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Abstract: This paper builds upon our earlier work by applying an optimized version of our non-linear scene prediction 
method to traffic surveillance video. As previously, a Gabor-filter bank has been selected as a primary 
detector for any changes in a given image sequence. The detected ROI (region of interest) in arbitrary 
motion is fed to a non-linear Kalman filter for predicting the next scene in time-varying video, which is 
subject to prediction error invalidation. Potential applications of this research are mainly in the areas of 
traffic control and monitoring, traffic flow surveillance, and MPEG video-compression. The reported 
experimental results show improved performance over the non-linear Kalman filtering based scene 
prediction results in our previous work. The low least mean square error (LMSE), on the average of about 2 
to 3 % remains close to the average reported in our earlier work, however, the fluctuations in error have 
disappeared, proving the reliability of the approach to traffic-motion prediction. 

1 INTRODUCTION 

Over the last decade, the prediction of 2-D or 3-D 
scenes and the changes therein has become an 
increasingly popular research area (e.g., Kim and 
Woods (1998), Irani and Anandan (1998), Hoover et 
al. (2003), and Sawhney, et al. (2003)). This is due 
to its potential applications in unmanned navigation 
and guidance, surveillance, tracking, MPEG video 
compression, virtual world simulation, multimedia 
networking, animation, search and rescue. Two 
popular tools for these endeavors are the Kalman 
and Gabor filters. The Kalman filter (KF) is one of 
the most widely used methods for tracking and 
estimation because of its simplicity, optimality, 
tractability and robustness as reported in 
Roumeliotis and Bekey (2000a and 2000b) and  
Dorfmüller-Ulhaas (2003).  In this study, we predict 
the changes in an arbitrary scene setting using a 
Kalman predictor. However, a direct use of the 
Kalman filter with a nonlinear system can be 
difficult. An effective method for alleviating 
nonlinearity is to use an extended Kalman filter 
(EKF) (Sorenson, 1985) as an estimator by 
linearizing all the nonlinear parameters in a 
nonlinear system (Julier and Uhlmann, 1987). The 

Gabor filter (Theodoridis and Koutroumbas, 2006) 
has been proven to be useful for filtering based on 
texture differences within an image and is used in 
areas such as texture segmentation, document 
analysis, edge detection, retina identification, 
fingerprint processing, and image coding and 
representation. An example is Macenko et al.’s work 
(2007), which provides both a good explanation of 
the approach to using Gabor filtering and a highly 
relevant practical application in lesion detection 
within the brain. In this work, the prediction of 
frame to frame movement of the selected ROI in a 
given traffic image sequence is carried out by using 
a bank of Gabor filters to determine the region of 
interest (ROI), followed by the application of a 
nonlinear Kalman filter to the ROI to predict 
movement. Many other traffic surveillance and 
prediction methods have been proposed and 
implemented (e.g., (Huang and Russell, 1998), 
(Koller, et al., 1994), (Bramberger, et al., 2004), 
(Wang, et al., 2006), (Cheung, et al. 2005), (Celenk 
et al., 2007a and 2007b). The work presented by 
Maire and Kamath (2005) is similar to ours in the 
respect that the goal is to track traffic; however, our 
approach uses a more robust ROI detection method 
with the use of Gabor filtering to capture shapes via 
texture difference and is not normally applied to an 
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estimation problem such as this one. Kalman 
filtering is not typically used in image prediction or 
paired with Gabor filtering as claimed to be one of 
the objectives herein. Furthermore, our Kalman 
predictor is able to adjust its prediction results as the 
input scene domain changes while the dual Kalman 
filtering method presented by Roumeliotis and 
Bekey (2000a), for example, makes use of a scene-
domain model (i.e., no adaptability). The following 
sections describe the overall approach, experiments, 
and results obtained. Conclusions and future study 
are given at the end. 

2 DESCRIPTION OF APPROACH 

This paper takes the approach described in our 
earlier work (2007b) toward the scene prediction 
problem by using both Kalman and Gabor based 
filtering. Prediction of an entire image is not 
necessarily useful, desired, or even practical. 
Because of this, Gabor filtering helps determine a 
ROI in which to generate prediction results. The 
basic algorithm flow is shown in Figure 1. 

 
Figure 1: Algorithm flowchart. 

Here, the current frame is fed to a Gabor filter bank 
which calculates the output images for a series of 
Gabor filters with varying orientations. The filter 
bank will cover the spatial-frequency space and 
capture the essential shape information. Gabor 
output images are employed to generate a combined 
saliency map. Moving object bounding boxes are 
created with the saliency image and previous error 
results from the Kalman filter. Overlapping 
boundary boxes are combined and boxes common to 
both are used to determine the logical ROI (region of 
interest). The ROI’s relevant portion of the image is 
passed onto the extended Kalman filter. 

3 EXPERIMENTAL RESULTS 

A pair of data sets is used in experimentation from 
the Institute for Algorithms and Cognitive Systems 
of Karlsruhe University’s traffic image sequence 
database, specifically, the Taxi sequence and the 
Rheinhafen sequence. The Taxi sequence was 
chosen for its relative simplicity, while the 
Rheinhafen sequence was chosen for its multiple 
trackable vehicles and more “normal” imagery. It is 
normal in the sense that there are a fair number of 
detection errors. Images provided in the databases 
are in 2-D intensity format. Since depth information 
is not provided, the Kalman filter models pixel 
intensity. The 2-D scene data used for this 
experiment is from a static surveillance camera, 
meaning the camera’s position is fixed. In the 
collected images, only the scene contents move 
while the camera remains stationary. The Taxi and 
Rheinhafen images have been converted into JPEG 
images with resolutions of 256x191 and 688x565, 
respectively. Figure 2 shows a pair of example 
images from the selected databases depicted the 
scenes from which they were acquired. 

