls out 
of the image jxr . The steps that are followed to 
deduct the value of the control action are are: 
 
1. Several least-squares fittings are done using the 
following data at each fitting: 

- Correspondences of the 2 first sub-windows. 
- Correspondences of the 3 first sub-windows. 
- Correspondences of the 4 first sub-windows. 
- All the correspondences. 

- Correspondences of the 4 last sub-windows. 
- Correspondences of the 3 last sub-windows. 
- Correspondences of the 2 last sub-windows. 

 
2. The most confident fitting of the previous ones is 
chosen. The criteria used to choose it are the number 
of correspondences used to do the fitting, the 
confidence and the slope of the fitted line (in this 
work, the slope has to be near to N’/5). 
 
3. The ordinate at the origin of the chosen linear 
regression shows how the steering of the robot 
should be to tend to the route correctly. If it is 
positive, the robot must turn left and if it is negative, 
the robot must turn right. 
 
4. To improve this controller, a detector of outliers 
has been added so that they are removed before 
computing the final linear regression. 
 

Fig. 3 and fig. 4 show two additional examples 
of distributions and the least squares fitted line that 
has been computed. On fig. 3, all the points are used 
to make the fitting and an outlier has been detected 
at position D

jwr . In this case, the robot has to go 
straight to follow the route. On fig. 4, the windows 
corresponding to D

jwr  and  E
jwr  have been used and an 

outlier has been detected. As a result, the robot has 
to turn right to follow the route, with a steering 
proportional to the ordinate in the origin.

 

                     (a)                                           (b)                                            (c)                                                  (d) 

Figure 1: Calculating the linear and steering speeds of the follower robot. When it captures a new image, five sub-windows 
are extracted and tracked over the corresponding image in the DB. The most similar projections are the inputs of a 
controller that computes the necessary speeds of the robot. 
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Figure 2: Calculation of the control action. Case 1: in this 
case, the robot has to turn left to follow the route. 

 
Figure 3: Calculation of the control action. Case 2: the 
robot has to go straight to follow the route. 

 
Figure 4: Calculation of the control action. Case 3:  the 
robot has to turn right to follow the route. 

4 IMPROVING VISUAL PATH 
FOLLOWING 

In office environments, the simple localization 
method exposed tends to fail often as a result of 
‘visual aliasing’. This means that the visual 
information captured at two different locations that 
are far away can be very similar. To avoid these 
problems, a probabilistic approach, based on a 
Markov process, has been used. The current position 
of the robot can be estimated using the Bayes rule: 

( ) ( ) ( ).;; xpxzpzxp ⋅∝ θθ  
 

  (5) 

where p(x) denotes the probability that the robot is 
in the position x before observing z. This value is 

estimated using the previous information and the 
motion model. p(z|x) is the probability of observing 
z if the position of the robot is x. This way, a method 
to estimate the observation model must be deducted. 
In this work, the distribution p(z|x) is modeled 
through a sum of Gaussian kernels, centered on the k 
most similar points of the route: 
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Each kernel is weighted by a value of 
confidence [ ],1,0∈jγ  that depends on the degree of 
similarity of the projection of the current image with 
the projections in the database. Then, these kernels 
are convolved with a Gaussian function that models 
the motion of the robot (knowing the previous 
position and velocity of the robot). At last, the 
contribution of each resulting kernel, ,jc  is 
computed on each point, and the new position is 
considered at the point with highest contribution 

.max
jc   

Fig. 5 shows this process for k=5 kernels. First, 
the five most similar positions are selected. Then, a 
kernel function is assigned to each position. After 
that, the motion model is applied and at the end, the 
contribution of each kernel to each position is 
computed, selecting the point with the maximum 
contribution. 

