SELF-CALIBRATION OF CENTRAL CAMERAS BY MINIMIZING ANGULAR ERROR

Juho Kannala, Sami S. Brandt and Janne Heikkilä

Machine Vision Group, University of Oulu, Finland

Keywords: Camera model, camera calibration, self-calibration.

Abstract: This paper proposes a generic self-calibration method for central cameras. The method requires two-view point correspondences and estimates both the internal and external camera parameters by minimizing angular error. In the minimization, we use a generic camera model which is suitable for central cameras with different kinds of radial distortion models. The proposed method can be hence applied to a large range of cameras from narrow-angle to fish-eye lenses and catadioptric cameras. Here the camera parameters are estimated by minimizing the angular error which does not depend on the 3D coordinates of the point correspondences. However, the error still has several local minima and in order to avoid these we propose a multi-step optimization approach. This strategy also has the advantage that it can be used together with RANSAC to provide robustness for false matches. We demonstrate our method in experiments with synthetic and real data.

1 INTRODUCTION

The radial distortion of camera lenses is a significant problem in the analysis of digital images (Hartley and Kang, 2005). However, traditionally this problem has been somewhat ignored in the computer vision literature where the pinhole camera model is often used as a standard (Hartley and Zisserman, 2003). The pinhole model is usable for many narrow-angle lenses but it is not sufficient for omnidirectional cameras which may have more than 180° field of view (Mičuššik and Pajdla, 2006). Nevertheless, most cameras, even the wide-angle ones, are central which means that the camera has a single effective viewpoint. In fact, there are basically two kinds of central cameras: catadioptric cameras contain lenses and mirrors while dioptric cameras contain only lenses (Mičuššik and Pajdla, 2006). The image projection in these cameras is usually radially symmetric so that the distortion is merely in the radial direction.

Recently, there has been a lot of work about building models and calibration techniques for generic omnidirectional cameras, both central and non-central ones (e.g. Geyer and Daniilidis, 2001; Ying and Hu, 2004; Claus and Fitzgibbon, 2005; Hartley and Kang, 2005; Ramalingam et al., 2005; Kannala and Brandt, 2006)). In addition, various self-calibration methods have been proposed for omnidirectional cameras (Thirthala and Pollefeys, 2005; Barreto and Daniilidis, 2006; Li and Hartley, 2006; Mičuššik and Pajdla, 2006; Ramalingam et al., 2006; Tardif et al., 2006). Nevertheless, many of these methods still use some prior knowledge about the scene, such as straight lines or coplanar points (Li and Hartley, 2006; Ramalingam et al., 2006; Tardif et al., 2006), or about the camera, such as the location of the distortion centre (Thirthala and Pollefeys, 2005; Barreto and Daniilidis, 2006; Mičuššik and Pajdla, 2006). In fact, despite the recent progress in omnidirectional vision, there is still a lack of a generic and robust self-calibration procedure for central cameras. For example, the method proposed in (Mičuššik and Pajdla, 2006) uses different camera models for different kinds of central cameras.

In this paper we propose a new general-purpose self-calibration approach for central cameras. The method uses two-view point correspondences and estimates the camera parameters by minimizing the angular error. In other words, we use the exact expression for the angular image reprojection error (Olien-sis, 2002) and write the self-calibration problem as an optimization problem where the cost function depends on the parameters of the camera. Since this cost function appears to have many local minima we propose a stepwise approach for solving the optimization problem. The experiments demonstrate that this approach is promising in practice and self-calibration is possible when reasonable constraints
are provided for the camera parameters. Since the camera model used in the optimization is generic the proposed method can be applied to a large range of central cameras.

2 CENTRAL CAMERA MODELS

In this section we show that a large class of central cameras can be modelled with a simple model which contains only one additional degree of freedom compared to the standard pinhole model. This additional degree of freedom is required for modelling the radial projection.

