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Abstract: In this paper we propose a novel approach for the texture analysis-synthesis problem, with the purpose to 
restore missing zones in greyscale images. Bit-plane decomposition is used, and a dictionary is build with 
bit-blocks statistics for each plane. Gaps are reconstructed with a conditional stochastic process, to 
propagate texture global features into the damaged area, using information stored in the dictionary. Our 
restoration method is simple, easy and fast, with very good results for a large set of textured images. Results 
are compared with a state-of-the-art restoration algorithm. 

1 INTRODUCTION AND 
PREVIOUS WORKS 

Filling-in gaps in a digital image, often known as 
digital inpainting, is one of the most active field in 
image processing research. Restoration of damaged 
or unknown areas in an image is an important topic 
for applications as: image coding(e.g. recovering 
lost blocks); removal of unwanted objects (e.g. 
scratches, spots, superimposed text, logos); video 
special effects; 3D texture mapping. There are two 
different main approaches for a filling-in problem in 
literature: PDE (Partial Differential Equation) 
methods, and constrained texture synthesis.  

PDE methods (Bertalmio et al. 2000; Chan and 
Shen 2002) give impressive results with natural 
images but introduce blurring, that is more evident 
for large regions to inpaint. They are 
computationally expensive and not suitable for 
textured images. 

Texture synthesis methods reconstruct an image 
from a sample texture. For inpainting purposes, 
region to fill-in is the area into which synthesize the 
texture, and information to replicate comes from the 
surrounding pixels. Most of these methods use 
Markov Random Fields (Cross and Jain, 1983) as 
theoretical model  to represent a texture. That is, for 
each pixel, color (or brightness) probability 

distribution is determined by a limited set of its 
surrounding pixels. Heeger and Bergen (1995) 
proposed a method which synthesizes textures by 
matching histograms of a set of multiscale and 
orientation filters.  Portilla and Simoncelli (2001) 
proposed a statistical model based on a wavelet 
decomposition. Efros and Leung (1999) synthesized 
one pixel at time, matching pixels from target image 
with the input texture. The “image quilting” 
technique (Efros and Freeman 2001) used 
constrained block-patching for the synthesis process. 
Wei and Levoy (2000) proposed a multi-resolution 
texture synthesis algorithm, based on gaussian 
pyramid decomposition. Kokaram (2002) proposed a 
2D autoregressive statistical model for filling-in and 
texture generation. Criminisi et al. (2004) proposed 
an hybrid “exemplar-based” method for removing 
large objects from digital images. All these methods 
are extremely time consuming and many of them 
failed to reconstruct highly-structured texture.  

We propose a novel approach to analyze and 
synthesize textures, in order to make the restoration 
process easier and faster with respect to other 
methods. Different is the application: instead of 
synthesizing the whole image starting from a 
sample, we want to fill-in a missing area of the 
image using surrounding information.  
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Figure 1: Image bit-plane decomposition: (a) original image,  (b-c) most significant, (d-e) less significant bit-planes (details 
of image D21 from Brodatz set). Most significant bit-planes are more structured than less significant ones. Lower planes are 
 quite similar to pure noise.

2 OUR METHOD 

The key point is to observe image features in a 
simple domain, the bit-plane representation. Images 
are split with a bit-plane decomposition and bits of 
each plane are processed. Working with bits is faster 
and simpler than working with pixels, both in the 
analysis and synthesis phase.  

Our approach does not focus on automatic 
damage detection. The user must select a region to 
restore to create an input matrix, with the same 
image size, in which all the pixels are labeled as 
good or damaged. Starting from this input matrix, 
our method can be divided into three sub-phases: 
 
- Decomposition and Gray-coding 
- Information analysis 
- Reconstruction 

2.1 Image Decomposition 

None of the related works, to our knowledge, has  
proposed a method to store information about pixels 
statistics in an image, because it is an hard task, both 
for memory usage and access time problems. 

Typically a search for the needed information is 
recomputed at each step of  the restoration process, 
with a waste of  execution time. Our method splits 
the image in bit-plane slices, and each plane  is 
Gray-coded  in order to decorrelate information 
between different planes. Working with  bit 
sequences,  rather than  pixels, helps to save memory 
space and to speed-up access time, making 
information memorization and recovering easier and 
faster. Note that in the restoration step, each plane 
cannot be reconstructed independently from the 
others, since annoying artefacts would be visible 
into the reassembled image. In the next subsection a 
method will be presented to link information coming 
from different planes. Note also that since most part 
of information is stored in the most significant 
planes (see fig.1), lower planes can be processed 
roughly (e.g. using smaller window size), speeding-
up the process without losing quality in the restored 
image.   

2.2 Information Analysis 

Our texture model is based on the Markov Random 
Field (MRF) theory, since it has proven to be 
satisfactory in representing a wide set of texture 
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types. We consider textures as instances of a 
stationary random model, in which each pixel is 
statistically determined by its neighborhood.  