This method works well only if a robust initial 
estimation of the position is available. Then, the 
beginning of the navigation could be a problem if 
the robot is far from the route. To solve this 
problem, a clustering approach has been used. The 
robot makes small angular and linear movements 
around the initial position, taking images during the 
movement. Each image is localized comparing the 
distance of its PCA components with the projections 
in the database. Then, it is classified into the group 
whose centre is closer to the localization of the 
image. If this distance is over a threshold, the new 
image will constitute a new cluster. Otherwise, it 
will be included in the corresponding cluster and its 
centre will be updated. Once all the images are 
classified, the groups with few images are discarded 
and the group in which the variance of the distance 
of the elements is the lowest is chosen. The 
corresponding location is calculated as the centre of 
the chosen cluster. Fig. 6 shows this approach. In 
this case, cluster 2 and position 9 would be selected.
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Figure 5: Improving localization through a probabilistic approach. In this case, after the process, it will be deducted that the 
current position is the 15th one. 

 
Figure 6: Clustering approach for initial localization of the 
follower robot. 

5 RESULTS 

Several experiments have been carried out to 
validate the approach. Fig. 7 and fig. 8 show a 
typical route recorded in an office environment and 
the route of the follower when it starts from two 
different points around it. Typically, the follower 
robot tends to the route and follows it, showing a 
great performance on the straight lines and a 
relatively bigger error in the turnings. However, with 
this approach, the robot is able to find the route and 
tend to it, showing a very stable behaviour till the 
end. Comparing incremental PCA with batch PCA, 
the batch one performs slightly better when 
calculating overall error, but incremental PCA 
performs correctly the task, as shown on fig. 7 and 
fig. 8, and with the advantages it supposes. Fig. 9 
shows the evolution of the localization during the 
navigation of the follower robot and the probability 
calculated, what can be a measure of the precision. 

 
Figure 7: Results of navigation 1. Route recorded and 
route followed. 

 
Figure 8: Results of navigation 2. Route recorded and 
route followed with a different initial point. 

To carry out these experiments, two Pioneer P3-
AT robots have been used with two processors 
onboard that communicate using a CORBA-based 
architecture where they interchange the necessary 
information. It is important to design an application 
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where the different robots can share the necessary 
information in an easy and quick way due to the fact 
that the follower robot has to use continuously the 
database that the leader one is computing. An 
additional processor has been added to the 
architecture to carry out some calculations to reduce 
the computational cost of the processes in the robots. 

On fig. 9, the localization shows a correct 
evolution, despite the visual aliasing effect in such 
office environments, and the robot recovers correctly 
of some errors in localization (such as those in 
images 100 and 170). Also, the probability begins 
with quite low value (the robot is far from the route). 
Then, it tends to increase when the robot approaches 
to the straight line and decreases again in the 
turnings. 

 
Figure 9: Localizations and final probability during 
navigation with the route of the figure 7. 

6 CONCLUSIONS 

In this paper, an appearance-based multi-robot 
following-route scheme is presented. The proposed 
solution uses low resolution images from a 
conventional video camera and PCA techniques to 
extract the most relevant information along the 
environment. To allow a new robot can follow the 
route that another robot is recording at the same 
time, an incremental PCA algorithm is employed.  

The objective of the work is that other robots 
can follow this route from a distance (as in space or 
in time). To do it, a probabilistic algorithm has been 
implemented to calculate their current position 
among those that the leader has stored, and a 
controller has been implemented, also based on the 
appearance of the scenes, to calculate the linear and 
turning speeds of the robot. Also, a clustering 
method has been implemented to estimate the initial 
position of the robot in a robust way. 

Some experiments have been carried out with 
two Pioneer 3-AT robots using a CORBA-based 
architecture for communication. These experiments 
show how the process employed allows following a 
route in an accurate and robust way. 

We are now working in other control methods 
to reduce the error during the navigation, studying 
the effects of illumination changes and occlusions 
more accurately. Also, other techniques to compress 
the information are being analysed to achieve a 
higher speed of the follower robots. At last, more 
complicated ways of building a map are being 
evaluated so that the robot can find the route and 
follow it although its initial position is far from this 
route. 
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