2.1 Image Formation in Central Cameras

A central camera has a single effective viewpoint which means that the camera measures the intensity of light passing through a single point in 3D space. Single-viewpoint catadioptric image formation is well studied (Baker and Nayar, 1999; Geyer and Daniilidis, 2001) and it has been shown that a central catadioptric projection is equivalent to a two-step mapping via the unit sphere (Geyer and Daniilidis, 2001; Ying and Hu, 2004).

Hence, as described in (Ying and Hu, 2004) and illustrated in Fig. 1(a), a generic model for central catadioptric cameras may be represented as a composed function

\[X \xrightarrow{g} q \xrightarrow{H} x \xrightarrow{A} m, \tag{1} \]

where \(X = (X, Y, Z)^\top \) is the object point, \(q \) is the point projected on the unit sphere and \(x = (x, y, 1)^\top \) is the point on the virtual image plane which is mapped to the observed image point \(m = (u, v, 1)^\top \) by affine transformation \(A \). The two-step mapping \(H \circ g \), which maps the object point onto the virtual image plane, is illustrated in Fig. 1(a). There the object point \(X \) is first projected to \(q \) on the unit sphere, whose center \(O \) is the effective viewpoint of the camera. Thereafter the point \(q \) is perspectively projected to \(x \) from another point \(Q \) so that the line through \(O \) and \(Q \) is perpendicular to the image plane. The distance \(l = |OQ| \) is a parameter of the catadioptric camera. The functions \(g \), \(H \) and \(A \) in (1) have the following forms

\[q = g(X) = X / ||X|| \]
\[= (\cos \varphi \sin \theta, \sin \varphi \sin \theta, \cos \theta)^\top \] \(\tag{2} \)
\[x = H(q) = (r(\theta) \cos \varphi, r(\theta) \sin \varphi, 1)^\top \] \(\tag{3} \)
\[m = A(x) = Kx, \] \(\tag{4} \)

where \(\varphi \) and \(\theta \) are the polar angle coordinates of \(X \), \(r \) is the radial projection function and the affine transformation matrix

\[K = \begin{bmatrix} f & sf & u_0 \\ 0 & \gamma f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \] \(\tag{5} \)

contains the conventional parameters of a pinhole camera (Hartley and Zisserman, 2003). The function \(r \) does not depend on \(\varphi \) due to radial symmetry and its precise form as a function of \(\theta \) is determined by the parameter \(l \), as illustrated in Fig. 1(a).

The model (1), originally presented for catadioptric cameras (Ying and Hu, 2004), is applicable also for central dioptric cameras. For example, when \(Q \) coincides with \(O \) in Fig. 1(a), the catadioptric projection model gives the perspective projection

\[r = \tan \theta \quad \text{(i. perspective projection)}, \] \(\tag{6} \)

as a special case. Hence, the pinhole model is included in the generalized model (1). However, lenses with a large field of view, such as fish-eye lenses, are usually designed to obey one of the following projection models

\[r = 2\tan(\theta/2) \quad \text{(ii. stereographic projection)}, \] \(\tag{7} \)
\[r = \theta \quad \text{(iii. equidistance projection)}, \] \(\tag{8} \)
\[r = 2\sin(\theta/2) \quad \text{(iv. equisolid angle projection)}, \] \(\tag{9} \)
\[r = \sin(\theta) \quad \text{(v. orthogonal projection)}, \] \(\tag{10} \)

instead of the perspective projection (Kannala and Brandt, 2006). In (Kannala and Brandt, 2006) it is shown that the two-parameter polynomial model

\[r = k_1 \theta + k_2 \theta^3 \] \(\tag{11} \)

provides a reasonable approximation for all the projections (6)-(10). Below we will show that both...
the polynomial model and a generalized catadioptric model provide a basis for a generic one-parameter projection model so that both of these models allow reasonable approximation of projections (6)-(10).

2.2 Radial Projection Models

The previous works (Kannala and Brandt, 2006) and (Ying and Hu, 2004) suggest two different models for the radial projection function, as discussed above. The first model is the cubic model

\[r = \theta + k\theta^3, \]

(12)

and it is obtained from (11) by selecting the first-order coefficient to unity. This does not have any effect on generality since (3) and (4) indicate that a change in coefficient to unity. This does not have any effect on the scale of \(r \) may be absorbed into parameter \(f \) in \(K \).