The purpose of this step is to build a dictionary 
to store uncorrupted information, which will be used 
in the reconstruction step. A square window WN 
(where N is the window size set by the user) runs 
along each bit plane. Bit-planes are processed from 
the most significant to the less. For each undamaged 
bit bi(x,y)̀ in a bit-plane, an index is created with the 
scan-ordered bit sequence inside the window WN. A 
corresponding index is created with information 
from the previous significant bit plane, using a M-
size square window set at the same position, and 
added as a header to the first index: 
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where bi(x,y)̀ are bits from the current bit-plane i, 
bi+1(x,y)̀ are bits from the previous significant bit-
plane i+1. We create a histogram, our “dictionary”, 
which stores the frequency of these sequences into 
the bit-planes. Each value represents the a posteriori 
probability of a bit sequence in a i-plane, 
conditioned by the corresponding sequence in the 
previous (i+1)-plane. 
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The most significant plane is processed as a 
special case, with no contribution from a previous 
plane. 

2.3 Reconstruction 

According to the 2D-Wold decomposition model for 
homogeneous random fields (Liu and Picard, 1996), 
the most important features for human texture 
perception are: periodicity, directionality and 
randomness. Two competing processes work to 
reproduce these features from the global image into 
the damaged area: a bit-by-bit constrained random 
generation process, which aims to reproduce texture 
directionality and randomness of the global image, 
and a patching process to replicate texture 
periodicity. 

Note that the order in which pixels (or bits) are 
synthesized strongly affects results, because it sets 
the neighborhood used to reconstruct the damaged 
area. With a simple scan order the restoration 
process tends to reproduce up-to-down left-to-right 
diagonal shapes. Our algorithm processes bits along 
a direction that depends on image average gradient 

vector. This solution helps us to reconstruct the 
natural bias of the image.  

The reconstruction phase is the dual process of 
the dictionary building process. As in the previous 
phase, bit planes are processed from the most 
significant to the less one. For each damaged bit in 
each plane an N square window is considered, which 
will contain uncorrupted, corrected and damaged 
bits. The corresponding M square window is 
considered in the previous plane, in which the whole 
information is known (bits are either undamaged or 
corrected).  

The bit-by-bit generation process at first 
computes the probability that the central bit of the 
window is 1 or 0, given the known neighbour bits in 
the plane and the bits in the previous plane. The 
statistics of each of the submasks of a window can 
be computed building up those of all the possible 
statistics of the windows which share that submask: 
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The two statistics we are looking for: 
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where H[i,k] is the dictionary built in the analysis 
phase, ND is the number of the damaged bits in the 
window, Bi

p is the index for the sequence with a 
“black” (zero) central bit in the window, and Wi

p is 
the sequence with a “white”  (one) central bit, bc is 
the central bit of the mask in the i-plane. Both of 
these indexes contain bits from the ŴN submask. 

The second sub-step of the reconstruction step is 
a random generation, conditioned by the statistics 
computed in eq.5 and eq.6, in order to choice which 
information (0/1) to put in the central position of the 
window. The two statistics are weighted with 
weights that depend on an user-defined parameter α :  
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By setting α close to 1, this process is the same 
as a random process with the two probabilities: 
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which fits for synthesizing highly stochastic 
textures. When α>>1 the bit value is simply set as 
the most frequent bit in the window central position 
with that surrounding conditions. That is suitable for 
strongly oriented textures. In this way our method 
can control the randomness and directionality of the 
generated texture. 

To avoid the “growing garbage” problem, if no 
statistics match the current sequence in the 
dictionary, a random generation process is used with 
the following probabilities: 
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At the same time, a second competing process 
works to propagate global texture features into the 
area to restore. A patching process aims to reproduce 
texture periodicity. For each damaged bit, the two 
most frequent sequences (one with 0 as its central 
bit, one with 1), which share the known bit submask, 
are extracted from the dictionary: 
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If one of the statistics is much greater than the 
other, the bit-by-bit generation process is disabled 
and the whole window is filled with the most 
frequent sequence. The activation threshold of this 
process, that is what we mean for “much greater”, is 
set by an user defined parameter. As we discussed in 
this section, less significant bit planes have a more 
random global structure. So patching is useless or 
harmful to process these planes, and it is disabled.  
Filling-in the whole window, rather than bit-by-bit, 
extremely speeds up the execution time, and helps in 
replicating texture periodicity, if it is at a scale either 
equal or smaller than the window size.  

After all planes are restored, bit planes are 
merged to reconstruct the whole image, and a soft 
edge-preserving smooth filter is applied to remove 
the residual high-frequency noise due to this 
reassembling phase. 

3 COMPUTATIONAL COST 

Computational cost depends on damaged area size 
and on the windows size: 
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where d is the number of the damaged pixels, n is 
the image size, N and M the size of the two masks.  

The first term of eq. 12 results from the 
dictionary building phase. It also depends on 
windows size. The second term is the computational 
cost of the reconstruction phase. Exponential term is 
due to the structure we use to store information in 
the analysis step. Our dictionary is stored in a hash 
table, with collision lists, which is the best solution 
to speed-up the access time. T is the table size. If 
d<<n and windows are small, first term is 
predominant and computational cost is O(n). 
Increasing M, N and d, computational cost becomes 
exponential in the worst case, that is much far from 
the real execution time measured with our 
experiments. 

