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Abstract: Most pattern recognition problems are solved by highly task specific algorithms. However, all recognition
and classification architectures are related in at least one aspect: They rely on compressed representations
of the input. It is therefore an interesting question how much compression itself contributes to the pattern
recognition process. The question has been answered by Benedetto et al. (2002) for the domain of text, where
a common compression program (gzip ) is capable of language recognition and authorship attribution. The
underlying principle is estimating the mutual information from the obtained compression factor. Here we show
that compression achieves astonishingly high recognition rates even for far more complex tasks: Visual object
recognition, texture classification, and image retrieval. Though, naturally, specialized recognition algorithms
still outperform compressors, our results are remarkable, since none of the applied compression programs
(gzip , bzip2 ) was ever designed to solve this type of tasks. Compression is the only known method that
solves such a wide variety of tasks without any modification, data preprocessing, feature extraction, even
without parametrization. We conclude that compression can be seen as the “core” of a yet to develop theory
of unified pattern recognition.

1 INTRODUCTION

Pattern recognition is a task that has to be solved
by many biological organisms and technical systems
alike. Though applicable solutions have been found in
branches like speech recognition or computer vision,
neither a unifying theory of pattern recognition ex-
ists nor even a broadly usable algorithmic method. To
date, almost any pattern classification system is tai-
lored to a specific task — not only by its particular
processing design, but also by a concomitant usually
very careful parameterization. Almost all approaches
in pattern recognition, however, have one property in
common, regardless of the particular domain: They
use some kind of compressed representation of the
original input data, partly for redundancy reduction,
partly for filtering out only the most discriminative
constituents.

In a vigorously discussed paper (Benedetto et al.,
2002), Benedetto et al. relate compression to pat-
tern recognition in an amazingly straightforward way:

They used the common gzip compressor for lan-
guage recognition (see also (Benedetto et al., 2003),
for comments see (Cho, 2002; Ball, 2002; Khmelev
and Teahan, 2003)). The method is surprisingly sim-
ple: There are n versions T1 . . .Tn of a text in differ-
ent languages. Each text file Ti is compressed using
gzip , the resulting bit length S(Ti) of the compressed
file has to be memorized. Now the language i∗ of a
new text T ∗ (written in one of the n languages) can be
recognized in the following way: T ∗ is appended to
each of the uncompressed texts T1 . . .Tn to obtain the
enlarged files T ∗1 . . .T ∗n . Then the enlarged files are
compressed, their bit lengths being S(T ∗1 ) . . .S(T ∗n ).

The language i∗ of T ∗ is then obtained by i∗ =
argmini (S(T ∗i )−S(Ti)), i.e., given by the language
of the text Ti∗ which exhibits the smallest increase
S(T ∗i )− S(Ti) of its compressed length after append-
ing T ∗.

The principle of this method is straightforward.
The gzip program is based on the Lempel-Ziv al-
gorithm (LZ77) (Lempel and Ziv, 1977), which de-
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tects repeatedly occurring symbol sequences within
the data, such that a dictionary can be established. A
repeated symbol sequence can then be replaced by the
symbol defined in the dictionary. Thus, it is not sur-
prising that compression of a text appended to another
one in the same language profits from the availability
of shared constituents caused by the similarity of text
strings. However, the accuracy reported in (Benedetto
et al., 2003) is astonishing, it is possible not only to
recognize language and to attribute authorship, but to
reconstruct entire language trees.

The question arises if the good performance compres-
sion achieves for recognition is just the result of a ju-
dicious combination of a particular algorithm (LZ77)
with a particular recognition task (text). In this pa-
per, we investigate the two crucial questions that must
be answered to allow generalization of the results re-
ported by Benedetto et al.:

1. Text is a linear sequence of symbols, which makes
recognition by compression easy. It can thus be
objected that the method would fail for a more dif-
ficult pattern recognition task, in particular, when
sensor data are to be evaluated. We will therefore
apply the method to three real world vision tasks.

2. Using compression for recognition might depend
on the particular way LZ77 performs compres-
sion, which explicitly searches for repeated sym-
bol sequences. We will therefore apply also an
alternative compression algorithm (bzip2 ) rely-
ing on different principles (Burrows and Wheeler,
1994; Hirschberg and Lelewer, 1990).