The second model is the catadioptric model based on (Ying and Hu, 2004) and has the form

\[r = \frac{(l + 1) \sin \theta}{l + \cos \theta}, \]

(13)

which can be deduced from Fig. 1(a), where the corresponding sides of similar triangles must have the same ratio, i.e., \(\frac{\sin \theta}{\cos \theta} = \frac{l + 1}{\cos \theta} \). In (Ying and Hu, 2004) it is shown that (13) is a generic model for central catadioptric projections; here we show that it is also a reasonable model for fish-eye lenses. In fact, when \(l = 0 \) we have the perspective projection (6), \(l = 1 \) gives the stereographic projection (7) (since \(\tan \frac{\theta}{2} = \frac{\sin \theta}{1 + \cos \theta} \)), and on the limit \(l \to \infty \) we obtain the orthogonal projection (10). Hence, it remains to be shown that (13) additionally approximates projections (8) and (9).

In Fig. 1(b) we have plotted the projections (6)-(10) and their least-squares approximations with the models (12) and (13). The projections were approximated between \(\theta \) and \(\theta_{\text{max}} \) so that the interval \([0, \theta_{\text{max}}] \) was discretized with 0.1° increments. Here the values of \(\theta_{\text{max}} \) were 60°, 110°, 115°, 115° and 90°, respectively, and the model (13) was fitted by using the Levenberg-Marquardt method. It can be seen that both models provide a fair approximation for a large class of radial projections and both of them could be used in our self-calibration method.

2.3 Backward Models

A central camera can be seen as a ray-based directional sensor. Hence, when the direction of the incoming ray is represented by \(\Phi = (\theta, \varphi) \) the internal properties of the camera are determined by the forward camera model \(\varphi \) which describes the mapping of rays to the image, \(m = \varphi(\Phi) \). In our case the forward model \(\varphi \) is defined via equations (2)-(4), where the radial projection function \(r \) in (3) is given by (12) or (13). However, we need to know also the backward model, \(\Phi = \varphi^{-1}(m) \), and it is computed in two steps: the inverse of \(\varphi \) in (4) is straightforward to compute and the inversion of \(r \) is discussed below.

In the case of model (12), given \(r \) and \(k \), the value of \(\theta \) is computed by solving a cubic equation. The roots of a cubic equation are obtained from Cardano’s formula (Råde and Westergren, 1990) and here the correct root can be chosen based on the sign of \(k \).

In the case of model (13) the mapping from \(r \) to \(\theta \) is computed as follows. We take squares of both sides in equation (13) which gives

\[r^2 + 2lr^2 \cos \theta + r^2 \cos^2 \theta = (l + 1)^2 \sin^2 \theta. \]

(14)

Since \(\sin^2 \theta = 1 - \cos^2 \theta \) we get a quadratic equation in terms of \(\cos \theta \), and the solution for \(\theta \) is obtained by taking the inverse cosines of

\[\cos \theta = \frac{-lr^2 \pm \sqrt{l^2r^4 + (r^2 + (l + 1)^2)(l^2r^2 - (l + 1)^2)}}{(r^2 + (l + 1)^2)}. \]

(15)

where the + sign gives the correct solution for projections such as those in Fig. 1(b).

In summary, based on the discussion above, here both the forward model \(\varphi \) and the backward model \(\varphi^{-1} \) can be written as explicit functions of their input arguments when the values of internal camera parameters are given (the five parameters in \(K \) and one parameter in \(r \)). This is important considering our self-calibration method where the backward model will be needed for evaluating the cost function to be minimized.

3 SELF-CALIBRATION METHOD

In this section we propose a self-calibration method for central cameras which minimizes the angular two-image reprojection error over camera parameters. The method requires two-view point correspondences and assumes non-zero translation between the views.