4 EXPERIMENTAL RESULTS  

Tests had been made on over 30 640x640 images 
from the Brodatz texture set. Each image is 
arbitrarily damaged to create an area to fill-in (note 
that to create consistent statistics hole size must be 
much lower than image size, which is usually the 
case in real-world images). The algorithm has been 
implemented in ANSI-C, and executed on an Intel 
Core Duo PC (1,83 GHz, 2 GB RAM). Execution 
time is about 1 sec, for stochastic texture and small 
holes, and rises up to 5-6 minutes, for highly-
structured textures and large-sized holes, processed 
with larger-sized masks.  
Figure 2 shows some results obtained with our 
algorithm, compared with those obtained with the 
Criminisi (2004) inpainting algorithm. Both visual 
and numerical comparison are provided. We 
measured significant statistical parameters in order  
to compare images before and after restoration. 
Visual comparison shows that our results are very 
similar to those obtained with Criminisi algorithm. 
No remarkable differences in statistical features 
measured for the two methods (in respect to the 
parameters of the original image). We noted only 
some difference in the S\N parameter for small 
region to fill. This can be explained by considering 
that the Criminisi  algorithm is based on a patching 
method. Our method, on the other hand, is one or 
two order of magnitude faster than the Criminisi 
method, depending on the damaged area size. An 
earlier version of the algorithm had been tested 
(Ardizzone et al. 2007) on images from a 
photographic archive of digitized old prints. 
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stats original damaged our method Criminisi 

m 76,9864 77,6598 76,9071 76,9819 

σ 64,4647 65,2693 64,4709 64,4647 

s 1,0717 1,0745 1,0704 1,0716 

k 2,7908 2,8105 2,7889 2,7906 
S/N  22,7384 24,7963 29,5066 
d  1552 (0,38%)   

an. 4,5 t(s)   
syn. 3,4 29.6 

d) 

 

e) 

 

f) 

 

stats original damaged our method Criminisi 

m 130,8099 122,0571 130,9902 130,7417 

σ 61,2621 67,3885 60,8456 61,6086 

s 0,0749 0,0396 0,0772 0,0673 

k 1,7097 1,8936 1,7085 1,7180 
S/N  4,4710 8,8456 8,5823 

d  28626 (7%)   

an. 1,5 t (s)   
syn. 1,1 618,5 

 

g) 

h) 

i) 

stats original damaged our method Criminisi 

m 35,0554 36,0589 34,8039 35,0759 

σ 35,8527 39,9498 35,5104 35,8855 

s 3,46605 3,4968 3,4508 3,4582 

k 15,3146 15.5208 15,1343 15,2490 
S/N  6,2192 17,0377 22,9851 
d  3091 (0,75%)   

an. 1,8 t(s)   
syn. 9,2 213.9 

 

 

Figure 2: (a,d,g) corrupted images (details from D21, D9, D25 from the Brodatz set, with superimposed damages); restored 
images with our method (b,e,h) and with Criminisi inpainting algorithm (c,f,i). A set of significant statistical parameters is 
provided to compare the two methods: m= mean, σ= standard deviation, s= skewness, k= kurtosis. d=number of 
damaged.pixels. S/N (dB)=signal to noise ratio between original-damaged and original-restored images. Execution time is 
shown for both analysis and synthesis phase (our method) and for the whole Criminisi process.
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5 REMARKS AND FUTURE 
WORKS  

The most evident limitation of our approach is about 
the window size. There are two problems with large-
sized windows: the larger the window, the higher the 
execution time is and the less consistent the statistics 
stored in the dictionary is. Due to these two reasons, 
tests have been made with a maximum window size 
of 7x7. This is not a problem for processing 
stochastic texture (a 3x3 window performs well). 
Textures that have periodicity in larger scale are 
harder to reconstruct. However, fine tuning of 
parameters in many cases is enough to achieve good 
results. Note that only the most significant bit-planes 
need larger windows. Lower planes are randomly 
structured, and if higher planes are well-
reconstructed, they can be restored using smaller 
windows.  

We are working to extend our approach to 
process a larger set of texture types. We also plan to 
study a method to eliminate dependence from the 
user-defined parameters. Texture features could be 
estimated during a pre-analysis phase, and 
parameters suggested for the restoration process. 

6 CONCLUSIONS 

Bit-plane  slices are used as a simple domain, into 
which analyse texture features and synthesize 
missing pixels to fill-in gaps, while respecting 
boundary conditions. Two competing methods, a 
conditional stochastic process and a patching 
method, work together to reconstruct the missing 
texture features. With this purpose, our approach is 
simple and efficient, and good results are achieved 
for a wide set of textured images. Results are 
compared with those obtained with a state of the art 
restoration algorithm. Minor loss in the quality of 
the results, with a high gain in execution time. 
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