 
Figure 2: Scenes from Taxi and Rheinhafen databases. 

In our implementation, we follow the same discrete 
formulation of the Gabor filter as Macenko[11], 
which specifies the Gabor filter variables to be 
Sx = 1, Sy = 1, and θ = 0,π 4,...,π ,...,7π 4{ }. 
Eight different orientations for the Gabor bank are 
adapted since more would not provide any 
significant improvement and fewer would likely not 
discern enough about the image. Upon passing the 
image through the filter bank a combined saliency 
image is created. The saliency image has the 
background saliency image subtracted to leave only 
the correct region of interest (ROI). The resulting 
ROI image is then passed through a noise reduction 
and blocking filter to remove “specks” which results 
from small background changes and to “block out” 
the ROI to give it slightly better coverage. Figure 3 
illustrate the process of determining the ROI. Image 
(a) shows the Gabor saliency image for the 
background, while image (b) shows the Gabor 
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saliency for the current frame. The next image, 
image (c), depicts the result of the noise removal and 
black and white conversion of the previous image. 
The final image, (d), shows the results of “boxing” 
the ROI. To generate this last image, the ROI is 
combined with the previous cycle’s Kalman error to 
generate a number of boundary boxes. These boxes 
are then combined or removed as needed depending 
on their relative positions to each other and their 
relationship with the known ROI. In the image 
below the green regions are those associated with 
the ROI, while the red regions are those that have 
been “thrown away.” The blocking ensures that most 
of the pixels immediately surrounding the region of 
interest get included in the Kalman filter estimations 
and has the secondary effect of allowing actual 
tracking of moving objects. 
 

 
Figure 3: Gabor filter results for frame #1045 of the 
Rheinhafen database. 

Next, the superimposed frame containing the 
selected ROI (the green boxes) is passed on to the 
Kalman filter. The Kalman filter is then applied to 
the region of interest. To alleviate computational 
time issues and better handle the uneven lines of the 
ROI, the filter is run on 3x3 subsets or blocks of the 
total image. A 3x3 pixel filter is run for each frame, 
and the predicted results are then combined to create 
a full scene image array. In experimentation, the 
pixel noise value (pnij) is assumed to be zero, and 
velocity is not taken into account. The state 
transition matrix kφ  is adjusted for a 3x3 window 
based Kalman filter realization as a 27x27 matrix 
given by 

φk =
I I I
0 I I
0 0 I
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where I is a 9x9 identity matrix and 0 is a 9x9 zero 
matrix. The noise variance (σ ij

2 ) is considered as 
white Gaussian noise with a value of 0.25. In our 
experiment the pixel noise (pnij) is assumed to be 0, 
and the velocity noise (vnij) is taken to be 1 m/s.  
The prediction error, e, for the described method is 
calculated between the observed )( 1+kf  and 
predicted )( 1+kf

)
 images following the kth iteration in 

the least mean square sense (LMSE). The LMSE 
computation is carried out over the whole image 
frame of size M x N at pixel level (i,j) using  
 

e =
1

M ⋅ N
ˆ f k +1 i, j( )− fk +1 i, j( )( )2

∑∑  (1) 

 

Figure 4 gives an example of the prediction results 
for the same frame of the Rheinhafen database 
shown above. The measured frames represent the 
actual frame, while the predicted frame is the frame 
predicted from the previous cycle. Discrepancies 
tend to occur because the section of the image that 
they are associated with is not part of the region of 
interest but instead part of the background of their 
particular frame and, thus, not tracked. 
 

 
Figure 4: Prediction results. 

Figures 5 and 6 present the LMSE error results for 
all 41 frames of the Taxi database and frames 1015 
to 1055 of the Rheinhafen database.  
 

 
Figure 5: LMSE results for the Taxi database. 
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Figure 6: LMSE results for the Rheinhafen database. 

4 CONCLUSIONS 

This work has the objective of predicting mobile 
objects in video scenes as the camera or sensory 
device mounted on a platform remains stationary. 
Unlike existing target detection and tracking 
research, it makes use of Gabor filtering (and 
boundary box method) to select the ROI and a 
nonlinear extended Kalman filtering as a feedback 
mechanism to accurately track the moving targets 
and predict their locations ahead of time. The 
reported experimental results demonstrate that the 
nonlinear Kalman filtering based scene prediction 
performs well and can accurately estimate the next 
frames in images to a certain degree of accuracy. 
The low LMSE error measurement of the nonlinear 
filter prediction, on the average of about 2 to 3 %, 
proves the reliability and robustness of this approach 
to time-varying image data processing. The 
presented results are reasonably low in error for low-
cost visible and IR camera applications [17, 21]. 
Potential areas for future research lie in devising an 
ROI tracking mechanism in lieu of semantic 
information and improvements to the Kalman 
filtering algorithm to adjust itself for high-level 
visual clues. The magnitude of the prediction error 
involving initial frames indicates that further work is 
needed for the performance improvement. 
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