3.1 Minimization of Angular Error for Two Views

Assume that the camera centres of two central cameras are \(O \) and \(O' \) and both cameras observe a point \(P \). In this case, the epipolar constraint yields

\[\mathbf{q}^T \mathbf{Eq} = 0, \]

(16)

where \(\mathbf{q} \) and \(\mathbf{q}' \) are the unit direction vectors for \(OP \) and \(O'P \), represented in the coordinate frames of
the respective cameras, and \(E \) is the essential matrix (Hartley and Zisserman, 2003). The directions \(\mathbf{q} \) and \(\mathbf{q}' \) can be associated with points on the unit sphere and they correspond to image points \(\mathbf{m} \) and \(\mathbf{m}' \) via (1).

However, in general, when \(\mathbf{q} \) and \(\mathbf{q}' \) are obtained by back-projecting noisy image observations they do not satisfy (16) exactly which means that the corresponding rays do not intersect. Hence, given \(\mathbf{E} \) and \(\mathbf{q}, \mathbf{q}' \), the problem is to find such directions \(\mathbf{q} \) and \(\mathbf{q}' \) which correspond to intersecting rays and are close to \(\mathbf{q} \) and \(\mathbf{q}' \) according to some error criterion. A geometrically meaningful criterion is the angular error (Oliensis, 2002) which is the sum of squared sines of angles between \(\mathbf{q} \) and \(\mathbf{q}' \) and between \(\mathbf{q}' \) and \(\mathbf{q} \), i.e.,

\[
\mathcal{E}(\mathbf{q}, \mathbf{q}', \mathbf{E}) = \min_{\mathbf{q}, \mathbf{q}'} (\|\mathbf{q} \times \mathbf{q}'\|^2 + \|\mathbf{q}' \times \mathbf{q}\|^2) \tag{17}
\]

where \(\mathbf{q}'^\top \mathbf{E} \mathbf{q} = 0 \). This error has an exact closed-form solution (Oliensis, 2002) and it is

\[
\mathcal{E}(\mathbf{q}, \mathbf{q}', \mathbf{E}) = \frac{A}{2} - \sqrt{\frac{A^2}{4} - B}, \tag{18}
\]

where

\[
A = \mathbf{q}'^\top \mathbf{E}^\top \mathbf{E} \mathbf{q} + \mathbf{q}'^\top \mathbf{E} \mathbf{q}'
\]

and

\[
B = (\mathbf{q}'^\top \mathbf{E} \mathbf{q})^2.
\]

The main idea behind our self-calibration approach is the following: given a number of two-view point correspondences we sum the corresponding angular errors (18) and use this sum as a cost function which is minimized over the camera parameters. In fact, the essential matrix may be written as a function of the external camera parameters \(\mathbf{a} \), i.e., \(\mathbf{E} = \mathbf{E}(\mathbf{a}) \) (Hartley and Zisserman, 2003). Furthermore, by using the backward camera model \(\mathbf{p}^{-1} \) the direction vector \(\mathbf{q} \) may be represented as a function of the internal camera parameters \(\mathbf{a} \), i.e., \(\mathbf{q} = \mathbf{q}(\mathbf{p}^{-1}(\mathbf{m}, \mathbf{a})) \).

Minimizing (19) is a nonlinear optimization problem. Given a good initial guess for \(\mathbf{a} \), the solution can be found by a standard local optimization algorithm. However, the cost function (19) typically has several local minima which makes the problem difficult (Oliensis, 2002). In addition, although there usually is some prior knowledge about the internal camera parameters, the initialization of the external parameters is difficult. Hence, in order to avoid local minima, we propose a two-phase optimization approach, where we first perform minimization over the internal parameters only and use the eight-point algorithm (Hartley, 1997) to compute the essential matrix. The outline of the algorithm is as follows.

Generic Algorithm for Self-calibration. Given \(n \geq 8 \) correspondences \(\{\mathbf{m}, \mathbf{m}'\} \), the backward camera model \(\mathbf{p}^{-1} \), and an initial guess for the internal camera parameters \(\mathbf{a}_0 \), estimate the camera parameters which minimize (19).