In this paper we will show that, surprisingly, both ob-
jections do not hold: Recognition by compression is
neither limited to text, nor is it bound to a particular
compressor. As a consequence, compression appears
to be a very essential aspect of pattern recognition and
may be a first step towards a unifying theory. The ap-
proach can be connected with the concept of mutual
information (cf. Section 2.2), which has already been
used by several authors to gain a unified perspective
on various important operations in pattern recognition
systems (Sinkkonen and Kaski, 2002; Hulle, 2002;
Imaoka and Okajima, 2004; Erdogmus et al., 2004).
Section 2 describes the method itself, its theoretical
background and the applied compression algorithms.
In Section 3, experiments are carried out for three dif-
ferent problems: Object recognition, texture classifi-
cation, and image retrieval. The concluding Section 4
discusses the results and implications.

2 COMPRESSION FOR
RECOGNITION

2.1 Method

Following the approach of Benedetto et al.
(Benedetto et al., 2002), we compare two images I1,
I2 by considering the similarity measure

DComp(I1, I2) = S(I1)+S(I2)−S(I12), (1)

where S(.) denotes the bit size of a compressed im-
age. I12 is the “joint” image obtained as juxtaposi-
tion of pixel arrays I1 and I2. In the experiments de-
scribed in Section 3, both images I1 and I2 are first
compressed in isolation to obtain the bit size S(I1) and
S(I2) of their compressed representation, respectively.
The original images I1 and I2 are then merged to be-
come a single image I12. Compressing the merged
image I12 yields the bit size S(I12).

Note that the method is applied to the raw images,
without any preprocessing or adaptation.

2.2 Theoretical Background

The idea of Eq. (1) lies in information theory, which
relates the size of the shortest possible message length
for an information source I to its entropy H(I). The
compression factor, i.e. the bit length of the output
of a compressor algorithm divided by the bit length
of the uncompressed message can, therefore, be seen
as an approximation of its entropy H(I) — as long
as the compressor works close to optimal. For LZ77,
the compression factor indeed tends to H(I) when the
length of the message tends to infinity (Lempel and
Ziv, 1977; Wyner, 1994).

Thus, DComp(I1, I2) can be seen to approximate the
mutual information H(I1, I2) of I1 and I2, which in
information theory measures the amount of informa-
tion that I1 can predict about I2 and vice versa (Cover
and Thomas, 1991). A large positive value of DComp
thus indicates that I1 and I2 are very similar, while the
smallest possible value of zero is obtained when the
two images are completely unrelated. DComp(I1, I2)
measures similarity, but can not be used as a distance
measure in a strict sense.

The idea to judge pattern similarity by compres-
sion properties is not new per se and is related to
the Minimum-Description-Length (MDL) principle
for model selection (Rissanen, 1978; Vitanyi and Li,
1996). In image processing, MDL has been applied as
a global criterion to optimize segmentation (Leclerc,
1989; Keeler, 1990; Kanungo et al., 1994). How-
ever, such approaches operate on the level of regions,
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which are defined by task dependent similarity cri-
teria. So, the uses of compression-based and related
methods were restricted to low-dimensional data. Ap-
plication on raw data (of much higher dimension)
helps not only avoid the problematic stage of feature
extraction, but opens up the possibility to treat signals
stemming from different sources in a unified way.

2.3 Compression Algorithms

We used two standard lossless compression tools
which rely on different principles: The gzip pro-
gram1, which is based on LZ77 (Lempel and Ziv,
1977), and the bzip2 program2. bzip2 was cho-
sen for comparison with gzip because it relies on
a completely different compression technique: the
Burrows-Wheeler block sorting text compression al-
gorithm (Burrows and Wheeler, 1994) with sub-
sequent Huffman coding (Hirschberg and Lelewer,
1990). Thus, it can be shown that the ability to judge
pattern similarity is not a result of the particular way
LZ77 builds up a compressed representation.

2.4 Discussion of the Similarity
Measure

There are obvious methods that would improve the
performance of the approach. In particular, special-
ization to the domain of images would probably in-
crease recognition rates:
• gzip and bzip2 perform lossless compression.

But to judge image similarity, minor variation of
gray values should be tolerated. So, tuning the
compressors to a certain level of data loss would
probably improve performance.