(i) Provide a function \(F \) which takes \(\mathbf{a}_0 \) and \(\{\mathbf{m}, \mathbf{m}'\} \) as input and gives \(\mathbf{E} \) as output: compute correspondences \(\mathbf{q}_i = \mathbf{q}(\mathbf{p}^{-1}(\mathbf{m}, \mathbf{a}_0)) \) and \(\mathbf{q}'_i = \mathbf{q}(\mathbf{p}^{-1}(\mathbf{m}', \mathbf{a}_0)) \) and use them in the eight-point algorithm (Hartley, 1997).

(ii) Provide a function \(G \) which takes \(\mathbf{a}_0 \) and \(\{\mathbf{m}, \mathbf{m}'\} \) as input and outputs a value of the error (19): use the function \(F \) above to compute \(\mathbf{E} \) and then simply evaluate (19).

(iii) Minimize \(G \) over the internal camera parameters.

(iv) Initialize the external camera parameters: compute \(\mathbf{E} \) and then retrieve the rotation and translation parameters (the four solutions are disambiguated by taking the orientation of vectors \(\mathbf{q}_i, \mathbf{q}'_i \) into account).

(v) Minimize (19) over all the camera parameters. The initial estimate for the parameters is provided by steps (iii) and (iv) above.

The self-calibration algorithm is described above in a very general form. For example, the camera model and the iterative minimization method are not fixed there. In the experiments we used the generic camera models of Section 2 and the iterative minimization in steps (iii) and (v) was performed in Matlab using the function \(\text{lsqnonlin} \), which is a subspace trust region method.

Finally, it should be emphasized that the first four steps in the algorithm are essential for the performance. In fact, in our simulations we experimentally found that the final estimate is usually less accurate if the step (iii) is skipped. In addition, the final step (v) typically gives only slight improvement in the result. Hence, it seems that our approach, where we first optimize over the internal camera parameters, not only provides a good initialization for the external parameters but also allows to avoid local minima.
3.2 Constraints on Camera Parameters

In this section, we briefly consider the uniqueness of the minimum of (19). If the point correspondences \(\{ m_i, m_i' \} \) are exact and consistent with the camera model \(\varphi \), the minimum value of (19) is 0. However, it is not self-evident whether this minimum value is attained at finitely many points in the parameter space. It is clear that the solution is not unique in the strict sense since there are four possible solutions for the motion parameters when \(E \) is given up to sign (Hartley and Zisserman, 2003). In addition, it is well known that for perspective cameras the constraint of constant internal parameters is not sufficient for self-calibration in the two-view case (Hartley and Zisserman, 2003). Hence, additional constraints are needed and here we assume that the values of parameters \(s \) and \(\gamma \) in (5) are known. In particular, the values \(s = 0 \) and \(\gamma = 1 \) were used in all our experiments since they are the correct values for most digital cameras which have zero skew and square pixels.

3.3 Robustness for Outliers

In practice, the tentative point correspondences \(\{ m_i, m_i' \} \) may contain false matches which can easily deteriorate the calibration. However, in such cases the algorithm of Section 3.1 can be used together with the RANSAC algorithm to provide robustness for false matches (Hartley and Zisserman, 2003). In detail, given \(n \) correspondences in total, one may randomly select subsets of \(p \) correspondences, \(p \ll n \), and estimate the camera parameters for each subset by the generic algorithm (the step (v) in the algorithm may be omitted here for efficiency). Thereafter the estimate which has most inliers according to error (18) is refined using all the inliers. The value \(p = 15 \) was used in our experiments and the RANSAC algorithm was implemented following the guidelines in (Hartley and Zisserman, 2003).

3.4 Three Views

The calibration algorithm described in Section 3.1 extends straightforwardly to the three-view case. Using correspondences over three views instead of only two views increases the stability of the self-calibration. In addition, the constraints for camera parameters, discussed in Section 3.2, may be relaxed in the three-view case if necessary.