• The compression algorithms are neither optimal
to approximate the mutual information, nor are
they the best compression techniques on the mar-
ket. Compression can be improved when algo-
rithms specialized to a particular data type are
used.

• The measure is applied only for judging similarity
of complete images. An additional segmentation
would help to identify objects or patterns in the
presence of varying background, however, seg-
mentation is a specialized computer vision tech-
nique.

But we did not make use of any of these measures,
since this would destroy the simplicity of the method

1In version gzip 1.2.4 available from
http://www.gzip.org .

2In version bzip2 1.0.1 , available from
http://sources.redhat.com/bzip2 .

and its universal applicability to entirely different data
domains. It is not the aim of this paper to build an ac-
tually usable recognition system but to demonstrate
the capability of the approach in a way easy to re-
produce and transferable to other domains. For this
demonstration, gzip and bzip2 were used in their
original Unix-implementation without any modifica-
tion.

3 EXPERIMENTS

3.1 Object Recognition

The first experiment was an object recognition task.
Images were taken from the COIL-100 library (Nene
et al., 1996), which is a standard benchmark data set
for object recognition3. It comprises for each of 100
different objects 72 rotational views (128×128 pixel
resolution, 50 rotation angle separation) of the object
centered on a dark background. Since color facilitates
recognition, we discarded color information and used
only the gray level version of each image.

For each test, the COIL-100 was partitioned into a
set Mα of “memorized” object views and the comple-
mentary set Uα of “unknown” object views. Several
test sets were created, whose partitions differed by
the chosen view angle spacing α of successive views
selected for the “memorized” set Mα (e.g., M15 con-
tains poses of 0,15,30 . . . degrees and U15 poses of
5,10,20,25 . . . degrees).

For recognition of an unknown image IU
i ∈Uα we

computed its similarities DComp(IU
i , IM

j ) with each of
the memorized images IM

j ∈ Mα, using Eq. (1) and
either gzip or bzip2 to obtain the size values S(.).
The memorized image IM

j leading to maximal DComp

was then taken to identify the “unknown” image IU
i .

Figure 1 shows the results of the object classifica-
tion task. Naturally, object representations including
more memorized views (smaller angular spacing α)
lead to better recognition. For α = 100, gzip reaches
99.4% correct classifications (chance level is 1%).
Remarkably, even for very sparse sampling recogni-
tion is considerable: α = 1200 (3 views) still leads to
82.0% correct classifications. Different levels of com-
pression by which the tradeoff between computational
efficiency and compression factor can be influenced
lead only to minor performance changes.

To give an estimate of the difficulty of the task,
two complementary basic methods were used: Corre-
lation based matching shows how much of the recog-

3Available from http://www.cs.columbia.edu/
CAVE/research/softlib/coil-100.html .
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Figure 1: Object recognition results for a gray value version
of COIL-100. Compression based on gzip performs better
than correlation based matching, histogram matching, and
compression using bzip2 .
Above: The percentage of correct classifications decreases
with the number of memorized object views. The advantage
of gzip becomes clear especially for large angular spacing
α of memorized views.
Below: Error rates for a fixed angular spacing α = 200 of
memorized views. gzip is superior for all compression
levels. Compression level 1 biases the tradeoff between
compression and speed for best speed, level 9 for compres-
sion. The default setting selects level 6 as a compromise
between these two.

nition results can be explained by a simple compar-
ison of the spatial gray value distribution, whereas
gray value histogram matching is independent of the
spatial structure. For classification from correlation,
instead of DComp the similarity measure DCorr based
on the pixel correlation of the normalized images Î1
and Î2 was used:

DCorr(I1, I2) = ∑
xy

Î1(x,y) · Î2(x,y) with ‖Î1,2‖= 1. (2)
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Figure 2: Recognition results for 50 gray level VisTex tex-
ture image pairs. gzip and bzip2 outperform correlation
based matching and histogram matching.

Histogram based similarity is calculated by

DHist(I1, I2) = −1
2

q

∑
i=1

(Ci(I1)−Ci(I2))
2 , (3)

where Ci(I j) denotes the count of pixels of image I j
with gray values in histogram bin i ∈ {1 . . .q}. We
use bin boundaries equidistant in the range [0 . . .255].
Throughout the paper a value q = 6 was used because
on average it yields the best results.