The details of the three-view calibration procedure are as follows. Given the point correspondences and an initial guess for the internal camera parameters, one may estimate the essential matrix for a pair of views in the same manner as in the two-view case. However, now there are three different view pairs and each pair has its own essential matrix. Our aim is to minimize the total angular error which is obtained by summing together the cost functions (19) for each view pair. The minimization is carried out in a similar manner as in the two-view case. First, we minimize the total angular error over the internal camera parameters (we use the eight point algorithm to compute each essential matrix independently of one another). Thereafter we initialize the external camera parameters using the estimated essential matrices and minimize the total angular error over all the camera parameters.

The three-view approach described above does not require that the point correspondences extend over all the three views. It is sufficient that there is a set of two-view correspondences for each view pair. However, in the case of real data which may contain outliers it is most straightforward to use three-view correspondences in the RANSAC framework.

4 EXPERIMENTS

4.1 Synthetic Data

In the first experiment we simulated self-calibration using random two-view and three-view configurations with synthetic data. We used a data set consisting of points uniformly distributed into the volume \([-5.5]^3 \times [-2,2]^3\) defined by the cubes \([-5.5]^3\) and \([-2,2]^3\), i.e., there were no points inside the smaller cube where the cameras were positioned. The first camera was placed at the origin and the second and third camera were randomly positioned so that their distances from the origin were between 1 and 2. In the three-view case it was additionally required that the distance between the second and third camera was at least 1. The orientation of the cameras was such that at least 40% of the points observed by the first camera were within the field of view of the other cameras. For each such configuration the points were viewed by five cameras obeying projections (6)-(10) and the observed image points were perturbed by a Gaussian noise with a standard deviation of one pixel. The true values of the camera parameters were \(f = 800 \), \(u_0 = 500 \), \(v_0 = 500 \) for all the five cameras. The maximum value of the view angle \(\theta \) was 60 degrees for the perspective camera, 80 degrees for the orthographic camera and 90 degrees for the others.

We self-calibrated each of the above five cameras from varying number of point correspondences us-
SELF-CALIBRATION OF CENTRAL CAMERAS BY MINIMIZING ANGULAR ERROR

Figure 2: Simulation results in the two-view case with the generalized catadioptric model (top row) and the cubic model (bottom row). The symbols (i)-(v) refer to five cameras obeying projections (6)-(10) and each point on the plots represents the median value of 3000 estimates. The first column shows the error in the direction of translation and the second column shows the error in the rotation axis, both in degrees. The third and fourth column give the errors in the focal length and principal point in pixels. The last column illustrates the RMS reprojection error.

Figure 3: Simulation results in the three-view case. The ordering of the graphs is the same as in Fig. 2. The errors in the direction of the translation vector and rotation axis are illustrated only for the second view.

ing 3000 distinct two-view and three-view configurations. Since we observed that the step (v) in the calibration algorithm usually gives only a slight improvement in the estimate we skipped it for better efficiency. Hence, the minimization was performed only over the internal camera parameters which were randomly initialized: the estimate for \(f \) was uniformly distributed on the interval \([600, 1000]\) and the estimate for the principal point \((u_0, v_0)\) was uniformly distributed in a \(400 \times 400\) window around the true value. We used both the cubic (12) and catadioptric (13) models and the initial values \(k = 0 \) and \(l = 1 \) were used for all the five cameras.

In the two-view case the self-calibration results are illustrated in Fig. 2 where the graphs illustrate the errors in the external and internal camera parameters. In addition, there is a graph representing the root-mean-squared (RMS) reprojection error. This error was calculated by reconstructing each noisy point correspondence in 3D, reprojecting this point onto the images and computing the RMS distance between the reprojected and original points. Each point on the plots in Fig. 2 represents the median value of the 3000 estimates. It can be seen that the motion estimates are reasonable and the errors decrease when the number of points is increased. However, for some cameras the errors in the internal parameters do not decrease much. This might indicate that the constraints \(s = 0 \) and \(\gamma = 1 \) are not sufficient for all the cameras in the two-view case. Actually, this is a known fact for a perspective camera (Hartley and Zisserman, 2003). Finally, it seems that the catadioptric model works somewhat better than the cubic model for which the values of the RMS reprojection error are relatively high in the case of the perspective camera and orthogonal fish-eye camera. However, in general the values...
of the RMS reprojection error are in the same order of magnitude as the noise and this indicates that the optimization has been successful.