DComp based on gzip performs clearly much bet-
ter than both DCorr and DHist (Figure 1), which in-
dicates that gzip implicitly uses a combination of
the spatial structure and the gray value frequencies
for recognition. bzip2 performs between DCorr and
DHist , but as correct classification is still over 90%,
results are good also for bzip2 .

3.2 Texture Classification

In the second experiment, the capability of DComp to
discriminate textures was tested. From the VisTex
database (Picard et al., 1995) 50 image pairs were se-
lected, each showing two different views of the same
texture at resolution 512×512 pixels and transformed
to gray scale. The database comprises both natural
and artificial textures and includes difficulties like dif-
ferent perspectives, scaling and distortions. This time,
the sets M and U were formed of all “first” and “sec-
ond” views of the 50 pairs, respectively. Figure 2 de-
picts the percentage of errors in assigning views of U
to their partner views in M. Both gzip and bzip2
reach much better results than correlation and his-
togram matching. Naturally, techniques specialized
on texture classification would yield still better re-
sults, but it has to be kept in mind that DComp is treated
here as a general purpose recognition method.

VISAPP 2008 - International Conference on Computer Vision Theory and Applications

86



3.3 Image Retrieval

With the upcoming of large image collections on the
Internet or in databases, a major challenge is image
retrieval and indexing. The inherent diversity of this
domain makes the extraction of good general features
particularly difficult. Consequently, retrieval systems
still mostly rely on color and texture information,
while potentially more powerful structural features
are only rarely exploited (for an overview see e.g.
(Smeulders et al., 2000)).

Therefore, in the third experiment it was tested
if LZ77 can discriminate image categories. As a
database, 20 categories were formed from the Corel
database (Corel, 1997), each consisting of 80 images.
Since for some categories color is known to provide
an exceptional feature that facilitates discrimination,
again all images were transformed to gray level. Fig-
ure 4 shows some example images.

A typical retrieval task is to find similar images by
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Figure 3: Recognition results for the retrieval task.
Above: Error rates if only one image is returned for a query
(k = 1), this case resembles a mere classification-type task.
Below: In an actual retrieval system, usually more than one
image is returned (k > 1). A query is counted a “success” if
at least one image of the correct category is returned.

specification of a query image. We calculated for each
of the 1599 non-query images the k images that were
most similar to the query image in terms of DComp.
A query was counted a success if among the k query
results there was at least one of the correct category.
Figure 3 shows the results: Even for k = 1, about three
out of four query results yield the correct category, for
k = 4, the success rate rises to over 90% for both gzip
and bzip2 . This last experiment appears particularly
impressive, because most visual categories are much
broader than single object classes (Tarr and Bülthoff,
1998).

4 CONCLUSIONS

For each of the three types of tasks presented here
carefully specialized recognition architectures exist
(e.g. (Murase and Nayar, 1995; Paulus et al., 2000;
Rui et al., 1999; Laaksonen et al., 2000)), which can
achieve better results, at least in the case of object
and texture recognition. What makes the compression
based approach unique is its simplicity and applicabil-
ity to entirely different types of domains: Without any
designed feature extraction and without tuning of pa-
rameters, even “of the shelf” compression programs
achieve remarkable results for vision tasks as well as
text. Most astonishing appears the performance for
image retrieval based on gray values — most such
systems heavily depend on color (Smeulders et al.,
2000).

Naturally, the unmodified gzip and bzip2 pro-
grams are not yet the optimal or fastest solution for
entropy approximation — they were chosen to illus-
trate the principle in a “pure” and reproducible form.
As pointed out in (Khmelev and Teahan, 2003), nth
order Markov chain models outperform gzip on cer-
tain text recognition tasks. But the fact that the results
do not depend on the particular choice of LZ77 raises
hope that compression is a fundamental mechanism
that will open up a new perspective on pattern recog-
nition. Though we do not yet have a universal theory
of pattern recognition, compression is very likely to
be one of its key components.
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Figure 4: As a retrieval task, query images had to be found in 20 categories, each comprising 80 gray level images (color
was discarded). Here, 12 categories are shown by four images each. From left to right and top to bottom: “Polo”, “blos-
soms”, “mushrooms”, “desert”, “porcelain”, “stalactite caves”, “food on the table”, “interiors: hotels”, “surfing”, “interiors:
kitchens”, “busses”, “car racing”. The complete dataset can be made available on demand.
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