In the three-view case the results are illustrated in Fig. 3. As expected, the errors are smaller than in the two-view case. Again, the catadioptric model shows better performance in general. Overall, the results verify that the proposed approach allows the self-calibration of generic central cameras given only a rough initial guess for the internal camera parameters.

4.2 Real Data

In the second experiment we used two cameras, one was equipped with a conventional lens and the other with a fish-eye lens. The view pairs taken with these cameras are shown in Fig. 4. Both cameras were internally calibrated beforehand and the calibration object, visible in the images, was used to compute the motion between the views. Hence, in both cases we know the correct values of the camera parameters relatively accurately. The point correspondences between the view pairs were obtained by matching interest points using the SIFT descriptor (Lowe, 2004; Mikolajczyk and Schmid, 2005). In Fig. 4, the putative correspondences are illustrated in the second view, where the flow vectors indicate several false matches. The last column shows only the inliers detected during the self-calibration.

For the conventional camera the radial distortion was removed from the images before matching. Hence, the camera was close to an ideal perspective model using both the initial and estimated parameters. The result of self-calibration is additionally illustrated in Fig. 5 where the central region of the original fish-eye image is warped to follow the perspective model using both the initial and estimated values for the internal camera parameters. The scene lines, such as the edges of the doors, are straight in the latter case. This example shows that a rough initial guess for the camera parameters is sufficient for self-calibration also in practice.

5 CONCLUSIONS

In this paper, we have proposed a self-calibration method for central cameras which is based on minimizing the two-view angular error over the camera parameters. The main contributions are the following: (1) the generic self-calibration problem was formulated as a small-scale optimization problem where a single parameter allows to model a wide range of radial distortions, (2) the optimization problem was solved using a multi-step approach which allows to avoid local minima even when only a rough initial guess is provided for the internal camera parameters. The experiments demonstrate that our method allows self-calibration of different types of central cameras and is sufficiently robust to be applicable for real data.
Table 1: The errors in the camera parameters for a conventional and fish-eye camera. Here Δ_{a} denotes the error in the rotation angle, Δ_{r} is the error in the direction of the rotation axis and Δ_{t} is the translational error, all in degrees. The value ϵ is the median of the reprojection error in pixels, i.e., the median distance between the reprojected and observed interest points.

<table>
<thead>
<tr>
<th></th>
<th>Δ_{a} [deg]</th>
<th>Δ_{r} [deg]</th>
<th>Δ_{t} [deg]</th>
<th>Δ_{f} [pix]</th>
<th>Δ_{u0} [pix]</th>
<th>Δ_{v0} [pix]</th>
<th>ϵ [pix]</th>
</tr>
</thead>
<tbody>
<tr>
<td>pinhole</td>
<td>(12)</td>
<td>0.40</td>
<td>4.8</td>
<td>0.51</td>
<td>120</td>
<td>4.0</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>0.59</td>
<td>8.2</td>
<td>0.95</td>
<td>200</td>
<td>1.7</td>
<td>4.9</td>
</tr>
<tr>
<td>fish-eye</td>
<td>(12)</td>
<td>0.11</td>
<td>1.4</td>
<td>20</td>
<td>8.4</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>0.21</td>
<td>0.43</td>
<td>5.7</td>
<td>0.49</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>

Figure 5: Correction of the radial distortion for a fish-eye lens. Left: The original fish-eye image in which the central area is denoted by the circle. Middle: The area inside the circle is transformed to the perspective model using the initial values for the internal camera parameters. The transformation is not correct since the scene lines are not straight in the image. Right: The area inside the circle is corrected using the estimated parameter values. The images of lines are straight.

REFERENCES

